繁榮
960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業(yè)、手工業(yè)、商業(yè)空前繁榮,科學技術得到較大發(fā)展,火藥、指南針、印刷術三大發(fā)明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑搟之又進行翻刻。這些都為數學發(fā)展創(chuàng)造了良好的條件。
從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》、《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》、《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。
從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。賈憲在當時已發(fā)現二項系數表,創(chuàng)造了增乘開方法。這兩項成就對整個宋元數學發(fā)生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。
把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝算法》中“田畝比類乘除捷法”卷,介紹了原書中22個二次方程和1個四次方程,后者是用增乘開方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,秦九韶把常數項規(guī)定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶采取繼續(xù)求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發(fā)展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在“綴術推星”題、朱世杰在《四元玉鑒》“如象招數”題都提到內插法(他們稱為招差術),朱世杰得到一個四次函數的內插公式。
用天元(相當于x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,并用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。
從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項杰出的創(chuàng)造。留傳至今,并對這一杰出創(chuàng)造進行系統(tǒng)論述的是朱世杰的《四元玉鑒》。
朱世杰的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然后應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最后用增乘開方法求解。這是線性方法組解法的重大發(fā)展,比西方同類方法早400多年。
已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統(tǒng)歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統(tǒng)的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。
衰落
中國從明代開始進入了封建社會的晚期,封建統(tǒng)治者實行極權統(tǒng)治,宣傳唯心主義哲學,施行八股考試制度。在這種情況下,除珠算外,數學發(fā)展逐漸衰落。