中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 精選范文 > 高中數學工作總結(通用18篇)

高中數學工作總結

發布時間:2023-10-22

高中數學工作總結(通用18篇)

高中數學工作總結 篇1

  緊扣新課程標準,在有限的時間吃透教材,分組討論定稿,每個人根據本班學生情況說課、主講、自評;積極利用各種教學資源,創造性地使用教材公開輪講,反復聽評,從研、講、聽、評中推敲完善出精彩的案例。實踐表明,這種備課方式,既照顧到各班實際情況,又有利于教師之間的優勢互補,從而整體提高備課水平。

  三。課堂教學,交往互動、共同發展

  為保證新課程標準的落實,我們把課堂教學營造成學生主動探索的學習環境,學生在獲得知識和技能的同時,在過程方法、情感態度價值觀等方面都得到了充分發展,把數學教學變成了師生之間、學生之間交往互動,共同發展的過程。

  在平時的教學實踐中,我們還注意記下學生學習中的閃光點或困惑,記下自已的所感、所思、所得,積累寶貴的第一手資料。教學經驗的積累和教訓的吸取,對今后改進課堂教學和提高教學水平十分有用。

  課前準備不流于形式,變成一種實實在在的研究,教師的集體智慧得到充分發揮,課后的反思為以后的教學積累了許多有益的經驗與啟示。 “學生是教學活動的主體,教師成為教學活動的組織者、指導者、參與者。”這一觀念的確立,滿堂灌的教法就沒有了市場。無論是問題的提出,還是已有數據處理、數學結論的獲得等環節,都體現學生自主探索研究。突出過程性,注重學習結果更注重學習過程以及學生在學習過程中的感受和體驗。學生的智慧、能力、情感、信念水乳交融,心靈受到震撼,心理得到滿足,學生成了學習的主人,學習成了他們的需求,學中有發現,學中有樂趣,學中有收獲。實踐證明:營造情境,培養學生的主動探究精神是探究性學習的新空間、新途徑。

  四.加快新教師的培養,做學者型教師

  通過新老教師結對子等活動,數學組新教師在兩位老教師的悉心指導下,通過自身努力,半年時間內在課堂教學的各個方面都取得了長足進步,現在已經能夠勝任正常的教育教學工作。新教師的匯報課得到了上級主管領導及校領導的高度評價和充分肯定,多位教師在校內外的優質課比賽中取得優異成績。每位教師在做好正常教育教學工作的同時,通過多種途徑不斷學習提高,爭做研究性、學者型教師。

  第一,全體教師參加宿遷市教育局新課程及研究性學習培訓。及時了解高中新課程改革的最新動態,認真研究新課程標準及新教材,立體建構起新課程改革下的數學教學框架,并在以后的教學工作中收到了良好效果。

  第二,全體新教師利用節假日參加了由甘谷縣教育局組織的教師繼續教育培訓活動,認真聽專家講座,積極向其他教師學習寶貴經驗,提高了自身水平和能力。

  第三,走出去引進來。在學校的統一安排下,多人次到甘谷縣一中,二中、天水市,蘭州市等地聽公開課、專家報告和講座;及時在集體備課活動中與同組成員分享討論共同提高。

  一份耕耘,一份收獲,教學工作苦樂相伴。我們將本著“勤學、善思、實干”的準則,一如既往,再接再厲,把教學工作搞得更出色。

高中數學工作總結 篇2

  中數學組在20xx年的工作在學校工作思路的指導下,認真貫徹落實課改精神,以人為本,以促進學生發展、教師成長為目的。以教法探索為重點,努力提高課堂效益和教學質量;以組風建設為主線積極探索教研組建設和教師專業發展的有效途徑。不斷總結經驗,發揮優勢,改進不足,集全組教師的創造力,努力使雅安中學高中數學教研組在有朝氣、有創新精神、團結奮進的基礎上煥發出新的生機與活力。

  在工作中,我們充分發揮一個“核心”的表率作用,狠抓“兩條線”的深入研究,積極促進“三個團隊”主動參與和建設,從而使我組的研究工作和諧、高效地開展。

  一個核心:是指我組內具有良好思想素質、過硬的業務能力、踏實的工作作風和不斷進取精神的教學骨干們。充分發揮核心成員的聰明才智,在做好本職工作的前提下,依據他們的特長,或上示范課,或開講座,或主持集體備課,帶頭參與教學理論和具體教學實際的研究,使核心成員們的各類資源做到組內共享。

  二條線:是指對教育教學的理論學習研究和具體課堂教學的研究兩個方面。要不斷提高教學質量,關鍵在于要有一批思想新、能力強,具有較高理論修養的教學隊伍,因此,要打造一批科研型的教師,從而實現科研興校,個性強校,特色活校的策略。為此,教研組經常組織全組教師認真學習新的教育教學理論和先進的教學方法,不斷豐富教師們的理論水平。具備了較先進的教育理論并且具備了較新的教學觀念,則需要運用于具體的教學實踐之中,并在實踐中找出符合自己實際的教學法,如何找準切入點,切實有助于教學質量的提高,這也是我們教研工作重點關注的目標之一,教研就應在具體的教學中研究,邊教邊研,在研中促進教學水平的提高。為此,近幾年來圍繞著一個國家級課題和二個省級課展開了行之有效的研究工作,除進行必要的理論學習和研究外,經常進行公開教學研究課,教學探討課,并常請教育專家蒞臨指導工作,從而使我組的教學研究工作落在實處。

  三個團隊:是指年級備課組、科研課題組和師徒組合群。在教研組的統一計劃下,各年級備課組均有自己的教學計劃,有健全的集體備課制度,每次活動均做到“四定”,即:定時間、定地點、定內容、定主講人(上課人),在平時的教學活動中,督促教師做到“教學六認真”。科研課題組則以三個課題為龍頭,開展較為深入的教學研究,其中一課題已結題,另外兩個課題已取得階段性成果。為使青年教師盡快成才,充分發揮“核心”的作用,我組每一個青年教師均拜德藝皆高老教師為師,這樣師徒之間的研究活動經常進行,老教師的經驗為年青人所借鑒使用,反過來,青年教師的闖勁又促使老教師青春煥發,新老相得益彰。我組教師在完成本職工作之余,不計份內份外,積極參與各級各類教研活動,將自己的研究成果無私地貢獻給同行。

高中數學工作總結 篇3

  本學期我擔任高一(4)班的數學教學工作,一直本著實事求是、腳踏實地的工作原則,圓滿完成本學期的教學任務,并在思想水平、業務水平等方面有很大的進步,現就一學期的工作總結如下:

  一、思想政治方面

  一年來,我積極參加政治學習,政治學習筆記整理的認真細致。我時刻用教師的職業道德要求來約束自己,愛崗敬業,嚴于律己,服從組織分配,對工作盡職盡責,任勞任怨,注重師德修養。我始終認為作為一名教師應把“師德”放在一個極其重要的位置上,因為這是教師的立身之本。本人奉守“學高為師,身正為范”的從業準則,從踏上講臺的第一天,我就時刻嚴格要求自己,力爭做一個有崇高師德的人。熱愛學生,堅持“德育為首,育人為本”的原則,不僅在課堂上堅持德育滲透,而且注重從思想上、生活上、學習上全面關心學生,在學生評教中深受學生的敬重與歡迎。能嚴格遵守校級校規,嚴格按照作息上下班,團結同志,能與同事和睦相處。

  二、教育教學方面

  教學工作是學校各項工作的中心,也是檢驗一個教師工作成敗的關鍵。

  (一)注意培養學生良好的學習習慣和學習方法

  學生在從初中到高中的過渡階段,往往會有些不能適應新的學習環境。例如以往的學習方法不能適應高中的學習,不良的學習習慣和學習態度等一些問題困擾和制約著學生的學習。為了解決這些問題,我從下面幾方面下功夫:

  1、改變學生學習數學的一些思想觀念,樹立學好數學的信心

  在開學初,我就給他們指出高中數學學習較初中的要難度大,內容多,知識面廣,大家其實處在同一起跑線上,誰先跑,誰跑得有力,誰就會成功。對較差的學生,給予多的關心和指導,并幫助他們樹立信心;對驕傲的學生批評教育,讓他們不要放松學習。

  2、改變學生不良的學習習慣,建立良好的學習方法和學習態度

  開始,有些學生有不好的學習習慣,例如作業字跡潦草,不寫解答過程;不喜歡課前預習和課后復習;不會總結消化知識;對學習馬虎大意等。為了改變學生不良的學習習慣,我要求統一作業格式,表揚優秀作業,指導他們預習和復習,強調總結的重要性,讓學生寫章節小結,做錯題檔案,總結做題規律等。對做得好的同學全班表揚并推廣,不做或做得差的同學要批評。通過努力,大多數同學能很快接受,慢慢的建立起好的學習方法和認真的學習態度。

  (二)日常數學教學的方法及對策

  1、備課

  本學期我根據教材內容及學生的實際情況設計課程教學,擬定教學方法,并對教學過程中遇到的問題盡可能的預先考慮到,認真寫好教案。高一雖然已經教過了幾輪,但是每一年的感覺都不一樣。從不敢因為教過而有所懈怠。我還是像一位新老師一樣認真閱讀新課標,鉆研新教材,熟悉教材內容,查閱教學資料,適當增減教學內容,認真細致的備好每一節課,真正做到重點明確,難點分解。遇到難以解決的問題,就向老教師討教或在備課組內討論。其次,深入了解學生,根據學生的知識水平和接受能力設計教案,每一課都做到“有備而去”。 并積極聽老教師的課,取其所長,并不斷歸納總結經驗教訓。

  2、課堂教學

  針對#高中學生特點,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。

  課堂上我特別注意調動學生的積極性,加強師生交流,充分體現學生在學習過程中的主動性,讓學生學得輕松,學得愉快。在課堂上講得盡量少些,而讓學生自己動口動手動腦盡量多些;同時在每一堂課上都充分考慮每一個層次的學生學習需求和接受能力,讓各個層次的學生都得到提高。同時更新理念,堅持采用多媒體輔助教學,深受學生歡迎。每堂課都在課前做好充分的準備,并制作各種利于吸引學生注意力的有趣教具,課后及時對該課作好總結,寫好教學后記。

  (三)課后輔導

  課后在給學生解難答疑時耐心細致,使學生在接受新知識的同時,不斷地對以往的知識進行復習鞏固。在“導師制”活動開展后,我負責一年四班x同學的數學學習,除了在課堂上關注她,課后也及時進行交流

高中數學工作總結 篇4

  時光荏苒,歲月不居,轉眼間又是一個學年。送走了老學生,迎來了新 弟子。回憶過去的這一學年,我不得不感嘆時間的飛逝和生活的繁忙。正因為這繁忙,才使我感嘆教師工作的辛苦,可是,我們的辛苦終將換來碩果累累。那遠在海角天涯的問候便是對我們最大的安慰。回憶這一年的工作,總結下來就是這樣幾個字“愁過,累過,憂過,喜過。”是的,在這一年里,我付出了很多,但我不后悔,因為我的付出取得了滿意的成績。回顧這一年,我將自己的工作總結如下:

  一、 師德方面 嚴于律己,踏實工作。

  面對全體學生,一視同仁,不歧視學生,不打罵學生,注意自己的言行,提高自己的思想認識和覺悟程度水平,做到愛崗敬業,學而不厭,誨人不倦,為人師表,治學嚴謹,還要保持良好的教態。因為我知道,老師的教學語言和教態對學生的學習有直接的影響。老師的教態好,學生就喜歡,他們聽課的興趣就高,接受知識也快。反之,學生就不喜歡,甚至討厭。所以,注重學生的整體發展,經常的和學生談心、談人生。師生關系非常融洽。受到學生的一致認可。他們在背后都叫我“安哥”。

  二、 教育教學方面

  為了更好的完成高三年級的復課工作,在學期初,我不但制訂了嚴密的工作計劃,同時也為自己制定了一學期的奮斗目標。首先,上好一節課的前提是備課,為了備好每節課,我大量的閱讀各種復習資料,希望能更加完整并精簡的給學生呈現每節課的知識和做題方法。

  每天晚上,我都會在網上查閱下節課的相關資料并加以整理。把一節課的內容整理成學生好學易懂的知識,使學生掌握起來很順手。學生自然也喜歡聽課,做起筆記來津津有味。同時,我知道,數學的枯燥乏味是學生聽課的最大的障礙。所以,我在業余時間經常看一些課外書籍,并不斷思索著把數學知識和實際結合起來講,在我的課堂上學生很少走神,因為他們喜歡聽這樣的數學課。他們喜歡這樣知識淵博的數學老師。課外,我給學生布置了適合他們的作業,因為我帶了一個文科班和一個理科班,所以,不知作業也有所區別。學生能做但不好做。批作業時,我認真看完每本作業,給學生指出作業中存在的問題,我經常是在教室看作業,隨時可以給學生糾正作業中存在的問題。讓學生當場改正。有利于學生的糾錯意識。上自習時,我讓我的學生大膽提問,有些學生,一開始還不喜歡問老師題,后來,在我的鼓勵下,問問題很活躍。成績也就慢慢上去了。學生成績的提高,使我每天疲憊的心里總有那么一點點的高興。

  三,教研方面

  因為我是高三年級數學備課組組長,同時也為了更好的指導我的復課工作,我認真研究陜西的高考大綱,并不斷的研究新課改地區的高考試題,并將自己看到的一些信息及時的反饋到我的課堂,取得一定的效果,在今年的高考中,我為我的學生爭取到了6分的成績。雖然這分數很少,但是,我已知足。同時,我堅持聽課,在聽課中學習老教師的經驗和新教師的新的思路的方法,我也鼓勵同組的老師互相

  學習聽課,在這里,我不得不提一下我尊敬的兩位老師,王北平老師和高天發老師,正是他們的指導使我不斷成長。

  四,學校工作方面

  這一學年,我除了擔任高三的數學教學外,還兼任了高三年級的教導副主任,主管學校的分類推進工作,在工作中,我嚴格按照學校的要求,制定了一學年的分類推進計劃,把幾乎所有的渴望生都安排在列,同時,自己也按照分類推進的要求對所帶班的學生進行了輔導。高考中不但學校的成績優異,我所帶的班級的成績也很是讓我欣慰,兩個班的平均成

高中數學工作總結 篇5

  數學組在學校工作思路的指導下,認真貫徹落實課改精神,以人為本,以促進學生發展、教師成長為目的。以教法探索為重點,努力提高課堂效益和教學質量;以組風建設為主線積極探索教研組建設和教師專業發展的有效途徑。不斷總結經驗,發揮優勢,改進不足,集全組教師的創造力,努力使雅安中學高中數學教研組在有朝氣、有創新精神、團結奮進的基礎上煥發出新的生機與活力。

  在工作中,我們充分發揮一個“核心”的表率作用,狠抓“兩條線”的深入研究,積極促進“三個團隊”主動參與和建設,從而使我組的研究工作和諧、高效地開展。

  一個核心:是指我組內具有良好思想素質、過硬的業務能力、踏實的工作作風和不斷進取精神的教學骨干們。充分發揮核心成員的聰明才智,在做好本職工作的前提下,依據他們的特長,或上示范課,或開講座,或主持集體備課,帶頭參與教學理論和具體教學實際的研究,使核心成員們的各類資源做到組內共享。

  二條線:是指對教育教學的理論學習研究和具體課堂教學的研究兩個方面。要不斷提高教學質量,關鍵在于要有一批思想新、能力強,具有較高理論修養的教學隊伍,因此,要打造一批科研型的教師,從而實現科研興校,個性強校,特色活校的策略。為此,教研組經常組織全組教師認真學習新的教育教學理論和先進的教學方法,不斷豐富教師們的理論水平。具備了較先進的教育理論并且具備了較新的教學觀念,則需要運用于具體的教學實踐之中,并在實踐中找出符合自己實際的教學法,如何找準切入點,切實有助于教學質量的提高,這也是我們教研工作重點關注的目標之一,教研就應在具體的教學中研究,邊教邊研,在研中促進教學水平的提高。為此,近幾年來圍繞著一個國家級課題和二個省級課展開了行之有效的研究工作,除進行必要的理論學習和研究外,經常進行公開教學研究課,教學探討課,并常請教育專家蒞臨指導工作,從而使我組的教學研究工作落在實處。

  三個團隊:是指年級備課組、科研課題組和師徒組合群。在教研組的統一計劃下,各年級備課組均有自己的教學計劃,有健全的集體備課制度,每次活動均做到“四定”,即:定時間、定地點、定內容、定主講人(上課人),在平時的教學活動中,督促教師做到“教學六認真”。科研課題組則以三個課題為龍頭,開展較為深入的教學研究,其中一課題已結題,另外兩個課題已取得階段性成果。為使青年教師盡快成才,充分發揮“核心”的作用,我組每一個青年教師均拜德藝皆高老教師為師,這樣師徒之間的研

高中數學工作總結 篇6

  藝術班的教學和其它非藝術班的教學有很大的不同,學生既要學習文化知識,又要學習專業科知識.時間非常緊張,并且文化科知識的學習肯定會受很大的影響,所以大部分學生的基礎也很薄弱.在這種情況下怎樣在有限的時間里能比較快的提高成績呢我和我們數學備課組全體老師群策群力想了好多辦法和措施來解決上述問題,具體做法如下:

  一,團結協作,發揮集體力量.高三數學備課組,在資料的征訂,測試題的命題,改卷中發現的問題交流,學生學習數學的狀態等方面上,既有分工又有合作,既有統一要求又有各班實際情況,既有"學生容易錯誤"地方的交流又有典型例子的討論,既有課例的探討又有信息的交流.在任何地方,任何時間都有我們探討,爭議,交流的聲音.

  二,掌握學情,做到有的放矢.深入學生中去了解學生的實際學習情況,學習水平和學習能力,在第一次測試中,學習成績比估計要高,此時及時調動教學內容,加大課堂容量,提前滲透數學思想方法,使教師的教和學生的學都是符合學生的學習實際情況,做到了有的放矢,讓每一位同學在課堂學習中得到屬于自己的收益.

  三,關愛學生,激起學習激情. 熱愛學生,走近學生,哪怕是一句簡單的鼓勵的話,都能激起學生學習數學的興趣,進而激活學習數學的思維.

  四,抓好"三中",樹立學習信心.抓好"三中"即中等題,中等分,中等生,對學生來說認真研究好中等題,拿好中等分是基本,是高考信心的保證;抓好中等生是全面提高教學質量的根本.

  五,注重"三點",培養學習習慣.高三復習注意到低起點,重探究,求能力的同時,還注重抓住分析問題,解決問題中的信息點,易錯點,得分點,培養良好的審題,解題習慣,養成規范作答,不容失分的習慣.

  六,"內臨""外界",關注全體學生.認真分析數學臨界內的臨界生和臨界外的臨界生的學習數學的狀態,采用分層管理和分層教學.比如說每次測試都能在90分以上的同學,應給他們以自由度,課后可做一些適合自己的題目.對一些優秀學生,我們采用了科組集體力量或聘請外來教師加強提高輔導,能進能出,激起學生的競爭意識,增強有效性;對一些數學"學困生",采用了低起點,先享受一下成功,然后不斷深入提高,以致達到適合自己學習情況的進步和提高.

  七,心理教育,助長學習成績.學好數學,除了智力因素以外,還有非智力因素特別是心理方面,一些同學害怕學不好數學,或者以前數學成績一直下好,現在也一定學不好等,我們采用了個別交流學習方法,學習心得等,告訴學生只要做好老師上課講解的,課后加強領會,總結,一定會有進步的,不斷關懷,幫助,指導,學生積極性提高,問的問題也多了起來,學習成績也漸漸提高了.

高中數學工作總結 篇7

  一、思想職業道德方面

  積極參與到學校爭優創先的活動中,處處以身作則,勇于開拓,積極進取,不怕困難,不怕挫折。平時,嚴格遵守學校的各項規章制度,按時上下班,積極參加學校組織的各項政治學習和活動,并認真做好筆記,認真學習新課程教學標準,學習其新的教學理念的同時,并鉆研老教材,使自己能適應不斷發展的教育新形勢。在教學中,我始終能以滿腔的熱情去關心熱愛每一位學生,不對學生體罰或變相體罰,使他們在一個充滿愛的環境下學習成長。

  二、教育教學能力方面

  在20____年的上半年我擔任高一班的數學教學工作,下半年我擔任高二數學教學工作作為中學數學教師,我深知基礎教育的重要性,特別是近幾年,在從應試教育向素質教育的轉軌過程中,我更是注重學生素質的全面提高。平時,我認真備課,努力鉆研教材,明確教學目的,突出教學重點,攻破教學難點,精心設計教學過程,采用生動活潑的教學手段,提高學生的學習興趣。對于班級中成績較好的學生,我盡量出一些思考題,以便他們積極思維,開拓他們的解題思路,提高他們的解題能力,對于差生,我從不氣餒,總是及時發現他們身上的閃光點,利用課余時間,耐心的幫他們輔導,不厭其煩地教,鼓勵學生不懂就問,端正其學習態度,努力提高學生學習成績。在教學中,我總是及時的向經驗豐富的教師請教,學習其優秀的教學經驗,取長補短,努力提高自身的業務水平。

  三、創新評價,激勵促進學生全面發展

  始終把評價作為全面考察學生的學習狀況,激勵學生的學習熱情,促進學生全面發展的手段,也作為教師反思和改進教學的有力手段。

  對學生的學習評價,既關注學生知識與技能的理解和掌握,更關注他們情感與態度的形成和發展;既關注學生數學學習的結果,更關注他們在學習過程中的變化和發展。抓基礎知識的掌握,抓課堂作業的堂堂清,采用定性與定量相結合,定量采用等級制,定性采用評語的形式,更多地關注學生已經掌握了什么,獲得了那些進步,具備了什么能力。使評價結果有利于樹立學生學習數學的自信心,提高學生學習數學的興趣,促進學生的發展。

  四、抓實常規,保證教育教學任務全面完成

  堅持以教學為中心,強化管理,進一步規范教學行為,并力求常規與創新的有機結合,形成學生嚴肅、勤奮、求真、善問的良好學風。從點滴入手,了解學生的認知水平,查找資料,精心備課,努力創設寬松愉悅的學習氛圍,激發興趣,教給學生知識,培養了學生正確的學習態度,形成良好的學習習慣及方法,使學生學得有趣,學得實在,向40分鐘要效益;扎扎實實做好常規工作,做好教學的每一件事,切實抓好單元過關及期中質量檢測。

  一份耕耘,一份收獲。總之今年我的教學工作苦樂相伴。今后我將本著“勤學、善思、實干”的準則,一如既往,再接再勵,把工作搞得更好。

  五、在班主任工作方面

  1、做好學生的思想工作,培養學生良好的道德品質,凈化學生的心靈,努力培養德智體全面發展的人才。做好學生的思想工作從兩方面入手,一是重視班會,開好班會;一是重視與學生的思想交流,多與學生談心。重視班會,開好班會,為的是在班中形成正確的輿論導向,形成良好的班風學風,為學生提供一個良好的大環境,重視的是學生的共性。配合學校各項工作,我們班積極開展了許多有益于學生身心健康發展的活動,讓學生在活動中明事理、長見識。高中的學生已經是十七八歲的人了,很多道理都明白,但自尊心也很強,直接的批評換回來的可能是思想的叛逆,利用班會課對學生進行思想教育的好處,就是避免單調重復的批評說教而引起學生的反感,容易為學生接受,能切實幫助學生澄清思想上的模糊認識,提高學生的思想境界。我開班會不一定要等一節完整的課,利用一些零碎的又不影響學科學習的時間開短小精干的班會也能取得良好的效果。不必長篇大論,班主任把及時發現的不良思想的苗頭一針見血地指出來,對事不對人,進行警示性的引導教育,往往能把一些影響班風、學風的不良思想消滅在萌芽階段。重視與學生的思想交流,多與學生談心,注重的是學生的個性和因材施教。我常利用課余時間和學生促膝談心,及時對學生進行針對性的教育。在這個時候,我就是他們的好朋友,盡量為他們排憂解難,也正因如此,我得到了班上學生的愛戴和信任。

  2、加強班級管理,培養優秀的學風、班風,深入全面地了解學生,努力培養"團結協作,自強不息"的班集體。在這個學年里,我的班級管理工作是這樣實施的:

  一方面,我主要加大了對學生自治自理能力培養的力度,通過各種方式,既注意指導學生進行自我教育,讓學生在自我意識的基礎上產生進取心,逐漸形成良好的思想行為品質;又注意指導學生如何進行自我管理,培養他們多方面的能力,放手讓他們自我設計、自我組織各種教育活動,在活動中把教育和娛樂融入一體;還注意培養學生的自我服務的能力,讓學生學會規劃、料理、調控自己,使自己在集體中成為班集體的建設者,而不是"包袱"。

  在這點上,特別要提一提的是班干部的選用,這是讓學生自治的重要途徑。班主任的管理代表的是學校的管理,不論班主任如何和顏悅色都帶有不容質疑的性,也難免有不被理解和接受的時候,通過班干部的協調,往往能夠取得意想不到的效果。班干部起的是協助班主任管理班級的作用,他們接受班主任的指導,又及時向班主任反饋班級情況和同學們的思想動態;他們分工管理班級的各項事務,同時又是一個團結合作的整體。

  選好班干部,不但有利于班級管理,而且有利于全體學生共同發展。培養學生擔任班干部,是培養學生能力、提高學生素質的一種很有效的方法,如培養其組織能力、管理能力、社交能力、語言表達能力等,還可培養其關心集體、關心他人、樂于奉獻、積極進取等優良的思想品質。多培養班干部有利于多數學生全面發展。

  通過班干部管理班級,讓學生自治自理,卻不等于班主任可以完全不理,這關系到班主任的引導、指導和調控問題。當學生對事情的理解是非不分明,對班級事務的處理欠妥當,不能形成正確的輿論導向、達成共識的時候,班主任就應該及時的給予引導和指導。實際上,班級的重大決策都應該由班主任來決定。要知道,班干部的閱歷和能力在目前還是有限的,有些責任也是作為學生的他們所承擔不了的。只有班主任做好宏觀的調控,做好班級的帶頭人、領路人,把好方向關,才有帶領學生不斷前進不斷發展,促進他們全面發展,健康成長。

高中數學工作總結 篇8

  高一數學學習階段,做好每一個知識點的總結有助于我們在考試中的發揮。

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當時,; 當時,; 當時,不存在.

  ②過兩點的直線的斜率公式:

  注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

  (3)直線方程

  ①點斜式:直線斜率k,且過點

  注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

  當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

  ③兩點式:直線兩點,

  ④截矩式:

  其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

  ⑤一般式:(A,B不全為0)

  注意:各式的適用范圍 特殊的方程如:

  平行于x軸的直線:(b為常數); 平行于y軸的直線:(a為常數);

  (5)直線系方程:即具有某一共同性質的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數)的直線系:(C為常數)

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數)的直線系:(C為常數)

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系:,直線過定點;

  (ⅱ)過兩條直線,的交點的直線系方程為

  (為參數),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點

  相交

  交點坐標即方程組的一組解.

  方程組無解 ; 方程組有無數解與重合

  (8)兩點間距離公式:設是平面直角坐標系中的兩個點,

  則

  (9)點到直線距離公式:一點到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉化為點到直線的距離進行求解.

  二、圓的方程

  1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

  2、圓的方程

  (1)標準方程,圓心,半徑為r;

  (2)一般方程

  當時,方程表示圓,此時圓心為,半徑為

  當時,表示一個點; 當時,方程不表示任何圖形.

  (3)求圓方程的方法:

  一般都采用待定系數法:先設后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的`位置.

  3、直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況:

  (1)設直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  設圓,

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  當時兩圓外離,此時有公切線四條;

  當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

  當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當時,兩圓內切,連心線經過切點,只有一條公切線;

  當時,兩圓內含; 當時,為同心圓.

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  三、立體幾何初步

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形.

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和.

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

  (3)柱體、錐體、臺體的體積公式

  (4)球體的表面積和體積公式:V= ; S=

  4、空間點、直線、平面的位置關系

  公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內.

  應用: 判斷直線是否在平面內

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a.

  符號語言:

  公理2的作用:

  ①它是判定兩個平面相交的方法.

  ②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點.

  ③它可以判斷點在直線上,即證若干個點共線的重要依據.

  公理3:經過不在同一條直線上的三點,有且只有一個平面.

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

  公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關系

  ① 異面直線定義:不同在任何一個平面內的兩條直線

  ② 異面直線性質:既不平行,又不相交.

  ③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

  ④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

  求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上. B、證明作出的角即為所求角 C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

  (8)空間直線與平面之間的位置關系

  直線在平面內——有無數個公共點.

  三種位置關系的符號表示:aα a∩α=A a‖α

  (9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

  相交——有一條公共直線.α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質

  線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

  線線平行線面平行

  線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

  那么這條直線和交線平行.線面平行線線平行

  (2)平面與平面平行的判定及其性質

  兩個平面平行的判定定理

  (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行.

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質定理

  (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

  7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

  ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

  ②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

  (2)垂直關系的判定和性質定理

  ①線面垂直判定定理和性質定理

  判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面.

  性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

  ②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直.

  性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面.

  9、空間角問題

  (1)直線與直線所成的角

  ①兩平行直線所成的角:規定為.

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

  ③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

  ①平面的平行線與平面所成的角:規定為. ②平面的垂線與平面所成的角:規定為.

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

  (3)二面角和二面角的平面角

  ①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

  ③直二面角:平面角是直角的二面角叫直二面角.

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

  ④求二面角的方法

  定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

  垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高中數學工作總結 篇9

  一、函數的有關概念

  1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。 求函數的定義域時列不等式組的主要依據是: (1)分式的分母不等于零;

  (2)偶次方根的被開方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數為零底不可以等于零,

  (7)實際問題中的函數的定義域還要保證實際問題有意義.

  母無關);②定義域一致 (兩點必須同時具備) (見課本21頁相關例2)

  2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法

  3. 函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的.坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法

  常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區間的概念

  (1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間

  (3)區間的數軸表示. 5.映射

  一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)” 對于映射f:A→B來說,則應滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中對應的象可以是同一個; (3)不要求集合B中的每一個元素在集合A中都有原象。 6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。 (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

  二.函數的性質

  1.函數的單調性(局部性質) (1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的

  任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間. 如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

  注意:函數的單調性是函數的局部性質; (2) 圖象的特點

  如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法:

  1 任取x,x∈D,且x<x; ○

  2 作差f(x)-f(x); ○

  3 變形(通常是因式分解和配方); ○

  4 定號(即判斷差f(x)-f(x)的正負); ○

  5 下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降) (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數

  一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數

  一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  (3)具有奇偶性的函數的圖象的特征

  偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: 1首先確定函數的定義域,并判斷其是否關于原點對稱; ○

  2確定f(-x)與f(x)的關系; ○

  3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)○

  是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. 注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式

  (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法

  2) 待定系數法 3) 換元法 4) 消參法

  10.函數最大(小)值(定義見課本p36頁)

  1 利用二次函數的性質(配方法)求函數的最大(小)值 ○

  2 利用圖象求函數的最大(小)值 ○

  3 利用函數單調性的判斷函數的最大(小)值: ○

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題:

  1.求下列函數的定義域:

  ⑴y

  ⑵

  y2.設函數f(x)的定義域為[0,1],則函數f(x2)的定義域為_ _

  3.若函數f(x1)的定義域為[2,3],則函數f(2x1)的定義域是

  x2(x1)

  4.函數 ,若f(x)3,則x= f(x)x2(1x2)

  2x(x2)

  5.求下列函數的值域:

  ⑴yx22x3 (xR) ⑵yx22x3 x[1,2]

  (3)yx

  yf(2x1)的解析式

  6.已知函數f(x1)x24x,求函數f(x),7.已知函數f(x)滿足2f(x)f(x)3x4,則

  f(x)= 。

  8.設f(x)是R上的奇函數,且當x[0,)時

  ,f(x)x(1,則當x(,0)時 f(x)在R上的解析式為 9.求下列函數的單調區間: ⑴ yx22x3

  ⑵yf(x)=

  ⑶ yx26x1

  10.判斷函數yx31的單調性并證明你的結論. 11.設函數f(x)

  1x2判斷它的奇偶性并且求證:1

  ff(x). 2

  1

高中數學工作總結 篇10

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當的坐標系,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:

  求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

  5、交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

  ①建系——建立適當的坐標系;

  ②設點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

高中數學工作總結 篇11

  集合的分類:

  (1)按元素屬性分類,如點集,數集。

  (2)按元素的個數多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個數分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數全體構成的集合,叫做自然數集,記作N;

  在自然數集內排除0的集合叫做正整數集,記作N+或Nx;

  整數全體構成的集合,叫做整數集,記作Z;

  有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

  實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)

  1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

  無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

  2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。

  例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高中數學工作總結 篇12

  1.等比中項

  如果在a與b中間插入一個數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

  有關系:

  注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

  2.等比數列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數列的前n項和的公式為

  Sn=na1

  3.等比數列前n項和與通項的關系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數列性質

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數列中,依次每k項之和仍成等比數列。

  (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數的等比數列各項取同底指數冪后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

  (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關系為an=am·q’(n-m)

  (7)在等比數列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

高中數學工作總結 篇13

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個單位的向量.

  (6)平行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運算:

  ⑴三角形法則的特點:首尾相連.

  ⑵平行四邊形法則的特點:共起點

高中數學工作總結 篇14

  復習的重點一是要掌握所有的知識點,二就是要大量的做題,編輯為各位考生帶來了高中數學知識點復習:集合與映射專題復習指導

  一、集合與簡易邏輯

  復習導引:這部分高考題一般以選擇題與填空題出現。多數題并不是以集合內容為載體,只是用了集合的表示方法和簡單的交、并、補運算。這部分題其內容的載體涉及到函數、三角函數、不等式、排列組合等知識。復習這一部分特別請讀者注意第1題,闡述了如何審題,第3、5題的思考方法。簡易邏輯部分應把目光集中到充要條件上。

  1.設集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含兩個元素的子集,且滿足:對任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示兩個數x、y中的較小者)。則k的最大值是

  A.10B.11

  C.12D.13

  分析:審題是解題的源頭,數學審題訓練是對數學語言不斷加深理解的過程。以本題為例min{-,-}{-,-}如何解決?我們不妨把抽象問題具體化!

  如Si={1,2},Sj={2,3}那么min{-,2}為-,min{-,-}為-,Si是Sj符合題目要求的兩個集合。若Sj={2,4}則與Si={2,4}按題目要求應是同一個集合。

  題意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按題目要求是4個集合。M是6個元素構成的集合,含有2個元素組成的集合是C62=15個,去掉4個,滿足條件的集合有11個,故選B。

  注:把抽象問題具體化是理解數學語言,準確抓住題意的捷徑。

  2.設I為全集,S1、S2、S3是I的三個非空子集,且S1S3=I,則下面論斷正確的是

  (A)CIS1(S2S3)=

  (B)S1(CIS2CIS3)

  (C)CIS1CIS2CIS3=

  (D)S1(CIS2CIS3)

  分析:這個問題涉及到集合的交、并、補運算。我們在復習集合部分時,應讓同學掌握如下的定律:

  摩根公式

  CIACIB=CI(AB)

  CIACIB=CI(AB)

  這樣,選項C中:

  CIS1CIS2CIS3

  =CI(S1S3)

  由已知

  S1S3=I

  即CI(S1S3)=CI=

  而上面的定律并不是復習中硬加上的,這個定律是教材練習一道習題的引申。所以,高考復習源于教材,高于教材。

  這道題的解決,也可用特殊值法,如可設S1={1,2},S2={1,3},S3={1,4}問題也不難解決。

  3.是正實數,設S={|f(x)=cos[(x+])是奇函數},若對每個實數a,S(a,a+1)的元素不超過2個,且有a使S(a,a+1)含2個元素,則的取值范圍是。

  解:由f(x)=cos[(x+)]是奇函數,可得cosxcos=0,cosx不恒為0,

  cos=0,=k+-,kZ

  又0,=-(k+-)

  (a,a+1)的區間長度為1,在此區間內有且僅有兩個角,兩個角之差為:-(k1+k2)

  不妨設k0,kZ:

  兩個相鄰角之差為-。

  若在區間(a,a+1)內僅有二角,那么-2,2。

  注:這是集合與三角函數綜合題。

  對應于一組,正如在數學原始概念。我們知道,有個和數字線之間真正的對應關系,點的實數的平面坐標,并下令一名男子與他的名字,一個學生,他的學校,可以看作是對應關系。

  對應的是兩個集合A和B.A

  之間的關系對于每一個元素,有以下三種情況:

  比索(1)B有相應的唯一元素。

  (2)B,有對應的一個以上的元素。

  (3)B是沒有相應的元件。

  同樣,對于B中的每一個元素而言,有以下三種情況:

  在相應的獨特元素。

  比索(5),有相應的多個元素。

  比索(6)沒有相應的元素。

  相當于在一般情況下,這些情況都可能發生。

  【2】映射

  映射是一種特殊的對應關系,學習這個定義時,應注意以下幾點:

  比索(1)映射為對應的集合從A,B和從A到BF由法律決定。

  (2)中的映射,設置一個“任何元素”有“才”在集合B這不是集合A的元素在集合B中存在的沒有,或者案件多于一個的對象(即,將不會在上述(2)(3)在這兩種情況下)。

  比索(3)在地圖上,設置一個狀態和B是不平等的。在一般情況下,我們并不要求B的兩個元素之間的映射和A是對應于(間的(4)(5)(6)三種情況下都可能發生,即對應)的唯一元素。因此,從映射A到B并從B到A被映射有不同的要求。A的收集,B可以是相同的集合。

  仿佛原始圖像是一個映射f,從A到B,那么A和B在圖像B中的對應元素的元素稱為,原來的名字圖像b的關系可以表示為B=F(A),與原圖像的概念和類似物,該映射可以被理解為“A中的每個元素有B中一個獨特的圖像”對應于這樣一個特殊的。由于映射在一般情況下,B,作為元件不一定如此,因為該組(即由所有的圖像形成的集合)是B的子集,記為{F(A)|a∈A}IB。

高中數學工作總結 篇15

  集合的分類:

  (1)按元素屬性分類,如點集,數集。

  (2)按元素的個數多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個數分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數全體構成的集合,叫做自然數集,記作N。

  在自然數集內排除0的集合叫做正整數集,記作N+或N_。

  整數全體構成的集合,叫做整數集,記作Z。

  有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

  實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。

  例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數學工作總結 篇16

  直線的傾斜角:

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高中數學工作總結 篇17

  一、集合間的關系

  1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。

  2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A,則稱集合A是集合B的真子集。

  3.集合相等:集合A與集合B中元素相同那么就說集合A與集合B相等。

  子集:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時我們說集合是集合的子集,更多集合關系的知識點見集合間的基本關系

  二、集合的運算

  1.并集

  并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

  2.交集

  交集:以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

  3.補集

  三、高中數學集合知識歸納:

  1.集合的有關概念。

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

  ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數集:N,Z,Q,R,N*

  2.子集、交集、并集、補集、空集、全集等概念。

  1)子集:若對x∈A都有x∈B,則AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)補集:CUA={x|xA但x∈U}

  注意:①?A,若A≠?,則?A;

  ②若,,則;

  ③若且,則A=B(等集)

  3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

  4.有關子集的幾個等價關系

  ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

  ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

  5.交、并集運算的性質

  ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

  ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  四、數學集合例題講解:

  【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:從判斷元素的共性與區別入手。

  解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

  對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以MN=P,故選B。

  分析二:簡單列舉集合中的元素。

  解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

  =∈N,∈N,∴MN,又=M,∴MN,

  =P,∴NP又∈N,∴PN,故P=N,所以選B。

  點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

  變式:設集合,,則(B)

  A.M=NB.MNC.NMD.

  解:

  當時,2k+1是奇數,k+2是整數,選B

  【例2】定義集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

  A)1B)2C)3D)4

  分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

  解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

  變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為

  A)5個B)6個C)7個D)8個

  變式2:已知{a,b}A{a,b,c,d,e},求集合A.

  解:由已知,集合中必須含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.

  【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

  解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

  ∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

  ∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

  ∴∴

  變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

  解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

  ∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

  又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

  分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。

  解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

  綜合以上各式有B={x|-1≤x≤5}

  變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

  點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

  變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

  解答:M={-1,3},∵M∩N=N,∴NM

  ①當時,ax-1=0無解,∴a=0②

  綜①②得:所求集合為{-1,0,}

  【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

  分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。

  解答:(1)若,在內有有解

  令當時,

  所以a>-4,所以a的取值范圍是

  變式:若關于x的方程有實根,求實數a的取值范圍。

  解答:

  點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的'關鍵。

高中數學工作總結 篇18

  一、早期導數概念——特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函數極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)—f(A),發現的因子E就是我們所說的導數f(A)。

  二、17世紀——廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變量為流量稱變量的變化率為流數相當于我們所說的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在于一個變量的函數而不在于多變量的方程在于自變量的變化與函數的變化的比的構成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導數——逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關于導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函數y=f(x)在變量x的兩個給定的界限之間保持連續并且我們為這樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創造了ε—δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題后來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。

高中數學工作總結(通用18篇) 相關內容:
  • 數學演講稿范文(精選17篇)

    尊敬的老師,親愛的同學們:大家好!老師是一位魔術師,把我們帶到知識的天地;老師是一把鑰匙,為我們打開智慧寶庫的大門;老師是一位向導,幫我們找到知識的寶藏。...

  • 2023年數學工作計劃(精選19篇)

    一、班級學生情況分析:再過三個星期,一個學期就即將結束了,回顧本學期教與學的歷程,總體還算滿意。現在已經完成了本學期新課教學任務,學生對新知識的掌握還是令人滿意的,這從八次的質量檢測中便可略知一二,但是存在的問題也不容忽...

  • 數學工作總結模板(精選16篇)

    自主學習能力則是指學習者在學習活動中表現出來的一種綜合能力。具備這種能力的人具有強烈的求知欲,能夠合理地安排自己的學習活動,具有刻苦鉆研精神,并且能夠對自己的學習效果進行科學的評價。...

  • 數學述職報告范文(通用15篇)

    本期我擔任初二級(3、4)班數學教學。由于教學經驗尚淺。因此,我認真學習,深入研究教法,虛心向前輩學習。經過一個學期的努力,獲取了很多寶貴的教學經驗。以下是我在本學期的教學情況總結。...

  • 2023數學演講稿(精選19篇)

    親愛的老師、同學們:大家好!我是應明洋。今天我的演講主題是“創新數學,閃耀中華”,我想每一個站在這里的同學,都在用自己的感觸與態度,向數學的世界獻禮,向創新的思維致敬!...

  • 2023數學工作總結(精選18篇)

    一學期又要結束了,這一學期我仍然擔任一年級的數學課教學工作。素質教育的徹底實施,對學生來說受益長遠,對老師是一次非常大的挑戰,既要完成進度,又要圓滿實現本學期的三維數學目標,由此感受到自己肩上的擔子之重。...

  • 數學評語范文(通用18篇)

    1.你是個老實、害羞的人,在班內與同學團結互助,學習中較認真,但思維反映遲鈍,有疑難的不能靈活運用,學習成績很不理想。希你認真細心些,努力提高小成績。2.你是個聰明,活潑的男孩,作業總是趕在人前,但字跡有欠工整。...

  • 2023數學評語(精選15篇)

    1.你是個老實、害羞的人,在班內與同學團結互助,學習中較認真,但思維反映遲鈍,有疑難的不能靈活運用,學習成績很不理想。希你認真細心些,努力提高小成績。2.你是個聰明,活潑的男孩,作業總是趕在人前,但字跡有欠工整。...

  • 數學心得體會500字(精選19篇)

    我把個人的一些心得體會總結如下:1、多媒體的大量運用數學課堂上運用課件目的一方面是為了節省時間,二是直觀形象展示給學生。這次的課件制作水平都很高,而且使用效果好,克服以前課件華而不實的現象。看的出都是老師們精心準備的。...

  • 數學個人工作總結(精選15篇)

    緊張而又繁忙的一學期工作就要結束了,數學組的每位教師都是以認真、務實的態度忙于期未的收尾工作。中學數學課堂教學如何實施素質教育,是當前數學教學研究的重要課題。...

  • 數學心得體會400字(精選17篇)

    20xx年11月9日,我有幸參加了在磚埠鎮中心小學舉行的小學數學分片聯研活動。本次活動共開展了四節課,每一節課都十分的精彩,每節課都有自己成功的地方。...

  • 數學演講稿200字左右(通用7篇)

    敬愛的老師、親愛的同學們:大家好!我是四年級一班的。如果我是一棵小樹,那么書就是燦爛的.陽光,它照耀著我,讓我快樂地成長;如果我是一只小鳥,那么書就是任憑我高飛的天空;如果我是一條小魚,那么書就是任我遨游的河流。...

  • 2023數學檢討書(通用18篇)

    尊敬的:我懷著愧疚的心情,寫下這份檢查.以向您表示我的決心和悔改之意,只希望老師能夠給我一個改正錯誤的機會。以前我沒有意識到自己的散漫和無知,上課總是不認真聽講 ,導致我考試沒考好。我認為,這次考試考不好還有兩個大的原因。...

  • 數學心得體會300字(精選20篇)

    某月某日到xx縣第六實驗小學學習,學習主題是xx市小學數學教學研討會,具體到學校是生本課堂的展現。共聽了兩節課,第一節是五年級的,第二節是六年級的。生本課堂,顧名思義就是以學生為本的課堂。...

  • 數學結題報告(精選3篇)

    我校組織開展的“在小學數學中情境創設的有效性研究》課題是宜昌市教育科學規劃辦公室批準(課題立項批復:宜教科規計[]2號)市級課題,該課題組于x年3月正式接到批準立項書。...

  • 精選范文
主站蜘蛛池模板: 午夜免费啪视频在线观看 | 免费国产白丝喷水娇喘视频site: | 亚洲黄色片免费看 | 色婷婷综合久久久久中国一区二区 | 国产美女久久精品香蕉69 | 里面也请好好动漫2在线观看 | MM1313亚洲国产精品无码 | 小黄文纯肉污到你湿 | 忘忧草www中文在线资源 | 午夜dj视频免费观看www | 中文字幕在线高清 | 久久国产资源 | 国产美女爆乳呻吟视频 | 久产久精九国品在线 | 日本欧美一区二区三区乱码 | 亚洲精品16p | 欧洲成人综合网 | 中文字幕一区二区三区在线看 | 久久久久se色偷偷亚洲精品av | 亚洲欧美日韩中文视频 | 免费在线观看毛片网站 | 亚洲国产区男人本色 | 在线观看一区二区视频 | 久久精品卫校国产小美女 | 三级全黄不卡的 | 人妻少妇波多野结衣黑人 | 成人乱码一区二区三区不卡视频 | 在线免费观看麻豆视频 | 亚洲一区二区三区国产精华液 | 老司机精品免费视频 | 欧美14一16sex性处 | 色网在线看| 久久国语 | 国产区中文字幕 | 插插插干干干 | WWW夜片内射视频在观看视频 | 暗黑破坏神在线观看 | igao视频网站| 97国产在线播放 | 久久久久久欧美精品色一二三四 | 欧美一区二区三区免费 |