量子力學的產生與發展
量子力學是描述微觀世界結構、運動與變化規律的物理科學。它是20世紀人類文明發展的一個重大飛躍,量子力學的發現引發了一系列劃時代的科學發現與技術發明,對人類社會的進步做出重要貢獻。
19世紀末正當人們為經典物理取得重大成就的時候,一系列經典理論無法解釋的現象一個接一個地發現了。德國物理學家維恩通過熱輻射能譜的測量發現的熱輻射定理。德國物理學家普朗克為了解釋熱輻射能譜提出了一個大膽的假設:在熱輻射的產生與吸收過程中能量是以hV為最小單位,一份一份交換的。這個能量量子化的假設不僅強調了熱輻射能量的不連續性,而且與輻射能量和頻率無關由振幅確定的基本概念直接相矛盾,無法納入任何一個經典范疇。當時只有少數科學家認真研究這個問題。
著名科學家愛因斯坦經過認真思考,于1905年提出了光量子說。1916年美國物理學家密立根發表了光電效應實驗結果,驗證了愛因斯坦的光量子說。
1913年丹麥物理學家玻爾為解決盧瑟福原子行星模型的不穩定(按經典理論,原子中電子繞原子核作圓周運動要輻射能量,導致軌道半徑縮小直到跌落進原子核,與正電荷中和),提出定態假設:原子中的電子并不像行星一樣可在任意經典力學的軌道上運轉,穩定軌道的作用量fpdq必須為h的整數倍(角動量量子化),即fpdq=nh,n稱之為量子數。玻爾又提出原子發光過程不是經典輻射,是電子在不同的穩定軌道態之間的不連續的躍遷過程,光的頻率由軌道態之間的能量差AE=hV確定,即頻率法則。這樣,玻爾原子理論以它簡單明晰的圖像解釋了氫原子分立光譜線,并以電子軌道態直觀地解釋了化學元素周期表,導致了72號元素鉛的發現,在隨后的短短十多年內引發了一系列的重大科學進展。這在物理學史上是空前的。
由于量子論的深刻內涵,以玻爾為代表的哥本哈根學派對此進行了深入的研究,他們對對應原理、矩陣力學、不相容原理、測不準關系、互補原理。量子力學的幾率解釋等都做出了貢獻。
1923年4月美國物理學家康普頓發表了X射線被電子散射所引起的頻率變小現象,即康普頓效應。按經典波動理論,靜止物體對波的散射不會改變頻率。而按愛因斯坦光量子說這是兩個“粒子”碰撞的結果。光量子在碰撞時不僅將能量傳遞而且也將動量傳遞給了電子,使光量子說得到了實驗的證明。
光不僅僅是電磁波,也是一種具有能量動量的粒子。1924年美籍奧地利物理學家泡利發表了“不相容原理”:原子中不能有兩個電子同時處于同一量子態。這一原理解釋了原子中電子的殼層結構。這個原理對所有實體物質的基本粒子(通常稱之為費米子,如質子、中子、夸克等)都適用,構成了量子統計力學———費米統計的基點。為解釋光譜線的精細結構與反常塞曼效應,泡利建議對于原于中的電子軌道態,除了已有的與經典力學量(能量、角動量及其分量)對應的三個量子數之外應引進第四個量子數。這個量子數后來稱為“自旋”,是表述基本粒子一種內在性質的物理量。
1924年,法國物理學家德布羅意提出了表達波粒二象性的愛因斯坦———德布羅意關系:E=hV,p=h/入,將表征粒子性的物理量能量、動量與表征波性的頻率、波長通過一個常數h相等。
1925年,德國物理學家海森伯和玻爾,建立了量子理論第一個數學描述———矩陣力學。1926年,奧地利科學家提出了描述物質波連續時空演化的偏微分方程———薛定愕方程,給出了量子論的另一個數學描述——波動力學。后來,物理學家把二者將矩陣力學與波動力學統一起來,統稱量子力學。
量子力學在低速、微觀的現象范圍內具有普遍適用的意義。它是現代物理學基礎之一,在現代科學技術中的表面物理、半導體物理、凝聚態物理、粒子物理、低溫超導物理、量子化學以及分子生物學等學科的發展中,都有重要的理論意義。量子力學的產生和發展標志著人類認識自然實現了從宏觀世界向微觀世界的重大飛躍。