《數的奇偶性》教案(精選14篇)
《數的奇偶性》教案 篇1
教學內容:數的奇偶性
教學目標:1、嘗試運用“列表”“畫示意圖”等方法發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性的變化規(guī)律,在活動中體驗研究方法,提高推理能力。
教學重點:運用數的奇偶性解決生活中的一些簡單問題。
教學難點:發(fā)現加法中數的奇偶性的變化規(guī)律。
教學準備:課件
教學過程:
一、復習導入
同學們看,這些數哪些是奇數,哪些是偶數
1、2、3、4、5、10、11、20、21、30、31、100 、101
同學們認識了什么叫奇數,什么叫偶數,這節(jié)課就讓我們進一步去探索發(fā)現數的奇偶性的規(guī)律。(板書:數的奇偶性)
二、探索新知
(一)小船擺渡
1、出示情境圖,介紹小河的南北岸。這里有一條小船,在小河兩岸來回擺渡。你知道什么叫擺渡嗎?(從南岸到北岸或從北岸到南岸叫一次擺渡,一個來回是2次擺渡。)
2、這條小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。小船擺渡11次后,船在南岸還是北岸?為什么?仔細想一想,你能用幾種方法解答這題,將你的思路寫在課堂練習本上。
3、實物投影學生的解題思路并讓學生講解。
4、你發(fā)現什么規(guī)律了嗎?教師提示:當擺渡是( )次時,船在( )岸,當擺渡是( )次時,船在( )岸。
5、引導:列表和畫圖最終得出的結論是一樣的。
6、大家都發(fā)現了小船最終在南岸還是北岸,是與小船擺渡是奇數次還是偶數次有關,那么,如果小船來回擺渡100次呢?10001次呢?怎樣判斷?如果小船從北岸出發(fā)呢?
(二)翻杯子
1、利用上面的發(fā)現,請大家觀察并思考:一個杯子,杯口朝上放在桌上,翻動一次,杯口朝下。翻動兩次,杯口朝上。 (教師演示)翻動10次呢?翻動100次?10005次呢?
2、說說你是怎樣想的?為什么?
3、匯報發(fā)現;當翻動奇數次時,杯口朝上;當翻動偶數次時,回到原樣,杯口朝下。
4、你能舉出和數的奇偶性有關的例子嗎?(開窗、開燈等例子)
三、體會奇偶性在計算中的作用
1、活動2,學生獨立完成“試一試”。
2、學生匯報,教師板書。(板書:偶數+偶數=偶數,奇數+奇數=偶數,偶數+奇數=奇數)
3、再讓學生舉例驗證。
4、獨立完成“試一試”第7小題,學生匯報結果并說明理由。
四、課堂小結
通過今天的學習,你有什么收獲?
五、板書設計
數的奇偶性
偶數+偶數=偶數,奇數+奇數=偶數,偶數+奇數=奇數
課后反思:
本課通過讓學生自主探索解決問題的方法,學生很好地掌握了畫示意圖法和列表法來找規(guī)律。再讓學生舉一些生活中有關數的奇偶性的例子,學生參與熱情高漲,理解較透徹。另外,對于奇偶性在計算中的作用,通過讓學生大量舉例證明,很有說服力。從作業(yè)反饋來看,絕大多數學生都掌握了本課的重要內容,但個別學生在解釋“為什么此時燈是開著的”這類題時,表達不清,語句不通,解釋用語太生活化,所以教師在平日教學中要規(guī)范數學用語,給學生做好示范。
《數的奇偶性》教案 篇2
一、教學目標
1、通過觀察、分析、討論、歸納、猜想的研究方法,小組合作研究出偶數+偶數=偶數,奇數+奇數=偶數,偶數+奇數= 奇數
2、經歷探索加法中數的奇偶變化過程,在活動重視學生體驗探究方法,培養(yǎng)學生分析、解決問題的能力。
3、結合小游戲使學生體會生活中有很多事情中存在數學規(guī)律,從而調動學生學習數學的興趣。通過實踐報告,以小組合作的形式探究加法中奇偶性的變化規(guī)律,培養(yǎng)學生的小組合作意識和能力。
二、教材分析
本節(jié)課的教學內容是本單元最后一個專題活動——數的奇偶性,在以前的學習中,學生已經學過整數的認識,整數的四則運算,在本單元中又認識了倍數和因數,能被2、3、5整除數的特征,奇數和偶數等知識的基礎上進行的。由于這一單元的概念較多,前后聯系又很緊密,自然會影響一部分學生的學習興趣,安排這一專題探究活動顯得十分重要,它既能很好的調動學生學習的積極性,使學生在活動中體驗數學問題的探索性和挑戰(zhàn)性,給學生創(chuàng)造了一個展示自己的思維過程與方法的機會,用小組合作的形式,實現互補互助,提高了學生的交往能力,培養(yǎng)了學生的合作意識。又能在探究活動中觀察、研究、討論、驗證,滲透一種科學的研究方法,“發(fā)現問題—提出問題—試探—驗證”,在這一訓練過程中反復強調數字檢驗的重要性,做到大膽猜想,科學論證,使通過活動大多數小組通過集體的努力,得出“偶數+偶數=偶數”的結論。
四、教學設計
㈠創(chuàng)設問題情景,引入教學
師:我們前面研究了自然數的特性,認識了奇數和偶數。(出示:1,2,409,89,24,362,10389)在這些數中,哪些是奇數哪些是偶數?
師:你是怎么判斷的?
師:下面,我們共同做一個關于奇數和偶數的游戲。(板書:奇數和偶數,并出示圓盤指針)。
師:游戲規(guī)則是這樣的,轉動指針,停轉后指針指幾,就從下一格起數幾個格,數到哪一格,就得到哪一格的獎品(教師邊說邊演示)。
師:誰想第一個來試一試?
師:在游戲中,你們發(fā)現了什么?
生:剛才這幾位同學得到的都是糖,為什么得不到學習用品呢?
師:問題提的真好,有思考價值。為什么他們拿到的獎品都是糖,得不到有實用價值的獎品?真有意思,研究完今天的問題你們就知道了。
(在課題前補充板書:有趣的)
師:下面,我們就采取小組合作學習的方式來研究有關奇數和偶數在計算中存在的規(guī)律。
㈡ 參與實踐活動,歸納規(guī)律
師:請每個小組都拿出實驗報告單(學生拿出課前的實驗報告單,見如下)。
師:觀察加法算式中的數,你發(fā)現什么?
師:從圖中任意取兩個數相加,你又發(fā)現什么?
師:如果任意寫出兩個偶數相加,那么是否能驗證你們發(fā)現的規(guī)律。
師:剛才,我們通過舉例、觀察討論、驗證的研究方法,研究了偶數+偶數=偶數。在研究中你們還想研究什么問題或聯想到了什么?
生:奇數+奇數有沒有規(guī)律?奇數+偶數呢?
師:請同學們大膽地推想一下,然后再舉例驗證。
師:現在你們知道自己為什么得不到有價值的學習用品了嗎?
生:因為糖所在的位置都是偶數,第一次轉后指針如果指2,從3開始再數2格是4,偶數+偶數=偶數。第一次轉后指針如果只3,從4開始再數3格是6,奇數+奇數=偶數。偶數位置上只有糖,所以我們得不到學習用品。
師:通過研究討論我們都得到什么結論?
(學生歸納,教師板書:偶數+偶數=偶數;奇數+奇數=偶數;偶數+奇數= 奇數)
㈢ 解釋與應用。
師:我們運用研究、猜想、驗證的方法得到關于奇數和偶數在計算中的規(guī)律,下面我們再來試一試。
1、判斷下列算式的結果,是奇數還是偶數?
29+15 368+134262+1025 11387+13110389+2004
2、試一試,填一填。
你發(fā)現了什么?在空格內填上適當的數
方格中共有( )個數。這些數中奇數多還是偶數多?
㈢小結
師:這節(jié)課同學們有什么收獲和體會?希望同學們做一個生活中的細心觀察者,發(fā)現并創(chuàng)造我們美好的生活。
五、教學反思
1、創(chuàng)設問題情境,激發(fā)學生學習興趣
創(chuàng)設問題情境的目的在于上課時創(chuàng)設一種學生探索的氛圍,以激發(fā)興趣,為學生提供自我表現的機會,培養(yǎng)學生的問題意識,根據小學生對實物、色彩、游戲更感興趣的特點。我設計了游戲活動引入教學。在學生試一試時,教師先問:“你想得到什么?”幾個學生試過之后,同學們的學習情緒逐步高漲。這時,學生就會產生一種疑問,教師抓住學生好奇的時機,既充分肯定學生的提問,表揚他們問題提的好,有思考價值,讓學生嘗到成功的喜悅,同時,又提出“為什么他們拿到的獎品都是糖,而得不到有實用價值的獎品呢?”的問題,這一提問適時地把學生引入今天要探究的問題。
2、重視學生活動,學生探究知識的過程
教師提供探究問題的情境,目的是促進學生形成探究的意識,因此,當學生學習的熱情高漲時,我及時組織學生以小組合作學習的形式進行研究,給學生足夠的時間去觀察、研究、討論、驗證。因為人的思維是不能代替的,所以,學生只有在活動的過程中,他們的能力才能形成與發(fā)展。
《數的奇偶性》教案 篇3
教學內容
課本第12~17頁上的內容。
教學目標
1.通過觀察、分析、討論、歸納、猜想的研究方法,小組合作研究出偶數+偶數=偶數,奇數+奇數=偶數,偶數+奇數= 奇數。
2.經歷探索加法中數的奇偶變化過程,在活動重視學生體驗探究方法,培養(yǎng)學生分析、解決問題的能力。
3.結合小游戲使學生體會生活中有很多事情中存在數學規(guī)律,從而調動學生學習數學的興趣。
4.通過實踐報告,以小組合作的形式探究加法中奇偶性的變化規(guī)律,培養(yǎng)學生的小組合作意識。
教學重點
從生活中的擺渡問題,發(fā)現數的奇偶性規(guī)律。
教學難點
運用數的奇偶性規(guī)律解決生活中的實際問題。
教具準備
投影、杯子。
教學過程
一、揭示課題
自然數包含有奇數和偶數,一個自然數不是奇數就是偶數。這一節(jié)課我們要進一步認識數的奇偶性。
二、組織活動,探索新知
活動一:示圖(右圖)
小船最在南岸,從南岸駛向北岸,
再從北岸駛回南岸,不斷往返。
1、⑴小船擺渡11次后,船在南岸還是北岸?為什么?
⑵有人說擺渡100次后,小船在北岸。
他的說法對嗎?為什么?
2、請任說一個擺渡的次數,學生回答在南岸還是北岸?
3、請學生畫示意圖和列表并觀察。
4、想:擺渡的次數與船所在的位置有什么關系?
擺渡奇數次后,船在 岸。
擺渡偶數次后,船在 岸。
試一試
一個杯子杯口朝上放在桌上,翻動1次,杯口朝下,反動2次杯口朝上。翻動10次后,杯口朝 ,反動19次后杯口朝 。
1、想一想:翻動的次數與杯口的朝向有什么關系?
翻動奇數次后,杯口朝 。
翻動偶數次后,杯口朝 。
2、把“杯子”換成“硬幣”你能提出類似的問題嗎?
活動二:
圓中的數有什么特點?正方形中的數有什么特點?
圓中的數都是偶數,正方形中的數都是奇數
試一試:(投影)
三、鞏固練習(投影出示習題)
四、總結:
這節(jié)課同學們有什么收獲和體會?
五、作業(yè)
1、課本第17頁“試一試”的題目。
2、優(yōu)化作業(yè)
《數的奇偶性》教案 篇4
數的奇偶性(第八課時)
教學內容:數的奇偶性
教學目標:嘗試運用“列表”“畫示意圖”等解決問題的策略發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性的變化規(guī)律在活動中體驗研究的方法,提高推理能力。
教學重點:在活動中發(fā)現奇偶性變化的規(guī)律
教學過程:
一、 導入
1、什么是奇數?什么是偶數?
2、判斷下面的數是奇數還是偶數,并說說你是怎樣判斷的。
45 48 234 564 98 109
二、新知
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動
2、奇偶數相加的規(guī)律
讓學生觀觀察下面兩組數,各有什么特點?
(1)80 12 20 6 18 34 16 52 (2)11 21 37 87 101 25 3 49
試一試
偶數加偶數 奇數加奇數 偶數加奇數
判斷:讓學生交流判斷的思路
三、總結
例子: 結論:
12 + 34 = 48 偶數+偶數=偶數
11 + 37 =48 奇數+奇數=偶數
12 + 11 =23 奇數+偶數=奇數
四、作業(yè)布置
《數的奇偶性》教案 篇5
課標分析
函數的奇偶性是函數的重要性質,是對函數概念的深化.它把自變量取相反數時函數值間的關系定量地聯系在一起,反映在圖像上為:偶函數的圖像關于y軸對稱,奇函數的圖像關于坐標原點成中心對稱.這樣,就從數、形兩個角度對函數的奇偶性進行了定量和定性的分析.
教材分析
教材首先通過對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實例.最后,為加強前后聯系,從各個角度研究函數的性質,講清了奇偶性和單調性的聯系.這節(jié)課的重點是函數奇偶性的定義,難點是根據定義判斷函數的奇偶性.
教學目標
1 通過具體函數,讓學生經歷奇函數、偶函數定義的討論,體驗數學概念的建立過程,培養(yǎng)其抽象的概括能力.
教學重難點
1理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡單函數的奇偶性.
2 在經歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數學既是抽象的又是具體的.
學生分析
這節(jié)內容學生在初中雖沒學過,但已經學習過具有奇偶性的具體的函數:正比例函數y=kx,反比例函數 ,(k≠0),二次函數y=ax2,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學生理解.在引入概念時始終結合具體函數的圖像,以增加直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數的幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個角度去分析,讓學生理解:奇函數、偶函數的定義域是關于原點對稱的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想效果.
教學過程
一、探究導入
1 觀察如下兩圖,思考并討論以下問題:
(1)這兩個函數圖像有什么共同特征?
(2)相應的兩個函數值對應表是如何體現這些特征的?
可以看到兩個函數的圖像都關于y軸對稱.從函數值對應表可以看到,當自變量x取一對相反數時,相應的兩個函數值相同.
對于函數f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數y=x2為偶函數.
2觀察函數f(x)=x和f(x)= 的圖像,并完成下面的兩個函數值對應表,然后說出這兩個函數有什么共同特征.
可以看到兩個函數的圖像都關于原點對稱.函數圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數時,相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時,稱函數y=f(x)為奇函數.
二、師生互動
由上面的分析討論引導學生建立奇函數、偶函數的定義
1 奇、偶函數的定義
如果對于函數f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.
如果對于函數f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.
2 提出問題,組織學生討論
(1)如果定義在R上的函數f(x)滿足f(-2)=f(2),那么f(x)是偶函數嗎?
(f(x)不一定是偶函數)
(2)奇、偶函數的圖像有什么特征?
(奇、偶函數的圖像分別關于原點、y軸對稱)
(3)奇、偶函數的定義域有什么特征?
(奇、偶函數的定義域關于原點對稱)
三、難點突破
例題講解
1 判斷下列函數的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1〕.
2 已知:定義在R上的函數f(x)是奇函數,當x>0時,f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3 已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.
解:先結合圖像特征:偶函數的圖像關于y軸對稱,猜想f(x)在(0,+∞)上是增函數,證明如下:
任取x1>x2>0,則-x1<-x2<0.
∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).
又f(x)是偶函數,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函數.
思考:奇函數或偶函數在關于原點對稱的兩個區(qū)間上的單調性有何關系?
鞏固創(chuàng)新
1 已知:函數f(x)是奇函數,在〔a,b〕上是增函數(b>a>0),問f(x)在〔-b,-a〕上的單調性如何.
2 f(x)=-x|x|的大致圖像可能是( )
3 函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿足什么條件時,(1)函數f(x)是偶函數.(2)函數f(x)是奇函數.
4 設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、課后拓展
1 有既是奇函數,又是偶函數的函數嗎?若有,有多少個?
2 設f(x),g(x)分別是R上的奇函數,偶函數,試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3已知a∈R,f(x)=a- ,試確定a的值,使f(x)是奇函數.
4 一個定義在R上的函數,是否都可以表示為一個奇函數與一個偶函數的和的形式?
教學后記
這篇案例設計由淺入深,由具體的函數圖像及對應值表,抽象概括出了奇、偶函數的定義,符合職高學生的認知規(guī)律,有利于學生理解和掌握.應用深化的設計層層遞進,深化了學生對奇、偶函數概念的理解和應用.拓展延伸為學生思維能力、創(chuàng)新能力的培養(yǎng)提供了平臺。
《數的奇偶性》教案 篇6
一、教學目標
【知識與技能】
理解函數的奇偶性及其幾何意義.
【過程與方法】
利用指數函數的圖像和性質,及單調性來解決問題.
【情感態(tài)度與價值觀】
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣.
二、教學重難點
【重點】
函數的奇偶性及其幾何意義
【難點】
判斷函數的奇偶性的方法與格式.
三、教學過程
(一)導入新課
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
1 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數圖象上相應的點的坐標有什么特殊的關系?
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;
(2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等.
(二)新課教學
1.函數的奇偶性定義
像上面實踐操作1中的圖象關于y軸對稱的函數即是偶函數,操作2中的圖象關于原點對稱的函數即是奇函數.
(1)偶函數(even function)
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(學生活動):仿照偶函數的定義給出奇函數的定義
(2)奇函數(odd function)
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
注意:
1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
2.具有奇偶性的函數的圖象的特征
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱.
3.典型例題
(1)判斷函數的奇偶性
例1.(教材P36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)
解:(略)
總結:利用定義判斷函數奇偶性的格式步驟:
1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
2 確定f(-x)與f(x)的關系;
3 作出相應結論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(三)鞏固提高
1.教材P46習題1.3 B組每1題
解:(略)
說明:函數具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數的奇偶性應應首先判斷函數的定義域是否關于原點對稱,若不是即可斷定函數是非奇非偶函數.
2.利用函數的奇偶性補全函數的圖象
(教材P41思考題)
規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱.
說明:這也可以作為判斷函數奇偶性的依據.
(四)小結作業(yè)
本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質.
課本P46 習題1.3(A組) 第9、10題, B組第2題.
四、板書設計
函數的奇偶性
一、偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
二、奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
三、規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱.
《數的奇偶性》教案 篇7
學習目標 1.函數奇偶性的概念
2.由函數圖象研究函數的奇偶性
3.函數奇偶性的判斷
重點:能運用函數奇偶性的定義判斷函數的奇偶性
難點:理解函數的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數 ,與 的圖像;并觀察兩個函數圖像的對稱性。
2、 求出 , 時的函數值,寫出 , 。
結論: 。
3、 奇函數:___________________________________________________
4、 偶函數:______________________________________________________
【概念深化】
(1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。
(2)、奇函數偶函數的定義域關于原點對稱。
5、奇函數與偶函數圖像的對稱性:
如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。
如果一個函數是偶函數,則這個函數的圖像是以 軸為對稱軸的__________。反之,如果一個函數的圖像是關于 軸對稱,則這個函數是___________。
6. 根據函數的奇偶性,函數可以分為____________________________________.
題型一:判定函數的奇偶性。
例1、判斷下列函數的奇偶性:
(1) (2) (3)
(4) (5)
練習:教材第49頁,練習A第1題
總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?
題型二:利用奇偶性求函數解析式
例2:若f(x)是定義在R上的奇函數,當x0時,f(x)=x(1-x),求當 時f(x)的解析式。
練習:若f(x)是定義在R上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數集 上的奇函數 滿足:當x0時, ,求 的表達式
題型三:利用奇偶性作函數圖像
例3 研究函數 的性質并作出它的圖像
練習:教材第49練習A第3,4,5題,練習B第1,2題
當堂檢測
1 已知 是定義在R上的奇函數,則( D )
A. B. C. D.
2 如果偶函數 在區(qū)間 上是減函數,且最大值為7,那么 在區(qū)間 上是( B )
A. 增函數且最小值為-7 B. 增函數且最大值為7
C. 減函數且最小值為-7 D. 減函數且最大值為7
3 函數 是定義在區(qū)間 上的偶函數,且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數 為奇函數,若 ,則 -1
5 若 是偶函數,則 的單調增區(qū)間是
6 下列函數中不是偶函數的是(D )
A B C D
7 設f(x)是R上的偶函數,切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函數 的圖像必經過點( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數 為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )
A 0 B 1 C 2 D 4
10 設f(x)是定義在R上的奇函數,且x0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數,且f(3)_f(-1)
12.解答題
用定義判斷函數 的奇偶性。
13定義證明函數的奇偶性
已知函數 在區(qū)間D上是奇函數,函數 在區(qū)間D上是偶函數,求證: 是奇函數
14利用函數的奇偶性求函數的解析式:
已知分段函數 是奇函數,當 時的解析式為 ,求這個函數在區(qū)間 上的解析表達式。
《數的奇偶性》教案 篇8
一、三維目標:
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數圖象來陶冶學生的情操. 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質。
二、學習重、難點:
重點:函數的奇偶性的概念。
難點:函數奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。
五、學習過程:
函數的奇偶性:
(1)對于函數 ,其定義域關于原點對稱:
如果______________________________________,那么函數 為奇函數;
如果______________________________________,那么函數 為偶函數。
(2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。
(3)奇函數在對稱區(qū)間的增減性 ;偶函數在對稱區(qū)間的增減性 。
六、達標訓練:
A1、判斷下列函數的奇偶性。
(1)f(x)=x4; (2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數 ( )是偶函數,則b=___________ .
B3、已知 ,其中 為常數,若 ,則
_______ .
B4、若函數 是定義在R上的奇函數,則函數 的圖象關于 ( )
(A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對
B5、如果定義在區(qū)間 上的函數 為奇函數,則 =_____ .
C6、若函數 是定義在R上的奇函數,且當 時, ,那么當
時, =_______ .
D7、設 是 上的奇函數, ,當 時, ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數 ,則常數 ____ , _____ .
七、學習小結:
本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。
補充練習題:
1.下列各圖中,不能是函數f(x)圖象的是( )
解析:選C.結合函數的定義知,對A、B、D,定義域中每一個x都有唯一函數值與之對應;而對C,對大于0的x而言,有兩個不同值與之對應,不符合函數定義,故選C.
2.若f(1x)=11+x,則f(x)等于( )
A.11+x(x≠-1) B.1+(x≠0)
C.x1+x(x≠0且x≠-1) D.1+x(x≠-1)
解析:選C.f(1x)=11+x=1x1+1x(x≠0),
∴f(t)=t1+t(t≠0且t≠-1),
∴f(x)=x1+x(x≠0且x≠-1).
3.已知f(x)是一次函數,2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(x)=( )
A.3x+2 B.3x-2
C.2x+3 D.2x-3
解析:選B.設f(x)=kx+b(k≠0),
∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,
∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.
《數的奇偶性》教案 篇9
教學目標:了解奇偶性的含義,會判斷函數的奇偶性。能證明一些簡單函數的奇偶性。弄清函數圖象對稱性與函數奇偶性的關系。
重點:判斷函數的奇偶性
難點:函數圖象對稱性與函數奇偶性的關系。
一、復習引入
1、函數的單調性、最值
2、函數的奇偶性
(1)奇函數
(2)偶函數
(3)與圖象對稱性的關系
(4)說明(定義域的要求)
二、例題分析
例1、判斷下列函數是否為偶函數或奇函數
例2、證明函數 在R上是奇函數。
例3、試判斷下列函數的奇偶性
三、隨堂練習
1、函數 ( )
是奇函數但不是偶函數 是偶函數但不是奇函數
既是奇函數又是偶函數 既不是奇函數又不是偶函數
2、下列4個判斷中,正確的是_______.
(1) 既是奇函數又是偶函數;
(2) 是奇函數;
(3) 是偶函數;
(4) 是非奇非偶函數
3、函數 的圖象是否關于某直線對稱?它是否為偶函數?
《數的奇偶性》教案 篇10
今天我說課的課題是高中數學人教A版必修一第一章第三節(jié) 函數的基本性質中的函數的奇偶性 ,下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。
一、教材分析
(一)教材特點、教材的地位與作用
本節(jié)課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的.良好習慣和嚴謹的科學態(tài)度。
二、教法、學法分析
1.教學方法:啟發(fā)引導式
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用"引導發(fā)現法"進行教學,引導發(fā)現法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構.使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性.
2.學法指導:引導學生采用自主探索與互相協作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習.
三、教輔手段
以學生獨立思考、自主探究、合作交流,教師啟發(fā)引導為主,以多媒體演示為輔的教學方式進行教學
四、教學過程
為了達到預期的教學目標,我對整個教學過程進行了系統地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
(一)設疑導入,觀圖激趣
讓學生感受生活中的美:展示圖片蝴蝶,雪花
學生舉例生活中的對稱現象
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
以y軸為折痕將紙對折,然后以x 軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開.觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
(二)指導觀察,形成概念
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究.
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何
給出圖象,然后問學生初中是怎樣判斷圖象關于軸對稱呢此時提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規(guī)律
借助課件演示,學生會回答自變量互為相反數,函數值相等.接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示.
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征
引導學生發(fā)現函數的定義域一定關于原點對稱.根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
(1)函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢 (同時打出 y=1/x的圖象讓學生觀察研究)
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
(2)函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x), 則稱f(x)為奇函數
強調注意點:"定義域關于原點對稱"的條件必不可少.
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱
(2)驗證f(-x)=f(x)或f(-x)=-f(x) 3)得出結論
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)
然后根據前面引入知識中,繼續(xù)探究函數奇偶性的第二種判斷方法:圖象法:
函數f(x)是奇函數=圖象關于原點對稱
函數f(x)是偶函數=圖象關于y軸對稱
給出例2:書P63例3,再進行當堂鞏固,
1,書P65ex2
2,說出下列函數的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數
(三)學生探索,發(fā)展思維
思考:1,函數y=2是什么函數
2,函數y=0有是什么函數
(四)布置作業(yè)
課本P39 習題1.3(A組) 第6題, B組第3
《數的奇偶性》教案 篇11
教學目標
1.使學生理解奇函數、偶函數的概念;
2.使學生掌握判斷某些函數奇偶性的方法;
3.培養(yǎng)學生判斷、推理的能力、加強化歸轉化能力的訓練;
教學重點
函數奇偶性的概念
教學難點
函數奇偶性的判斷
教學方法
講授法
教具裝備
幻燈片3張
第一張:上節(jié)課幻燈片A。
第二張:課本P58圖2—8(記作B)。
第三張:本課時作業(yè)中的預習內容及提綱。
教學過程
(I)復習回顧
師:上節(jié)課我們學習了函數單調性的概念,請同學們回憶一下:增函數、減函數的定義,并復述證明函數單調性的步驟。
生:(略)
師:這節(jié)課我們來研究函數的另外一個性質——奇偶性(導入課題,板書課題)。
(II)講授新課
(打出幻燈片A)
師:請同學們觀察圖形,說出函數y=x2的圖象有怎樣的對稱性?
生:(關于y軸對稱)。
師:從函數y=f(x)=x2本身來說,其特點是什么?
生:(當自變量取一對相反數時,函數y取同一值)。
師:(舉例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情況反映在圖象上就是:如果點(x,y)是函數y=x2的圖象上的任一點,那么,與它關于y軸的對稱點(-x,y)也在函數y=x2的圖象上,這時,我們說函數y=x2是偶函數。
一般地,(板書)如果對于函數f(x)的定義域內任意一個x,都有f(-x)= f(x),那么函數f(x)就叫做偶函數。
例如:函數f(x)=x2+1, f(x)=x4-2等都是偶函數。
(打出幻燈片B)
師:觀察函數y=x3的圖象,當自變量取一對相反數時,它們對應的函數值有什么關系?
生:(也是一對相反數)
師:這個事實反映在圖象上,說明函數的圖象有怎樣的對稱性呢?
生:(函數的圖象關于原點對稱)。
師:也就是說,如果點(x,y)是函數y=x3的圖象上任一點,那么與它關于原點對稱的點(-x,-y)也在函數y=x3的圖象上,這時,我們說函數y=x3是奇函數。
一般地,(板書)如果對于函數f(x)的定義域內任意一個x,都有f(-x) =-f(x),那么函數f(x)就叫做奇函數。
例如:函數f(x)=x,f(x) =都是奇函數。
如果函數f(x)是奇函數或偶函數,那么我們就說函數f(x)具有奇偶性。
注意:從函數奇偶性的定義可以看出,具有奇偶性的函數:
(1)其定義域關于原點對稱;
(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判斷某一函數的奇偶性時。
首先看其定義域是否關于原點對稱,若對稱,再計算f(-x),看是等于f(x)還是等于- f(x),然后下結論;若定義域關于原點不對稱,則函數沒有奇偶性。
(III)例題分析
課本P61例4,讓學生自看去領悟注意的問題并判斷的方法。
注意:函數中有奇函數,也有偶函數,但是還有些函數既不是奇函數也不是偶函數,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函數又是偶函數。
(IV)課堂練習:課本P63練習1。
(V)課時小結
本節(jié)課我們學習了函數奇偶性的定義及判斷函數奇偶性的方法。特別要注意判斷函數奇偶性時,一定要首先看其定義域是否關于原點對稱,否則將會導致結論錯誤或做無用功。
(VI)課后作業(yè)
一、課本p65習題2.3 7。
二、預習:課本P62例5、例6。預習提綱:
1.請自己理一下例5的證題思路。
2.奇偶函數的圖角各有什么特征?
板書設計
課題
奇偶函數的定義
注意:
判斷函數奇偶性的方法步驟。
小結:
教學后記
《數的奇偶性》教案 篇12
數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發(fā)展的過程。數學教學要緊密聯系學生的生活環(huán)境,從學生的經驗和已有知識出發(fā),創(chuàng)設有助于學生自主學習、合作交流的情境,讓學生在這樣的問題情境中發(fā)現學習數學是生活的需要,學習數學可以幫助我們解決身邊的問題。所以在上《數的奇偶性》一課時,我覺得,創(chuàng)設一個學生熟悉的問題情境成了這節(jié)課關鍵。在這一點上我下了很大功夫。根據這節(jié)課的內容,在課的一開始我設計學生能夠感覺得到的情景——旅游,
師:同學們喜歡旅游嗎?一定去過筆架山吧!今年夏天,老師也去了一次筆架山,可不巧,海水淹沒了天橋,我只好坐船上山了,這些船從北岸到筆架山,在從筆架山回到北岸,不斷往返,老師選了一條船,買了往返船票(邊說邊在黑板上畫簡圖),老師在回來時,想正好到達山下時,船也正好到山下,船擺渡10次后,還是11次后,我趕到山下,能正好坐上船啊?
這個問題情境,不僅展現了本節(jié)課知識,而且接近學生的生活。同時讓學生感到提出的問題也是生活的需要,這個情境中的事物,學生也很熟悉,覺得很有意思,很親近,學生在這樣的問題情境中興致盎然的主動投入到思考當中來。
這個情境的創(chuàng)設,也正是找準了知識的切入點,學生在情境中感悟到數學,同時通過獨立思考和小組交流這個數學問題,使學生在“做數學”中體驗到可以應用數的奇偶性解決生活中的問題,在此基礎上讓學生解決問題的方法加以升華——引導學生運用“列表”、“畫示意圖”等方法去發(fā)現規(guī)律。
在這部分的練習中,我設計了兩個練習,一個是翻硬幣練習。另一個是教室關燈問題,這些練習,很有生活性,不是枯燥的,而是很有情趣的,學生很用以接受,樂于思考。
在這節(jié)課的第二個知識點——數的奇偶變化規(guī)律中,我設計了一個有獎游戲的問題情景,讓學生在游戲中發(fā)現問題,去探討問題,從而發(fā)現規(guī)律。游戲是這樣的:
師:同學們玩過有獎游戲嗎?今天老師給大家?guī)硪粋有獎游戲,游戲規(guī)則是:擲色子,擲到幾,就從轉盤上的數下一格向前走幾,走到有獎的格子獎品就歸你了 。
學生在游戲幾次后就會發(fā)現這個游戲是不能贏得,是個騙局,這是為什么呢?這個問題就會很自然的在學生頭腦中產生,自己發(fā)現問題,提出了問題,再引導學生去研究這個問題,在這樣輕松的氛圍中,學生的數學思維習慣和發(fā)現問題,解決問題的能力在提高,學生感受到思考數學的樂趣,學習數學的信心在增強。
在應用數學中,我還是從學生的生活中提煉素材,設計了這樣個練習:
小華買了一支鉛筆,兩塊橡皮,付了兩角錢,售貨員阿姨找給他3角錢,小華知道橡皮、鉛筆單價都是整角,而且鉛筆是4角錢一支,他馬上對售貨員說:“阿姨,你把賬算錯了。”你知道,小華怎么這么快就知道了嗎?
這節(jié)課,我重視了學生的生活經驗,密切了數學和生活的聯系,讓學生體會到數學來源于生活,又應用生活,學習數學可以幫助我們解決生活中的問題,體驗到學習數學的重要性。
課上學生的反應很好,課后幾位老師又逐一加以點評,在設計上給與了肯定,自己也進行了反思,感到還有很多不足的地方,最主要的是應該提高自己的應變能力,處理好課堂生成的隨機情境,加強對學生及時準確恰當的評價。
在今后的教學中,我會不斷的學習,不斷地鉆研,使自己的教學上個新臺階。
《數的奇偶性》教案 篇13
數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發(fā)展的過程。數學教學要緊密聯系學生的生活環(huán)境,從學生的經驗和已有知識出發(fā),創(chuàng)設有助于學生自主學習、合作交流的情境,讓學生在這樣的問題情境中發(fā)現學習數學是生活的需要,學習數學可以幫助我們解決身邊的問題。所以在上《數的奇偶性》一課時,我覺得,創(chuàng)設一個學生熟悉的問題情境成了這節(jié)課關鍵。在這一點上我下了很大功夫。根據這節(jié)課的內容,在課的一開始我設計學生能夠感覺得到的情景——旅游。
師:同學們喜歡旅游嗎?一定去過筆架山吧!今年夏天,老師也去了一次筆架山,可不巧,海水淹沒了天橋,我只好坐船上山了,這些船從北岸到筆架山,在從筆架山回到北岸,不斷往返,老師選了一條船,買了往返船票(邊說邊在黑板上畫簡圖),老師在回來時,想正好到達山下時,船也正好到山下,船擺渡10次后,還是11次后,我趕到山下,能正好坐上船啊?
這個問題情境,不僅展現了本節(jié)課知識,而且接近學生的生活。同時讓學生感到提出的問題也是生活的需要,這個情境中的事物,學生也很熟悉,覺得很有意思,很親近,學生在這樣的問題情境中興致盎然的主動投入到思考當中來。
這個情境的創(chuàng)設,也正是找準了知識的切入點,學生在情境中感悟到數學,同時通過獨立思考和小組交流這個數學問題,使學生在“做數學”中體驗到可以應用數的奇偶性解決生活中的問題,在此基礎上讓學生解決問題的方法加以升華——引導學生運用“列表”、“畫示意圖”等方法去發(fā)現規(guī)律。
在這部分的練習中,我設計了兩個練習,一個是翻硬幣練習。另一個是教室關燈問題,這些練習,很有生活性,不是枯燥的,而是很有情趣的,學生很用以接受,樂于思考。
在這節(jié)課的第二個知識點——數的奇偶變化規(guī)律中,我設計了一個有獎游戲的問題情景,讓學生在游戲中發(fā)現問題,去探討問題,從而發(fā)現規(guī)律。游戲是這樣的:
師:同學們玩過有獎游戲嗎?今天老師給大家?guī)硪粋有獎游戲,游戲規(guī)則是:擲色子,擲到幾,就從轉盤上的數下一格向前走幾,走到有獎的格子獎品就歸你了。
學生在游戲幾次后就會發(fā)現這個游戲是不能贏得,是個*,這是為什么呢?這個問題就會很自然的在學生頭腦中產生,自己發(fā)現問題,提出了問題,再引導學生去研究這個問題,在這樣輕松的氛圍中,學生的數學思維習慣和發(fā)現問題,解決問題的能力在提高,學生感受到思考數學的樂趣,學習數學的信心在增強。
在應用數學中,我還是從學生的生活中提煉素材,設計了這樣個練習:
小華買了一支鉛筆,兩塊橡皮,付了兩角錢,售貨員阿姨找給他3角錢,小華知道橡皮、鉛筆單價都是整角,而且鉛筆是4角錢一支,他馬上對售貨員說:“阿姨,你把賬算錯了。”你知道,小華怎么這么快就知道了嗎?
這節(jié)課,我重視了學生的生活經驗,密切了數學和生活的聯系,讓學生體會到數學來源于生活,又應用生活,學習數學可以幫助我們解決生活中的問題,體驗到學習數學的重要性。
課上學生的反應很好,課后幾位老師又逐一加以點評,在設計上給與了肯定,自己也進行了反思,感到還有很多不足的地方,最主要的是應該提高自己的應變能力,處理好課堂生成的隨機情境,加強對學生及時準確恰當的評價。
在今后的教學中,我會不斷的學習,不斷地鉆研,使自己的教學上個新臺階。
《數的奇偶性》教案 篇14
一、教材與學生
1、教材
《數的奇偶性》是在學生已經學習數的奇數和偶數的基礎上進行的.因為這個知識才剛剛從中學數學,或小學奧數系列進入教材學生不熟悉,,教師也陌生,我就想,能否讓學生親身體會一下奧數并不神秘,同時能在快樂中去學有價值、有難度的數學。
2、學生
五年級學生在不斷的學習過程中已經具備一定的觀察、思考、分析、交流以及動手操作的能力.但基礎的差異,環(huán)境的不同,后天開發(fā)的不等,故我在循序漸進,步步為營的同時,準備放開手腳,讓學生去動手探索。
二、教學目標
1.讓學生在觀察中自然認識奇數和偶數;掌握數加減的奇偶性;
2.運用設疑--猜想---驗證—運用的教學模式,培養(yǎng)的自主探究的能力;
3.讓學生在一系列的活動中思考、學習,增長數學興趣和增強學習的內驅力。
三、教法和學法
主要是自主探究與開放式教學相結合.
1、讓學生自主探索規(guī)律,并全程參與。
我想,什么也不能代替學生的親身體驗。這里我講一個小故事——有一天,我感冒了。不想說,也不想動,就說:孩子們,今天講臺就交給你們了,我就是一個擦黑板工。同學們笑了,盡管我講的是租船和租車的復雜問題,但孩子們講的頭頭是道,寫的一絲不茍。為什么不在適當的時候把課堂還給學生呢?!
2、大膽開放,拋棄束縛。
我的教學不想拘泥于一點,不想修建一個房屋讓孩子們在里面玩,在思維的國度,應該是平等的,自由的。這難道不是北大的思想嗎?開放式教學不是我們北大附中的精髓嗎?
因此我打破了教材的局限,設計了一個嶄新的思路——
四、教學設計和思路
(一)游戲導入,感受奇偶性
1、游戲一:6只小鴨子、5只蝴蝶找伴
2、游戲二:轉輪盤
(1)講要求:指針停在幾上就再走幾步;
(2)獨白:a請他們全班去吃飯,地方嗎
b學生開心極了,當聽到是東方餃子王………一片贊嘆
c結果:乘興而來,敗興而歸,有的指責我—騙人
(我—我怎么騙人了?)
討論:為什么會出現這種情況呢?
如果游戲一是感知數的奇偶,開始了微笑,那么游戲二就徹底激發(fā)了學生的學習的積極性和主動性,在笑聲中,嘆息聲中,在失敗中開始了思索,在思索中尋找答案。
(此時學生議論紛紛,正是引出偶數、奇數的最佳時機)
3、 板書課題,加以破題,加以過渡。
(二)猜想驗證,認識奇偶性
1、為什么沒有人中獎呢?(學生猜想,教師板書)
2、真的是這樣嗎?(教師加以驗證)
(我在驗證的同時,表揚學生達到了一年級水平,二年級的高度,三年級的容量,學生在笑聲中體驗了愉悅,在開心中學到了知識,增長了能力)
(而在我展現了驗證的過程后,開始表揚自己,這個人多帥,多聰明,像不像我------,哈哈不服氣,你來呀!?)
(三)大膽猜想,細心求證
1、獨立來寫(寫出了加法,又寫出了減法,我提示—有沒有乘除呢?)
2、小組合作驗證糾偏
3、小組展示(滿滿的一黑板,加減乘除都有.而且欲罷不能,我就在表揚學生的基礎上,圈出我們今天應該掌握的加法的奇偶性.)
(四)坡度練習,層層加深
1、填空
2、判斷(這些內容,由淺入深,由難及易,層層推進)
3、填表(著重講解了這一道題—因為它是例題,我把填表作為要點,學會觀察與思考,從而得到規(guī)律.)
4、動手(有動腦的,動口的,這里的翻杯子就是動手了.)
五、課堂小結,課后延伸
1、說說我們這節(jié)課探索了什么?你發(fā)現了什么?或者有什么想說的?
2、思考題--那如果是4個杯子全部杯口朝上放在桌上,每次翻動其中的3只杯子,能否經過若干次翻轉,使得4個杯子全部杯口朝下?最少幾次?
這節(jié)課,我以設疑—猜想—驗證—運用為骨架,以激發(fā)的興趣為血脈,加上開放的翅膀,我想是不是一個鮮活的生命在飛翔?
當時課上完了,似乎又沒有完!
我想說:一節(jié)沒有上完的課,才是令人回味的課!就像我的說課不完美,但殘缺是一種另類的美!謝謝!!