函數的奇偶性教案 篇1
一、教學目標
【知識與技能】
理解函數的奇偶性及其幾何意義.
【過程與方法】
利用指數函數的圖像和性質,及單調性來解決問題.
【情感態度與價值觀】
體會指數函數是一類重要的函數模型,激發學生學習數學的興趣.
二、教學重難點
【重點】
函數的奇偶性及其幾何意義
【難點】
判斷函數的奇偶性的方法與格式.
三、教學過程
(一)導入新課
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
1 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數圖象上相應的點的坐標有什么特殊的關系?
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;
(2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等.
(二)新課教學
1.函數的奇偶性定義
像上面實踐操作1中的圖象關于y軸對稱的函數即是偶函數,操作2中的圖象關于原點對稱的函數即是奇函數.
(1)偶函數(even function)
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(學生活動):仿照偶函數的定義給出奇函數的定義