中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教案模板 > 《完全平方公式》教案(通用17篇)

《完全平方公式》教案

發布時間:2024-02-11

《完全平方公式》教案(通用17篇)

《完全平方公式》教案 篇1

  一、教材分析

  完全平方公式是初中代數的一個重要組成部分,是學生在已經掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

  本節課是繼乘法公式的內容的一種升華,起著承上啟下的作用。在內容上是由多項式乘多項式而得到的,同時又為下一節課打下了基礎,環環相扣,層層遞進。通過這節課的學習,可以培養學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

  二、學情分析

  多數學生的.抽象思維能力、邏輯思維能力、數學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發展學生的合情推理能力、合作交流能力和數學化能力。

  三、教學目標

  知識與技能

  利用添括號法則靈活應用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養學生的逆向思維能力。

  情感態度與價值觀

  鼓勵學生算法多樣化,培養學生多方位思考問題的習慣,提高學生的合作交流意識和創新精神。

  四、教學重點難點

  教學重點

  理解添括號法則,進一步熟悉乘法公式的合理利用.

  教學難點

  在多項式與多項式的乘法中適當添括號達到應用公式的目的.

  五、教學方法

  思考分析、歸納總結、練習、應用拓展等環節。

  六、教學過程設計

  師生活動

  設計意圖

  一.提出問題,創設情境

  請同學們完成下列運算并回憶去括號法則.

  (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

  (1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

  (學生分組討論,最后總結)

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學們利用添括號法則完成下列練習:

  1.在等號右邊的括號內填上適當的項:

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運算是否正確.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

  (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結:添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數式是否正確.

  三、新知運用

  有些整式相乘需要先作適當的變形,然后再用公式,這就需要同學們理解乘法公式的結構特征和真正內涵.請同學們分組討論,完成下列計算.

  例:運用乘法公式計算

  (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習:

  1.課本P111練習

  2.《學案》101頁——鞏固訓練

  五、課堂小結:

  通過本節課的學習,你有何收獲和體會?

  我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

  我體會到了轉化思想的重要作用,學數學其實是不斷地利用轉化得到新知識,比如由繁到簡的轉化,由難到易的轉化,由已知解決未知的轉化等等.

  六、檢測作業

  習題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學導入,激發學生的學習熱情

  交流合作,探究新知,以問題驅動,層層深入。

  歸納總結,提升課堂效果。

  作業檢測,檢測目標的達成情況。

《完全平方公式》教案 篇2

  學習任務

  1、了解完全平方公式的特征,會用完全平方公式進行因式分解.

  2、通過整式乘法逆向得出因式分解方法的過程,發展學生逆向思維能力和推理能力.

  3、通過猜想、觀察、討論、歸納等活動,培養學生觀察能力,實踐能力和創新能力.

  學習建議教學重點:

  運用完全平方公式分解因式.

  教學難點

  掌握完全平方公式的特點.

  教學資源

  使用電腦、投影儀.

  學習過程學習要求

  自學準備與知識導學:

  1、計算下列各式:

  ⑴(a+4)2=__________________⑵(a-4)2=__________________

  ⑶(2x+1)2=__________________⑷(2x-1)2=__________________

  下面請你根據上面的等式填空:

  ⑴a2+8a+16=_____________⑵a2-8a+16=_____________

  ⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________

  問題:對比以上兩題,你有什么發現?

  2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來就得到__________________和__________________,這兩個等式就是因式分解中的.完全平方公式.它們有什么特征?

  若用△代表a,○代表b,兩式可表示為△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.

  3、a2-4a-4符合公式左邊的特征嗎?為什么?

  4、填空:a2+6a+9符合嗎?______相當于a,______相當于b.

  a2+6a+9=a2+2+2=2

  a2-6a+9=a2-2+2=2

  可以把形如a2+2ab+b2與a2-2ab+b2的多項式通過完全平方公式進行因式分解.

  學習交流與問題研討:

  1、例題一(準備好,跟著老師一起做!)

  把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2

  2、例題二(有困難,大家一起討論吧!)

  把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4

  3、變式訓練:若把16a4+8a2+1變形為16a4-8a2+1會怎么樣呢?

  4、運用平方差公式、完全平方公式,把一個多項式分解因式的方法叫做運用公式法.分析:重點是指出什么相當于公式中的a、b,并適當的改寫為公式的形式.

  分析:許多情況下,不一定能直接使用公式,需要經過適當的組合,變形成公式的形式.

  強調:分解因式必須分解到每一個因式都不能再分為止.

  練習檢測與拓展延伸:

  1、鞏固練習

  ⑴下列能直接用完全平方公式分解的是

  A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2

  ⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.

  ⑶課本P75練一練1、2.

  2、提升訓練

  ⑴簡便計算:20042-4008×20xx+20052

  ⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值.

  ⑶若把a2+6a+9誤寫為a2+6a+9-1即a2+6a+8如何分解?

  3、當堂測試

  補充習題P42-431、2、3、4.

  分析:許多情況下,不一定能直接使用公式,需要經過適當的組合,變形成公式的形式.

  課后反思或經驗總結:

  1、本節課是在學生已經了解因式分解的意義,掌握了提公因式法、平方差公式的基礎上進行教學的,是運用類比的方法,引導學生借助上一節課學習平方差公式分解因式的經驗,探索因式分解的完全平方公式法,即先觀察公式的特點,再直接根據公式因式分解.

《完全平方公式》教案 篇3

  運用完全平方公式計算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  學生活動:學生在練習本上完成,然后同學互評,教師抽看結果,練習中存在的共性問題要集中解決.

  5.變式訓練,培養能力

《完全平方公式》教案 篇4

  總體說明:

  完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.

  本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.

  一、學生學情分析

  學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.

  學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

  二、教學目標

  知識與技能:

  (1)讓學生會推導完全平方公式,并能進行簡單的應用.

  (2)了解完全平方公式的幾何背景.

  數學能力:

  (1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.

  (2)發展學生的數形結合的數學思想.

  情感與態度:

  將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

  三、教學重難點

  教學重點:

  1、完全平方公式的推導;

  2、完全平方公式的應用;

  教學難點:

  1、消除學生頭腦中的前概念,避免形成“相異構想”;

  2、完全平方公式結構的認知及正確應用.

  四、教學設計分析

  本節課設計了十一個教學環節:學生練習、暴露問題――驗證――推廣到一般情況,形成公式――數形結合――進一步拓廣――總結口訣――公式應用――學生反饋――學生PK――學生反思――鞏固練習.

  第一環節:學生練習、暴露問題

  活動內容:計算:(a+2)2

  設想學生的做法有以下幾種可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正確做法;

  針對這幾種結果都將a=1代入計算,得出①②都是錯誤的.,但③的做法是否一定正確呢?怎么驗證?

  活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:

  (a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

  第二環節:驗證(a+2)2=a2

《完全平方公式》教案 篇5

  課題教案:完全平方公式

  學科:數學

  年級:七年級

  1內容本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。

  1.1以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

  1.2用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學生的數學思維。

  2教學目標

  2.1知識目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養學生歸納總結的能力,并給公式的應用打下堅實的基礎。

  2.3情感與態度目標:通過觀察、實驗、歸納、類比、推斷獲得數學猜想,體驗數學活動充滿著探索性和創造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。

  3教學重點完全平方公式的準確應用。

  4教學難點掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學方式

  5.1教學是師生交往、積極互動、共同發展的過程。教師是學生學習的`組織者、促進者、合作者:本節的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發現他們所學東西的個人意義和社會價值,通過恰當的教學方式引導學生學會自我調適,自我選擇。

  學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。充分利用動手實踐的機會,盡可能增加教學過程的趣味性,強調學生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學習促進自主探究。

  6具體教學過程設計如下:

  6.1提出問題:[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,

  這些式子的左邊和右邊有什么規律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學生回答]分組交流、討論 多項式的結構特點

  (1)原式的特點。兩數和的平方。

  (2)結果的項數特點。等于它們平方的和,加上它們乘積的兩倍

  (3)三項系數的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關系。

  6.2.2[學生回答]總結完全平方公式的語言描述:

  兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學生回答]完全平方公式的數學表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

  (m+n)2=, (m-n)2=,

  (-m+n)2=, (-m-n)2=,

  6.3.2小試牛刀

  ①(x+y)2=;②(-y-x)2=;

  ③(2x+3)2=;④(3a-2)2=;

  6.4學生小結:你認為完全平方公式在應用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業]P34隨堂練習P36習題

《完全平方公式》教案 篇6

  一、教材分析

  本節內容在全書及章節的地位:《完全平方公式》是人教版數學八年級上冊第十四章的內容。在此之前,學生已學習了多項式的乘法,這為過渡到本節的學習起著鋪墊作用。本節課通過學生合作學習,利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學習因式分解,解一元二次方程都具有舉足輕重的作用。

  作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透換元思想和數形結合思想 。

  二、學情分析

  學生剛學過多項式的乘法,已具備學習和運用完全平方公式的知識結構,但是由于學生初步學習乘法公式,認清公式結構并不容易,因此教學時要循序漸進。

  三、教學目標

  知識與技能

  1.完全平方公式的推導及其應用。

  2.完全平方公式的幾何證明。

  過程與方法

  經歷探索完全平方公式的過程,進一步發展符號感和推理能力。

  情感態度與價值觀

  對學生觀察能力、概括能力、語言表述能力的培養,以及數學思想的滲透。

  四、教學重點難點

  教學重點

  完全平方公式的推導過程;結構特點與公式的應用。

  教學難點

  完全平方公式結構特點及其應用。

  五、教法學法

  多媒體輔助教學,將知識形象化、生動化,激發學生的興趣。教學中逐步設置疑問,引導學生動手、動腦、動口,積極參與知識全過程。

  六、教學過程設計

  師生活動

  設計意圖

  一.復習多項式與多項式的乘法法則

  1、多項式與多項式的乘法法則內容。

  2、多項式與多項式的乘法練習。

  二.講授新課

  完全平方公式的'推導

  1、利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式

  附:有簡單的填空練習

  2、利用多項式乘法則和換元法推導完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、總結完全平方公式的特點

  介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

  三、課堂練習

  1、改錯練習

  2、例題講解(總結利用完全平方公式計算的步驟)

  第一步選擇公式,明確是哪兩項和(或差)的平方;

  第二步準確代入公式;

  第三步化簡。

  計算練習

  (1)課本110頁第一題

  (2) (x-6)2 (y-5)2

  四、課堂小結:

  1、應用完全平方公式應注意什么?

  在解題過程中要準確確定a和b,對照公式原形的兩邊, 做到不丟項、不弄錯符號、2ab時不能少乘以2。

  2、助記口訣

  復習多項式與多項式的乘法法則為新課的學習做準備。

  利用不同的的方法來推導完全平方公式,讓學生認知數學中的不同解題方法。

  利用助記口訣幫助學生更加準確的掌握完全平方公式的特點。

  通過課堂練習,使學生掌握用完全平方公式計算的步驟,加強學生解題的準確率。

  強調應用完全平方公式解題的注意點和助記口訣,提高學生解決問題的能力和解題的準確率。

《完全平方公式》教案 篇7

  一、教學內容:

  本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時――完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結,體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。

  本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的`數學工具。

  重點:掌握完全平方公式,會運用公式進行簡單的計算。

  難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

  三、教學目標

  (1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

  (2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。

  (3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

  (4)體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。

  四、學情分析與教法學法

  學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。

  學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

  總結反思中獲得數學知識與技能。

  教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。

  五、教學過程(略)

  六、教學評價

  在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。

  在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

《完全平方公式》教案 篇8

  教學目標

  1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。

  2、掌握運用完全平方公式分解因式的.方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學方法:對比發現法課型新授課教具投影儀

  教師活動:學生活動

  復習鞏固:上節課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發現?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調步驟的重要性,注意發現學生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習:第88頁練一練第1、2題

《完全平方公式》教案 篇9

  教學過程

  一、議一議

  探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據同底數冪的除法法則,由約分也可得 =x y.學生動筆:寫出(2)(3)題的結果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正.出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.

  二、做一做

  鞏固新知例1計算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學生活動:在練習本上計算.教師引導學生按法則進行運算,首先確定它們的系數,把系數的商作為商的系數,其次確定相同的字母,在被除式中出現的字母作為商中可能含有的字母,相同字母的指數之差作為商式中對應字母的'指數,只在被除式中含有的字母指數不變,最后化簡.第(1)(2)題對照法則進行,第(3)題要按運算順序進行.第(4)題先把(2a+b)看作一個整體 (一個字母)相除,后用完全平方公式計算.教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b

  三、隨堂練習

  P40 1學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正.教師巡回檢查,對存在問題及時更正.待四名板演同學完成后,師生共同訂正.

  四、小結

  本節課主要學習了單項式除以單項式的運算.在運用法則計算時應注意以下幾點:

  1.系數相除與同底數冪相除的區別;

  2.符號問題;

  3.指數相同的同底數冪相除商為1而不是0;4.在混合運算中,要注意運算的順序.五、作業課本習題1.15.P41 1、2. 3

《完全平方公式》教案 篇10

  教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養學生的思維條理性和表達能力.

  教學重點與難點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.

  教學過程:

  一、提出問題,學生自學

  問題:根據乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規律?計算下列各式,你能發現什么規律?

  (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

  (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學生討論,教師歸納,得出結果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結果中有兩個數的平方和,而2p=2p1,4m=2m2,恰好是兩個數乘積的`二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  二、幾何分析

  你能根據圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數學上冊《完全平方公式》教案教案《新人教版八年級數學上冊《完全平方公式》教案》,來自網!

《完全平方公式》教案 篇11

  一、教學目標

  (1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2)過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、1、創設情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

  1、1、學生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  教師活動

  學生活動

  (2)做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、2、教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  3、3、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a-b)

  4、請同學們自己敘述上面的`等式

  5、說一說,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清ab

  7、練一練

  (1)(2X-3Y)(2)(2XY-3X)

  8、試一試(a+b+c)

  作業:P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的面積分別是

  (3)大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

《完全平方公式》教案 篇12

  學習目標:

  1、能說出有序數對的定義。

  2、能用有序數對表示實際生活中物體的位置。

  學習重點:用有序數對表示位置。

  學習難點:用有序數對表示位置。

  學習過程:

  自學過程: (一)、自學知識清單

  1、教材64頁,在圖7.1—1中找出參加數學問題討論的同學。

  小組內交流一下,看一看你們找的位置相同嗎?

  思考:(2,4)和(4,2)在同一位置嗎?為什么?

  2、請回答教材65頁:思考題。

  3、我們把這種有順序的______個數a與b組成的_______叫做_______,記作( , )。

  (二)、自學反饋

  練習1、利用________________,可以準確地表示出一個位置,

  如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為 。

  練習2、如圖(1)所示,一方隊正沿箭頭所指的'方向前進,A的位置為三列四行,表示為A(3,4),則B,C,D表示為B( , ),C( , )

  D( , )

  練習3、完成課本第65頁的練習。

  練習4、用有序數對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結合下面圖形加以說明.

  練習5、如圖所示,A的位置為(2,6),小明從A出發,經

  (2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小剛也從A出發,經

  (3,6)→(4,6)→(4,7)→(5,7)→(6,7),則此時兩人相距幾個格?

《完全平方公式》教案 篇13

  新疆 烏魯木齊市第54中學 于蓮鳳

  一、教學內容:

  本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時—— 完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結, 體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。

  本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數學工具。

  重點:掌握完全平方公式,會運用公式進行簡單的計算。

  難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

  三、教學目標

  (1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

  (2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。

  (3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

  (4) 體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。

  四、學情分析與教法學法

  學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。

  學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

  總結反思中獲得數學知識與技能。

  教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。

  五、教學過程(略)

  六、教學評價

  在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。

  在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

《完全平方公式》教案 篇14

  說課稿是老師為了方便自己講課而寫的,有一定的步驟。下面是初中數學《完全平方公式》說課稿范文,歡迎借鑒!

  《完全平方公式》說課稿

  今天我說課的題目是《完全平方公式》,所選用的教材為北師大版義務教育課程標準實驗教科書。

  根據新課標的理念,對于本節課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標,教學方法,教學過程四個方面加以說明。

  一、 教材分析

  1、教材的地位和作用

  本節教材是初中數學七年級下冊第一章第八節的內容,是初中數學的重要內容之一。一方面,這是在學習了整式的加、減、乘、除及平方差公式的基礎上,對多項式乘法的進一步深入和拓展;另一方面,又為學習《因式分解》《配方法》等知識奠定了基礎,是進一步研究《一元二次方程》《二次函數》 的工具性內容。鑒于這種認識,我認為,本節課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

  2、學情分析

  從心理特征來說,初中階段的學生邏輯思維能力有待培養,從經驗型逐步向理論型發展,觀察能力,記憶能力和想象能力也隨著迅速發展。但同時,這一階段的學生好動,注意力易分散,愛發表見解,希望得到老師的表揚,所以在教學中應抓住這些特點,一方面運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。

  從認知狀況來說,學生在此之前已經學習了多項式乘法法則、平方差公式的探索過程,對“完全平方公式”已經有了初步的認識,為順利完成本節課的教學任務打下了基礎,但對于“完全平方公式” 的理解,(由于其抽象程度較高,)學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

  3、教學重難點

  根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為:

  對公式(a+b) 2=a2+2ab+b2的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋。

  難點確定為:從廣泛意義上理解完全平方公式的符號含義,培養學生有條理的思考和語言表達能力。

  二、 教學目標分析

  新課標指出,教學目標應包括知識與技能目標,過程與方法目標,情感與態度目標這三個方面,而這三維目標又應是緊密聯系的一個有機整體,學生學會知識與技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識與技能為主線,滲透情感態度價值觀,并把前面兩者充分體現在過程與方法中。借此,我將三維目標進行整合,確定本節課的教學目標為:

  1. 經歷探索完全平方公式的過程,進一步發展符號感和推理能力。會推導完全平方公式,并能運用公式進行簡單的運算。

  2.在探索討論、歸結總結中,培養學生語言表達能力、邏輯思維能力。

  3. 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養成積極思考,獨立思考的好習慣,并且同時培養學生積極參與對數學問題的討論并敢于表達自己的觀點。

  三、 教學方法分析

  現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。

  另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。

  四、教學過程分析

  新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:

  (1) 復習舊知,溫故知新

  設計意圖:建構注意主張教學應從學生已有的知識體系出發, 是本節課深入研究 的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

  (2) 創設情境,提出問題

  設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望‘

  通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節———

  (3) 發現問題,探求新知

  設計意圖:現代數學教學論指出, 的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過 觀察分析、獨立思考、小組交流 等活動,引導學生歸納 。

  (4) 分析思考,加深理解

  設計意圖:數學教學論指出, 數學概念(定理等) 要明確其內涵和外延(條件、結論、應用范圍等) ,通過對定義的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。

  通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入下一 環節。

  (5) 強化訓練,鞏固雙基

  設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。

  (6) 小結歸納,拓展深化

  我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主題作用,從學習的知識、方法、體驗等幾個方面進行歸納,我設計了這么三個問題:

  ① 通過本節課的學習,你學會了哪些知識;

  ② 通過本節課的學習,你最大的體驗是什么;

  ③ 通過本節課的學習,你掌握了哪些學習數學的方法?

  (7) 布置作業,提高升華

  以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

  以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態。

《完全平方公式》教案 篇15

  一、教學目標 :

  經歷探索完全平方公式的過程,進一步發展符號感和推理能力;在變式中,拓展提高;通過積極參與數學學習活動,培養學生自主探究能力,勇于創新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

  二、教學過程 :

  1.檢查學生的“預習知識樹”,導入  課題:

  師:前面學習了平方差公式,同學們對平方差公式的結構特點、運用以及學習公式的意義有了初步的認識。今天,我們繼續學習、研究另一種“乘法公式”——完全平方公式。請拿出你的“預習知識樹”,小組內互查并交流,在預習中有疑問的同學請詢問。

  (活動:老師巡視、檢查學生的預習情況,并解答學生在預習中存在的問題)生:(互查、討論“預習知識樹”,有問題的詢問問題。)師:(老師點評學生預習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預習提到課前,利用“知識樹”引導學生自學,學生可以獨立思考、自主學習,也可合作交流、討論研究,這樣預習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預習知識樹”,了解學生新課學習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發展學生的能力。

  2.自學檢測,制造通用工具:師:下面進行自學檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?

  生:可以表示一個數,也可以表示一個單項式、多項式。

  說明:點評時,老師反復引導學生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學生明確“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的式子”的變化規律,即制造通用工具。在前面學習平方差公式時,學生應該認識到這個道理,在這里再次強化。

  師:說得非常好,明確“公式中的a、b可以表示一個數,也可以表示一個單項式、多項式”的變化規律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?

  生:無數道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導學生明白從公式出發,反映在a、b上只是取值不同,可以演變出無數道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學練習。)說明:引導學生現場出題,一是激發學生興趣、活躍氣氛,二是驗證變化規律。

  師:下面思考,如何計算:(a+b+c)2生1:可根據多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。

  生:(緊張地做題,同時找兩個學生到黑板上板演。)師:這道題若是變為(a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數道。師:最終是幾道題?生:(齊答)一道題。師:現在,老師相信每個學生都會解這樣的題了。課下,請同學們思考:如果把(a+b)2的指數變化一下,又可以變出多少道題,你能計算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的式子”的變化規律。

  3.通過大量的習題驗證通用工具,學生并且自造通用工具。

  師:通過前面的檢測,看出同學們已經基本掌握了完全平方公式。下面進入達標檢測。

  (活動:投影顯示達標檢測題)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計算:

  ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極

  、主動地在作業 本上完成上面練習題。)師:(巡視,批閱完成快的學生的作業 ,最后集體點評,只講不會的。)說明:第2①

  題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時訓練學生的逆向思維;第3題是下節課訓練內容,在這里可以提前,引導學生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業 。師:本節課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節課“知識樹”。)生:這節課我們學習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節課的作業 .[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結果,觀察有什么規律,感興趣的同學還可計算(a+b)3、(a+b)4的結果,你又能發現什么規律.預習指導:①課本第38-39頁內容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設計下節課“知識樹”,優化本單元“知識樹”。說明:本環節是將本節課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構建知識,同時更加強化了學生的“能力樹”。作業 是推薦性的作業 ,達標檢測就是“堂堂清”,學生課下只須做好預習作業 就行了,這樣會有更多自由安排的時間,發展個性。

《完全平方公式》教案 篇16

  教學目標

  1、知識與技能:體會公式的發現和推導過程,了解公式的幾何背景,理解公式的本質,會應用公式進行簡單的計算.

  2、過程與方法:通過讓學生經歷探索完全平方公式的過程,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展推理能力和有條理的表達能力.培養學生的數形結合能力.

  3、情感態度價值觀:體驗數學活動充滿著探索性和創造性,并在數學活動中獲得成功的體驗與喜悅,樹立學習自信心.

  教學重難點

  教學重點:

  1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.

  2、會運用公式進行簡單的計算.

  教學難點:

  1、完全平方公式的推導及其幾何解釋.

  2、完全平方公式的結構特點及其應用.

  教學工具

  課件

  教學過程

  一、復習舊知、引入新知

  問題1:請說出平方差公式,說說它的結構特點.

  問題2:平方差公式是如何推導出來的?

  問題3:平方差公式可用來解決什么問題,舉例說明.

  問題4:想一想、做一做,說出下列各式的結果.

  (1)(a+b)2(2)(a-b)2

  (此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續激發學生的學習興趣.)

  二、創設問題情境、探究新知

  一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

  (1)四塊面積分別為:、;

  (2)兩種形式表示實驗田的總面積:

  ①整體看:邊長為的大正方形,S=;

  ②部分看:四塊面積的和,S=.

  總結:通過以上探索你發現了什么?

  問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

  問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

  (教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發表見解,但要驗證)

  問題3:你能說說(a+b)2=a2+2ab+b2

  這個等式的結構特點嗎?用自己的語言敘述.

  (結構特點:右邊是二項式(兩數和)的平方,右邊有三項,是兩數的平方和加上這兩數乘積的二倍)

  問題4:你能根據以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

  總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

  問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

  語言描述:兩數和(或差)的平方等于這兩數的平方和加上(或減去)這兩數積的2倍.

  強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

  三、例題講解,鞏固新知

  例1:利用完全平方公式計算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流總結:運用完全平方公式計算的一般步驟

  (1)確定首、尾,分別平方;

  (2)確定中間系數與符號,得到結果.

  四、練習鞏固

  練習1:利用完全平方公式計算

  練習2:利用完全平方公式計算

  練習3:

  (練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現問題,學生、教師應及時幫助.)

  五、變式練習

  六、暢談收獲,歸納總結

  1、本節課我們學習了乘法的完全平方公式.

  2、我們在運用公式時,要注意以下幾點:

  (1)公式中的字母a、b可以是任意代數式;

  (2)公式的結果有三項,不要漏項和寫錯符號;

  (3)可能出現①②這樣的錯誤.也不要與平方差公式混在一起.

  七、作業設置

《完全平方公式》教案 篇17

  學習了乘法公式中的完全平方,一個是兩數和的平方,另一個是兩數差的平方,兩者僅一個“符號”不同.相乘的結果是兩數的平方和,加上(或減去)兩數的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

  (1)切勿把此公式與平方差公式混淆,而隨意寫.

  (2)切勿把“乘積項”2ab中的2丟掉.

  (3)計算時,要先觀察題目是否符合公式的條件.若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算;若不能變為符合條件的形式,則應運用乘法法則進行計算.

  今后在教學中 ,要注意以下幾點:

  1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

  2.引入完全平方公式,讓學生用文字概括公式的內容,培養抽象的數字思維能力.

《完全平方公式》教案(通用17篇) 相關內容:
  • 《面朝大海,春暖花開》教案(精選13篇)

    劉星河教學目標:體驗美好詩情,理解詩人生命中的兩難心境。前者為重點,后者為難點。教學要點:這首詩的特點是語言清新明朗,意象單純明凈,詩情溫暖美好,是詩人真誠良知的體現,詩的背后卻藏著一顆高貴痛苦的心。...

  • 《同一首歌》教案(精選6篇)

    《同一首歌》教案教學目標在音樂活動中回憶、抒發、訴說同窗之情,感受同學間的真摯情感,樂于與人交往。學會演唱《同一首歌》,在歌聲中與同學、朋友工作周分享《同一首歌》真摯情感,通過學唱歌曲,激發對人間真情的追求,學會與人溝通...

  • 《錢學森》教案(精選13篇)

    教學要求:1。能正確、流利、有感情地朗讀課文。2。會寫本課5個生字,理解由生字組成的詞語。3。從人物語言體會人物思想感情,培養學生熱愛祖國的思想感情。4。學習并領悟本文的寫作手法和記敘順序。...

  • 《認識聲音》教案(精選8篇)

    教案目的:1、幼兒對探索聲音產生興趣2、感受不同的容器、不同的材料,會發出不同的聲音教案準備:1、回形針、黃豆、白沙、硬幣、串珠、海棉球每組各一盤、2、各種容器教案過程:1、教師引入話題請小朋友來制作樂器2、教師示范師:小朋友...

  • 《裝滿昆蟲的衣袋》教學設計(通用13篇)

    緊扣情感主線,實施組塊教學――《裝滿昆蟲的衣袋》第二課時教學設計執教:金壇洮西中心小學 高國華設計理念:1,落實主體地位,尊重多元解讀.在課堂中將學習的主動權還給學生,為學生搭建自主探究和發現的操作平臺.學習過程中,以教材為依托,引...

  • 《海的女兒》教學設計(精選17篇)

    一、說教材《海的女兒》是部編版四年級語文下冊第八單元的最后一篇課文。本組課文集中了中外童話故事,目的是讓學生感受童話奇妙的想象。《海的女兒》是丹麥童話作家安徒生創作的一篇童話,本課是這篇童話的結尾部分,講敘的是小人魚最終...

  • 《裝滿昆蟲的衣袋》教案(精選14篇)

    一,教材分析這是一篇記敘文,主要敘述了昆蟲學家法布爾小時候的兩件事.兒時的法布爾對昆蟲充滿了好奇,在一天傍晚,他獨自尋找紡織娘,忘記了回家;八九歲時去放鴨子,他卻花了大量時間觀察昆蟲并把捉到的蟲子裝在了衣袋里,父親的責罵也沒有改變...

  • 《細菌》教案(精選12篇)

    第二節 細菌課題: 細菌(知識、能力、品德)教學目標知識目標能說出細菌的形態結構。通過與動植物細胞的比較,推測出細菌的營養方式。知道細菌的生殖方式。的能力目標通過觀察與思考,培養學生觀察能力、思維能力。...

  • 《5以內的點數》教學設計(精選7篇)

    活動目標:1、引導幼兒學習手口一致地點數4以內物體的數量。2、引導幼兒專注地傾聽口令,迅速地按數取物、按物取數。3、樂意大膽地把自己的想法告訴大家。4、遵守社會行為規則,不做“禁止”的事。...

  • 教案模板
主站蜘蛛池模板: 久久久亚洲欧美 | 亚洲国产AV一区二区三区丶 | 少妇人妻中文字幕HD | 韩国三级爽野战 | 欧美一二三视频 | 热RE99久久6国产精品免费 | 美女一级毛片免费视频 | 国产精品久久久久9999 | www.日韩精品 | 久久久久久久久久久福利 | 高清国产视频在线 | 成人在线免费观看 | 亚洲中文久久精品无码照片 | 久久一区91 | 久久精品免费看国产免费软件 | 三年片免费观看大全在线观看了 | 亚洲精彩视频在线观看 | 无码精品人妻一区二区三区中 | 国产永久免费观看视频 | 男男网站18禁免费 | 丰满日韩放荡少妇无码视频 | 刘亦菲人久久精品二区三区 | 看亚洲a级一级毛片 | a在线视频观看 | 日本69黑人| 永久免费、高清播放 | 亚州综合图片 | 亚洲影视一区 | 午夜精品一区二区三区福利视频 | 国产一区美女视频 | 97无码免费古代 | 国产首页在线 | 天天做天天爱夜夜爽导航 | 天天躁狠狠躁 | 男操女视频免费 | 日韩一级免费观看 | 自拍视频啪 | 一级毛片女人十八 | 国产又粗又黄又爽的A片精华 | 中国一级免费毛片 | 亚洲视频中文在线 |