初中數(shù)學(xué)教案最新(精選14篇)
初中數(shù)學(xué)教案最新 篇1
一、教學(xué)目標(biāo)
(一)知識與技能
了解數(shù)軸的.概念,能用數(shù)軸上的點準(zhǔn)確地表示有理數(shù)。
(二)過程與方法
通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。
(三)情感、態(tài)度與價值觀
在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的樂趣。
二、教學(xué)重難點
(一)教學(xué)重點
數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。
(二)教學(xué)難點
數(shù)形結(jié)合的思想方法。
三、教學(xué)過程
(一)引入新課
提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。
(二)探索新知
學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?
學(xué)生活動:畫圖表示后提問。
提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負(fù)方向;選取合適的長度為單位長度。
提問3:你是如何理解數(shù)軸三要素的?
師生共同總結(jié):“原點”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負(fù)數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。
(三)課堂練習(xí)
如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。
(四)小結(jié)作業(yè)
提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。
初中數(shù)學(xué)教案最新 篇2
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認(rèn)識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分?jǐn)?shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達(dá)的.因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).
我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達(dá)方式.
利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識到負(fù)數(shù)是為了有效表達(dá)與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負(fù)數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
初中數(shù)學(xué)教案最新 篇3
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認(rèn)識。
2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。
重點
1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認(rèn)識。
2.通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。
難點
利用數(shù)形結(jié)合的方法驗證公式
教學(xué)方法
動手操作,合作探究課型新授課教具投影儀
教師活動學(xué)生活動
情景設(shè)置:
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學(xué)生充足的時間和空間進行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時鼓勵學(xué)生在拼圖過程中進行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)
第95頁第3題
初中數(shù)學(xué)教案最新 篇4
學(xué)習(xí)目標(biāo):1、掌握EXCEL中公式的輸入方法與格式 。
2、記憶EXCEL中常用的函數(shù),并能熟練使用這些函數(shù)進行計算。
一、知識準(zhǔn)備
1、 EXCEL中數(shù)據(jù)的輸入技巧,特別是數(shù)據(jù)智能填充的使用 2、 EXCEL中單元格地址編號的規(guī)定
二、學(xué)中悟
1、對照下面的表格來填充
(1)D5單元格中的內(nèi)容為 (2)計算“王芳”的總分公式為(3)計算她平均分的公式為 (4)思考其他人的成績能否利用公式的復(fù)制來得到?
(5)若要利用函數(shù)來計算“王芳”的總分和平均成績,那么所用到的函數(shù)分別為 、 。
計算總分的公式變?yōu)椋?計算平均分的公式為。 思考:比較兩種方法進行計算的特點,思考EXCEL中提供的函數(shù)對我們計算有什么好處,我們又得到了什么啟示?
反思研究
三、 學(xué)后練
1、下面的表格是圓的參數(shù),根據(jù)已經(jīng)提供的參數(shù)利用公式計算出未知參數(shù)
1) 基礎(chǔ)練習(xí)
(1)半徑為3.5的圓的直徑的計算公式為 (2)半徑為3.5的圓的面積的計算公式為
2) 提高訓(xùn)練
(1)能否利用公式的復(fù)制來計算出下面兩個圓的直徑?若不能說明原因,并提出如何修改公式后才能利用公式復(fù)制來計算其他圓的直徑?
(2)能否利用公式的復(fù)制來計算出下面兩個圓的面積?若不能說明原因,并提出如何修改公式后才能利用公式復(fù)制來計算其他圓的面積?
2、根據(jù)下面的表格,在B5單元格中利用RIGHT函數(shù)去B4單元格中字符串的右3位。利用INT函數(shù)求出門牌號為1的電費的整數(shù)值,結(jié)果置于C5單元格中。
思考實踐提高:根據(jù)上面兩個問題,我們得到了那些提示?并且將上面的公式與函數(shù)進行上機實實踐。
四、 作業(yè)布置
(1)上機完成成績統(tǒng)計表中總分和平均分的計算; (2)上機完成圓的直徑和面積的計算 (3)練習(xí)冊
初中數(shù)學(xué)教案最新 篇5
【教學(xué)目標(biāo)】
1、掌握多邊形的內(nèi)角和的計算方法,并能用內(nèi)角和知識解決一些簡單的問題。
2、經(jīng)歷探索多邊形內(nèi)角和計算公式的過程,體會如何探索研究問題。
3、通過將多邊形"分割"為三角形的過程體驗,初步認(rèn)識"轉(zhuǎn)化"的數(shù)學(xué)思想。
【教學(xué)重點與教學(xué)難點】
1、重點:多邊形的內(nèi)角和公式。
2、難點:多邊形內(nèi)角和的推導(dǎo)。
3、關(guān)鍵:。多邊形"分割"為三角形。
【教具準(zhǔn)備】
三角板、卡紙
【教學(xué)過程】
一、創(chuàng)設(shè)情景,揭示問題
1、在一次數(shù)學(xué)基礎(chǔ)知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?
你能說出五邊形的內(nèi)角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調(diào)動學(xué)生的學(xué)習(xí)興趣和注意力
二、探索研究學(xué)會新知
1、回顧舊知,引出問題:
(1)三角形的內(nèi)角和等于_________。外角和等于____________
(2)長方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________。
2、探索四邊形的內(nèi)角和:
(1)學(xué)生思考,同學(xué)討論交流。
(2)學(xué)生敘述對四邊形內(nèi)角和的認(rèn)識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形。)回顧三角形,正方形,長方形內(nèi)角和,使學(xué)生對新問題進行思考與猜想。以四邊形的內(nèi)角和作為探索多邊形的。突破口。
(3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對角線,分成2個三角形:
180°+180°=360°
從簡單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問題,并讓學(xué)生發(fā)現(xiàn)問題,解決問題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點,與頂點連接組成4個三角形。
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:
你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456.。.n分成三角形的個數(shù)1234.。.n—2內(nèi)角和。.。.
4、及時運用,掌握新知:
(1)一個八邊形的內(nèi)角和是_____________度
(2)一個多邊形的內(nèi)角和是720度,這個多邊形是_____邊形
(3)一個正五邊形的每一個內(nèi)角是________,那么正六邊形的每個內(nèi)角是_________
通過學(xué)生動手去用分割法求五(六)邊形的內(nèi)角和,從簡單到復(fù)雜,從而歸納出n邊形的內(nèi)角和。
三、點例透析
運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系呢?
四、應(yīng)用訓(xùn)練強化理解
4、第83頁練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用
五、知識回放
課堂小結(jié)提問方式:本節(jié)課我們學(xué)習(xí)了什么?
1、多邊形內(nèi)角和公式。
2、多邊形內(nèi)角和計算是通過轉(zhuǎn)化為三角形。
六、作業(yè)練習(xí)
1、書面作業(yè):
2、課外練習(xí):
初中數(shù)學(xué)教案最新 篇6
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
(1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
(2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
(學(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
(1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學(xué)困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達(dá)到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進行小結(jié)。
學(xué)生進行總結(jié)歸納、回答交流,相互完善補充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。
布置作業(yè):
第93頁第3題
初中數(shù)學(xué)教案最新 篇7
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的價值。
教學(xué)難點
正確分析實際問題中的不等關(guān)系,列出不等式組。
知識重點
建立不等式組解實際問題的數(shù)學(xué)模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
初中數(shù)學(xué)教案最新 篇8
教學(xué)目標(biāo)
(一)知識認(rèn)知要求
1、回顧收集數(shù)據(jù)的方式、
2、回顧收集數(shù)據(jù)時,如何保證樣本的代表性、
3、回顧頻率、頻數(shù)的概念及計算方法、
4、回顧刻畫數(shù)據(jù)波動的統(tǒng)計量:極差、方差、標(biāo)準(zhǔn)差的概念及計算公式、
5、能利用計算器或計算機求一組數(shù)據(jù)的算術(shù)平均數(shù)、
(二)能力訓(xùn)練要求
1、熟練掌握本章的知識網(wǎng)絡(luò)結(jié)構(gòu)、
2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計意識和數(shù)據(jù)處理能力、
3、經(jīng)歷調(diào)查、統(tǒng)計等活動,在活動中發(fā) 展學(xué)生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內(nèi)容的回顧與思考,發(fā)展學(xué) 生用數(shù)學(xué)的意識、
2、在活動中培養(yǎng)學(xué)生團隊精神、
教學(xué)重點
1、建立本章的知識框架圖、
2、體會收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計量在實際情境中的意義和應(yīng)用、
教學(xué)難點
收集數(shù)據(jù)的方式、抽樣時保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計量在不同情境中的應(yīng)用、
教學(xué)過程
一、導(dǎo)入新課
本章的內(nèi)容已全部學(xué)完、現(xiàn)在如何讓你調(diào)查一個情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報告,我想大家現(xiàn)在心里應(yīng)該有數(shù)、
例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應(yīng)如何操作?
先選擇調(diào)查方式,當(dāng)然這個調(diào)查應(yīng)采用抽樣調(diào)查的方式,因為我們不可能調(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、
同學(xué)們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計分析,然后把調(diào)查結(jié)果匯報上來,我們可以比一比,哪一個組表現(xiàn)最好?
二、講授新課
1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、
2、抽樣調(diào)查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數(shù)、頻率有關(guān)的幾個生活實例?
4、刻畫數(shù)據(jù)波動的統(tǒng)計量有 哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學(xué)們先獨 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、
(教師可參與到學(xué)生的討論中,發(fā)現(xiàn)同學(xué)們前面知識掌握不好的地方,及時補上)、
收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、
例如:調(diào)查我校八年級同學(xué)每天做家庭作業(yè)的時間,我們就可以用普查的形式、
在這次調(diào)查中,總體:我校八年級全體學(xué)生每天做家庭作業(yè)的時間;個體:我校八年級每個學(xué)生每天做家庭作業(yè)的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數(shù)目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調(diào)查具有破壞性,不允許普查,此時可用抽樣調(diào)查、
例如把上面問題改成“調(diào)查全國八年級同學(xué)每天做家庭作業(yè)的時間”,由于個體數(shù)目太多,普查的工作量也較大,此時就采取抽樣調(diào)查,從總體中抽取一個樣本,通過樣本的特征數(shù)字來估計總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因為只 有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會失去可靠性和準(zhǔn)確性、
例如對我們班里某門學(xué)科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學(xué)生的成績落在哪一個分?jǐn)?shù)段,落在這個分?jǐn)?shù)段的分?jǐn)?shù)有幾個,表明數(shù)據(jù)落在這個小組的頻數(shù)就是多少,數(shù)據(jù)落在這個小組的頻率就是頻數(shù)與數(shù)據(jù)總個數(shù)的商、
刻畫數(shù)據(jù)波動的統(tǒng)計量有極差、方差、標(biāo)準(zhǔn)差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定、
例如:某農(nóng)科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產(chǎn)量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個試驗點甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、
還可以用方差來比較哪一種玉米穩(wěn)定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定、
三、建立知識框架圖
通 過剛才的幾個問題回顧思考了我們這一章的重點內(nèi)容,下面構(gòu)建本章的知識結(jié)構(gòu)圖、
四、隨堂練習(xí)
例1一家電腦生產(chǎn)廠家在某城市三個經(jīng)銷本廠產(chǎn)品的大商場調(diào)查,產(chǎn)品的銷量占這三個 大商場同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷售量占40%、請你根據(jù)所學(xué)的統(tǒng)計知識,判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統(tǒng)計知識,作出科學(xué)的判斷, 同時運 用統(tǒng)計原理給予準(zhǔn)確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據(jù)下面的疫情統(tǒng)計圖表回答問題:
(1)圖10是5月11日至5月29日全國疫情每天新增數(shù)據(jù)統(tǒng)計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;
②在本題的統(tǒng)計中,新增確診病例的人數(shù)的中位數(shù)是___________;
③本題在對新增確診病例的統(tǒng)計中,樣本是__________,樣本容量是__________、
(2)下表是我國一段時間內(nèi)全國確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計表、(按人數(shù)分組)
①100人以下的分組組距是________;
②填寫本統(tǒng)計表中未完成的空格;
③在統(tǒng)計的這段時期中,每天新增確診
病例人數(shù)在80人以下的天數(shù)共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19
(2)①10人 ②11 40 0、125 0、325 ③25
五.課時小結(jié)
這節(jié)課我們通過回顧與思考這一章的重點內(nèi)容,共同建立的知識框架圖,并進一步用統(tǒng)計的思想和知識解決問題,作出決策、
六.課后作業(yè):
七.活動與探究
從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質(zhì)量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數(shù)學(xué)教案最新 篇9
一、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面。現(xiàn)將檢查情況總結(jié)如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設(shè)計完整,教學(xué)重點、難點突出,設(shè)置得當(dāng),緊緊圍繞新課標(biāo),例如:劉興華、孫菊、江文李雅芳等能突出對學(xué)科素養(yǎng)的高度關(guān)注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側(cè)重對自己教法和學(xué)生學(xué)法的指導(dǎo),并且還能對自己不得法的教學(xué)手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學(xué)的反思意識,反思深刻、務(wù)實、有針對性。
2、注重選擇恰當(dāng)?shù)慕虒W(xué)方法,注重在靈活多樣的教學(xué)方法中培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學(xué)手段,注重培養(yǎng)學(xué)生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學(xué)反思不夠認(rèn)真、不夠詳細(xì),沒能對本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進度布置作業(yè),作業(yè)設(shè)置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴(yán)格、細(xì)致,能夠反映學(xué)生作業(yè)中的錯誤做法及糾正措施。
3、學(xué)生在書寫方面有很大進步。從檢查可以發(fā)現(xiàn)教師對學(xué)生作業(yè)的書寫格式有明確的要求。
不足:
1、對于學(xué)生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細(xì)心些,發(fā)現(xiàn)問題就讓學(xué)生當(dāng)時改正,學(xué)生也就會逐漸養(yǎng)成做事認(rèn)真的習(xí)慣。
初中數(shù)學(xué)教案最新 篇10
教學(xué)目標(biāo)
1筆寡生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2迸嘌學(xué)生準(zhǔn)確地運算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。
教學(xué)重點和難點
重點和難點:正確地求出代數(shù)式的值
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)識結(jié)構(gòu)提出問題
1庇么數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%
2庇糜镅孕鶚齟數(shù)式2n+10的意義
3倍雜詰2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)
某學(xué)校為了開展體育活動,要添置一批排球,每班配2個,學(xué)校另外留10個,如果這個學(xué)校共有n個班,總共需多少個排球?
若學(xué)校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時,代數(shù)式2n+10的計算結(jié)果也不同,顯然,當(dāng)n=15時,代數(shù)式的值是40;當(dāng)n=20時,代數(shù)式的值是50蔽頤墻上面計算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時的值閉餼褪潛窘誑撾頤墻要學(xué)習(xí)研究的內(nèi)容
二、師生共同研究代數(shù)式的值的意義
1庇檬值代替代數(shù)式里的字母,按代數(shù)式指明的運算,計算后所得的結(jié)果,叫做代數(shù)式的值
2苯岷仙鮮隼題,提出如下幾個問題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當(dāng)教師引導(dǎo)學(xué)生說出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學(xué)生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個確定的值,代數(shù)式就有唯一確定的值與它對應(yīng)
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案(教師板書例題時,應(yīng)注意格式規(guī)范化)
例1當(dāng)x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值
解:當(dāng)x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數(shù)式中省略乘號,代入后需添上乘號
例2根據(jù)下面a,b的值,求代數(shù)式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當(dāng)a=4,b=12時,
a2-=42-=16-3=13;
(2)當(dāng)a=1,b=1時,
a2-=-=
注意(1)如果字母取值是分?jǐn)?shù),作乘方運算時要加括號;
(2)注意書寫格式,“當(dāng)……時”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個數(shù),n不能取分?jǐn)?shù)最后,請學(xué)生總結(jié)出求代數(shù)值的步驟:①代入數(shù)值②計算結(jié)果
三、課堂練習(xí)
1(1)當(dāng)x=2時,求代數(shù)式x2-1的值;
(2)當(dāng)x=,y=時,求代數(shù)式x(x-y)的值
2鋇盿=,b=時,求下列代數(shù)式的值:
(1)(a+b)2;(2)(a-b)2
3鋇眡=5,y=3時,求代數(shù)式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、師生共同小結(jié)
首先,請學(xué)生回答下面問題:
1北窘誑窩習(xí)了哪些內(nèi)容?
2鼻蟠數(shù)式的值應(yīng)分哪幾步?
3痹“代入”這一步應(yīng)注意什么”
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運算順序,直接計算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
當(dāng)a=2,b=1,c=3時,求下列代數(shù)式的值:(1)c-(c-a)(c-b);
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案最新 篇11
一、教材分析
冪函數(shù)是學(xué)生在系統(tǒng)學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本初等函數(shù)。是對函數(shù)概念及性質(zhì)的應(yīng)用,能進一步培養(yǎng)利用函數(shù)的性質(zhì)(定義域、值域、圖像、奇偶性、單調(diào)性)研究一個函數(shù)的意識。因而本節(jié)課更是一個對學(xué)生研究函數(shù)的方法和能力的綜合提升。從概念到圖象( ),利用這五個函數(shù)的圖象探究其定義域、值域、奇偶性、單調(diào)性、公共點,概括、歸納冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生從特殊到一般再到特殊的一般認(rèn)知規(guī)律。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,以便能將該方法遷移到對其他函數(shù)的研究。
二、教學(xué)目標(biāo)分析
依據(jù)課程標(biāo)準(zhǔn),結(jié)合學(xué)生的認(rèn)知發(fā)展水平和心理特征,確定本節(jié)課的教學(xué)目標(biāo)如下:
[知識與技能] 使學(xué)生了解冪函數(shù)的定義,會畫常見冪函數(shù)的圖象,掌握冪函數(shù)的圖象和性質(zhì),初步學(xué)會運用冪函數(shù)解決問題,進一步體會數(shù)形結(jié)合的思想。
[過程與方法] 引入、剖析、定義冪函數(shù)的過程,啟動觀察、分析、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法;通過運用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索冪函數(shù)性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣;對冪函數(shù)的性質(zhì)歸納、總結(jié)時培養(yǎng)學(xué)生抽象概括和識圖能力;運用性質(zhì)解決問題時,進一步強化數(shù)形結(jié)合思想。
[情感、態(tài)度與價值觀] 通過生活實例引出冪函數(shù)概念,使學(xué)生體會生活中處處有數(shù)學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。通過本節(jié)課的學(xué)習(xí),使學(xué)生進一步加深研究函數(shù)的規(guī)律和方法;提高學(xué)生的學(xué)習(xí)能力;養(yǎng)成積極主動,勇于探索,不斷創(chuàng)新的學(xué)習(xí)習(xí)慣和品質(zhì);樹立學(xué)科學(xué),愛科學(xué),用科學(xué)的精神。
三、重、難點分析
[教學(xué)重點]
(1)冪函數(shù)的定義與性質(zhì);
(2)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)的影響。從知識體系看,前面有指數(shù)函數(shù)與對數(shù)函數(shù)的學(xué)習(xí),后面有其他函數(shù)的研究,本節(jié)課的學(xué)習(xí)具有承上啟下的作用;就知識特點而言,蘊涵豐富的數(shù)學(xué)思想方法;就能力培養(yǎng)來說,通過學(xué)生對冪函數(shù)性質(zhì)的歸納,可培養(yǎng)學(xué)生類比、歸納概括能力,運用數(shù)學(xué)語言交流表達(dá)的能力。
[教學(xué)難點]
(1)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響。
(2)數(shù)形結(jié)合解決大小比較以及求參數(shù)的問題。從學(xué)生認(rèn)知發(fā)展看,他們具備一定的學(xué)習(xí)新函數(shù)的能力,可以通過學(xué)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù)的方法來類比,但畢竟冪函數(shù)在三種初等函數(shù)中是最難的,因為它分類的情況很多,且性質(zhì)多而復(fù)雜,我采用讓學(xué)生自己利用計算機作出函數(shù)的圖像,從中歸納性質(zhì)的方法來突破難點。
四、學(xué)情與教法分析
1. 學(xué)情分析
從學(xué)生思維特點來和認(rèn)知結(jié)構(gòu)看,前面學(xué)生已經(jīng)學(xué)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù),對新函數(shù)的學(xué)習(xí)已經(jīng)有了一定的經(jīng)驗。一方面可以把本節(jié)課與前面的指數(shù)函數(shù)與對數(shù)函數(shù)進行類比學(xué)習(xí),但另一方面本節(jié)課分類情況多,性質(zhì)歸納困難,尤其是三個函數(shù)放在一起可能產(chǎn)生混淆。對進入高中半個學(xué)期的學(xué)生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴(yán)謹(jǐn)?shù)奶攸c,對問題解決的一般性思維過程認(rèn)識比較模糊。
2. 教法分析
學(xué)生思維活躍,求知欲強,但在思維習(xí)慣上還有待教師引導(dǎo)從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下創(chuàng)設(shè)疑問,通過合作交流,共同探索,逐步解決問題。采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法,充分利用多媒體輔助教學(xué)。通過教師點撥,啟發(fā)學(xué)生主動觀察、主動思考、動手操作、自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受。
3.教學(xué)構(gòu)想
新課標(biāo)的要求是通過實例,了解y=x,的圖像,了解它們的變化情況。而原數(shù)學(xué)教學(xué)大綱要求掌握冪函數(shù)的概念及其圖像和性質(zhì),在考查掌握函數(shù)性質(zhì)和運用性質(zhì)解決問題時,所涉及的冪函數(shù)f(x)=xα中 α限于在集合{-2,-1,-,1,2,3}中取值。新課標(biāo)無論從內(nèi)容的容量和難度上都要遠(yuǎn)低于舊課標(biāo)。而蘇教版的教材嚴(yán)格按照新課標(biāo)要求處理此部分內(nèi)容,內(nèi)容體系均未超出課標(biāo)要求。所以我們應(yīng)以新課標(biāo)為準(zhǔn)繩,控制難度與要求。由于本節(jié)課的難點在于指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響,本身冪函數(shù)比較抽象,所以我采用在多媒體教室讓學(xué)生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數(shù)的性質(zhì)。從心理學(xué)上講,自己經(jīng)歷知識的發(fā)生發(fā)展過程,印象更深刻,學(xué)生容易接受與理解。
初中數(shù)學(xué)教案最新 篇12
教學(xué)目標(biāo)
1.使學(xué)生正確理解的意義,掌握的三要素;
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認(rèn)為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));
3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學(xué)生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習(xí)
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習(xí)
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學(xué)教案最新 篇13
教學(xué)目標(biāo)
(一)知識與能力
1.通過對不等式的復(fù)習(xí)和具體實例總結(jié)一元一次不等式組以及一元一次不等式組的解集的概念。2.通過例題教會學(xué)生解一元一次不等式組,并教會學(xué)生通過在數(shù)軸上表示不等式的解集得到不等式組的解集,讓學(xué)生感受數(shù)形結(jié)合的作用。
(二)過程與方法
1.創(chuàng)設(shè)情境,通過實例引導(dǎo)學(xué)生考慮多個不等式聯(lián)合的解法。2.通過例題總結(jié)解一元一次不等式組的方法,并總結(jié)一元一次不等式組的解與一元一次不等式的解之間的關(guān)系。
(三)情感、態(tài)度與價值觀
1.通過數(shù)軸的表示不等式組的解,讓學(xué)生加深對數(shù)形結(jié)合的作用的理解,使他們逐步熟悉和掌握這一重要的思想方法。2.在對例題的講解中,使學(xué)生認(rèn)識一元一次不等式組的解集即每個不等式解集的公共部分,從而滲透“交集”的思想。
3.在解不等式組的過程中讓學(xué)生體會數(shù)學(xué)解題的直觀性和簡潔性的數(shù)學(xué)美 教學(xué)重、難點 重點:掌握一元一次不等式組的解法,會用數(shù)軸表示一元一次不等式組解集 的情況。難點 :1.弄清一元一次不等式的解集與一元一次不等式組的解集之間的關(guān)系。2.靈活運用一元一次不等式組的知識解決問題。
教學(xué)過程
一.設(shè)置情景,引入課題
學(xué)生活動:請學(xué)生觀看購物街轉(zhuǎn)轉(zhuǎn)盤游戲.(在看之前先讓學(xué)生看一看游戲規(guī)則:轉(zhuǎn)輪上平均分布著5、10、15一直到100共20個數(shù)字。每位選手最多有兩次機會。選手轉(zhuǎn)動轉(zhuǎn)輪的數(shù)字之和,最大且不超過100者為勝出,可以獲得相應(yīng)的獎品。選手每次必須把轉(zhuǎn)輪轉(zhuǎn)動1圈才有效.)
設(shè)第三位選手第二次轉(zhuǎn)的數(shù)字為x,他要勝出應(yīng)滿足什么條件? 預(yù)設(shè)學(xué)生
1x?10?75,預(yù)設(shè)學(xué)生2
x?10?教師提出問題:這兩個條件只需滿足一個還是缺一不可?
預(yù)設(shè)學(xué)生:同時具備x?10?75
x?10?100?教師活動:
1、講解聯(lián)立符號的作用,并引入課題.2、給出定義:由幾個含有同一未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組.【設(shè)計意圖】從一個學(xué)生感興趣的游戲入手.問題的提出具有一定的現(xiàn)實性和探究性,目的是激發(fā)學(xué)生探究新知的欲望,在教師的引導(dǎo)下,將生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,從而引出本課題.學(xué)生活動
用心找一找:下列不等式組中哪些是一元一次不等式組?
?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)5x?3?4x?1 3x?3?1x?33a?3?0?17?2x?6?3?預(yù)設(shè)學(xué)生1:(2)(3)(4)(5)預(yù)設(shè)學(xué)生2:(2)(4)(5)預(yù)設(shè)學(xué)生3:(2)(4)
【設(shè)計意圖】教師組織學(xué)生分組討論,明析一元一次不等式組的定義.使學(xué)生進一步明確“幾個含有同一個未知數(shù)的一元一次不等式組成.”
二、探索過程
問題一:x?10?75這兩個不等式的解分別是什么呢?
x?10?100x?65 ?x?90?問題二:怎么表示不等式組的解呢?
什么是不等式組的解呢?
【設(shè)計意圖】通過這兩個問題的探討,讓學(xué)生在解不等式的過程中得出不等式組的解法和不等式組的解的表示方法.文字語言:大于65小于或等于90的數(shù).圖形語言: O*0
數(shù)學(xué)式子:65<x≤90 學(xué)生活動:探究不等式組的解
問題:求下列不等式組的解,并找出其中的規(guī)律(1)x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x5?x?5?x?7學(xué)生預(yù)設(shè)1:通過數(shù)軸,能求出不等式組的解
學(xué)生預(yù)設(shè)2:找不出其中的規(guī)律
【設(shè)計意圖】讓學(xué)生利用數(shù)軸尋找不等式組的解,并表示出來,引導(dǎo)學(xué)生找出其中的規(guī)律,培養(yǎng)學(xué)生善于現(xiàn)問題、總結(jié)規(guī)律的能力
三、練習(xí)鞏固,拓展提高
學(xué)生活動:1.寫出下列不等式組的解
(1)不等式組x5的解在數(shù)軸上表示為____________則不等式組的解為 x2x5的解在數(shù)軸上表示為_______________則不等式組的解?x2(2)不等式組?為
(3)不等式組x1的解為 x?2x1的解為 x?2?(4)不等式組 ?2.選擇題:(1)不等式組x?2的解是x?22 ?2 C.無解 ?2(2)不等式組x2的負(fù)整數(shù)解是x3?A.–2,0,-1 B.-2 C.–2,-1 D.不能確定
【設(shè)計意圖】讓學(xué)生及時鞏固,準(zhǔn)確找出不等式組的解,在找不等式組的解的過程中引入整數(shù)解.四、合作小結(jié),課外探索 學(xué)生活動:
1每位同學(xué)寫一個以x為未知數(shù)的一元一次不等式;
2、同桌的兩個不等式組在一起叫做什么?三位同學(xué)的不等式組在一起呢?
3、每位同學(xué)把你所寫的不等式解出來;
4、同桌所組成的不等式組的解是什么?
【設(shè)計意圖】通過問題串,在生生、師生互動的情況下,復(fù)習(xí)一元一次不等式組的定義和解.增強了學(xué)生之間的合作交流.五、布置作業(yè)
3個小組計劃在10天內(nèi)生產(chǎn)500件產(chǎn)品(每天生產(chǎn)量相同),按原先的生產(chǎn)速度,不能完成任務(wù);如果每個小組每天比原先多生產(chǎn)1件產(chǎn)品,就能提前完成任務(wù).每個小組原先每天生產(chǎn)多少件產(chǎn)品?
【設(shè)計意圖】通過實際問題的解決,有利于學(xué)生體會到數(shù)學(xué)來源于生活,并能有效地復(fù)習(xí)鞏固本堂課所學(xué)的知識和方法.【板書設(shè)計】
一元一次不等式組 ?x?10?75x?10?100?x?65 文字語言:大于x?9065小于或等于90的數(shù).圖形語言: O*0數(shù)學(xué)式子:65<x≤90
求下列不等式組的解,并找出其中的規(guī)律(1)x?3?x?7(2)x?2?x?3?x5(3)x?5(4)規(guī)律:大大取大,小小取小;
大小小大中間找
大大小小為
初中數(shù)學(xué)教案最新 篇14
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實驗教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設(shè)計思想
本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級學(xué)生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開展教學(xué)活動,通過設(shè)計有針對性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動不但培養(yǎng)學(xué)生化簡意識,提升數(shù)學(xué)運算技能而且讓學(xué)生深刻體會到數(shù)學(xué)是解決實際問題的重要工具,增強應(yīng)用數(shù)學(xué)的意識。
三、教學(xué)目標(biāo):
(一)知識技能目標(biāo):
1、理解同類項的含義,并能辨別同類項。
2、掌握合并同類項的方法,熟練的合并同類項。
3、掌握整式加減運算的方法,熟練進行運算。
(二)過程方法目標(biāo):
1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學(xué)生觀察、歸納、探究的能力。
2、通過合并同類項、整式加減運算的練習(xí)活動,提高學(xué)生運算技能,提升運算的準(zhǔn)確率培養(yǎng)學(xué)生化簡意識,發(fā)展學(xué)生的抽象概括能力。
3、通過研究引例、探究例1的活動,發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號感。
(三)情感價值目標(biāo):
1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識和敢于探索未知問題的精神。
2、通過學(xué)習(xí)活動培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
四、教學(xué)重、難點:
合并同類項
五、教學(xué)關(guān)鍵:
同類項的概念
六、教學(xué)準(zhǔn)備:
教師:
1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。
2、制作大小不等的兩個長方體紙盒實物模型,并能展開。
3、設(shè)計多媒體教學(xué)課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)
學(xué)生:
1、復(fù)習(xí)有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)
2、每小組制作大小不等的兩個長方體紙盒模型。