八年級數學下冊教案 篇1
一、目標要求
1.理解掌握異分母分式加減法法則。
2.能正確熟練地進行異分母分式的加減運算。
二、重點難點
重點:異分母分式的加減法法則及其運用。
難點:正確確定最簡公分母和靈活運用法則。
1.異分母分式的加減法法則:異分母分式相加減,先通分,變為同分母分式,然后再加減。用式子表示為:±=。
2.分式通分時,要注意幾點:(1)如果各分母的系數都是整數時通分,常取它們的系數的最小公倍數,作為最簡公分母的系數;(2)若分母的系數不是整數時,先用分式的基本性質將其化為整數,再求最小公倍數;(3)分母的系數若是負數時,應利用符號法則,把負號提取到分式前面;(4)若分母是多項式時,先按某一字母順序排列,然后再進行因式分解,再確定最簡公分母。
三、解題方法指導
【例1】計算:(1)++;
(2)-x-1;
(3)--。
分析:(1)把分母的各多項式按x的降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉化為同分母的.分式加減法。(2)一個整式與一個分式相加減,應把這個整式看作一個分母是1的式子來進行通分,注意-x-1=,要注意負號問題。
解:(1)原式=-+=-+====;
(2)原式======;
(3)原式=--===。
【例2】計算:。+++。
分析:此題若將4個分式同時通分,分子將是很復雜的,計算也是比較復雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進行加減。
解:原式=++=++=+=+==。