一元一次不等式組和它的解法 篇1
教學建議
一、知識結構
本書首先結合實例引入一元一次不等式組的解集的概念,然后通過三個例題說明利用數軸解一元一次不等式組的方法,最后對一元一次不等式組的解法步驟進行了總結.
二、重點、難點分析
本節教學的重點是掌握一元一次不等式組的解法步驟并準確地求出解集.難點是正確應用不等式的基本性質對不等式進行變形、求不等式組中各個不等式解集的公共部分.不等式在中學代數中是研究問題的重要工具,例如求函數的定義域、值域、研究函數的單調性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識.不等式也是進一步學習其他數學內容的基礎.學習和掌握不等式的求解和不等式的證明方法,對培養學生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因為,解各類不等式的問題都可以歸結為解一些由簡單不等式所組成的不等式組.
1.在構成不等式組的幾個不等式中
①這幾個一元一次不等式必須含有同一個未知數;②這里的“幾個”并未確定不等式的個數,只要不是一個,兩個,三個,四個……都行.
2.當幾個不等式的解集沒有公共部分時,我們就說這個不等式組無解.
3.由兩個一元一次不等式組成的不等式的解集,共歸結為下面四種基本情況:
【注意】①其中第(4)個不等式組,實質上是矛盾不等式組,任何數 都不能使兩個不等式同時成立.所以說這個不等式組無解或說其解集為空集.②從上面列出的表中,我們可以概括出來不等式組公共解的一規律:同大取大,同小取小,一大一小中間找.