《二倍角的三角函數》教案(通用2篇)
《二倍角的三角函數》教案 篇1
一、知識與技能
1.能從二倍角的正弦、余弦、正切公式導出半角公式,了解它們的內在聯系;揭示知識背景,引發學生學習興趣,激發學生分析、探求的學習態度,強化學生的參與意識. 并培養學生綜合分析能力.
2.掌握公式及其推導過程,會用公式進行化簡、求值和證明。
3.通過公式推導,掌握半角與倍角之間及半角公式與倍角公式之間的聯系,培養邏輯推理能力。
二、過程與方法
1.讓學生自己由倍角公式導出半角公式,領會從一般化歸為特殊的數學思想,體會公式所蘊涵的和諧美,激發學生學數學的興趣;
2.通過例題講解,總結方法.通過做練習,鞏固所學知識.
三、情感、態度與價值觀
1.通過公式的推導,了解半角公式和倍角公式之間的內在聯系,從而培養邏輯推理能力和辯證唯物主義觀點。
2.培養用聯系的觀點看問題的觀點。
【教學重點與難點】:
重點:半角公式的推導與應用(求值、化簡、證明)
難點:半角公式與倍角公式之間的內在聯系,以及運用公式時正負號的選取。
【學法與教學用具】:
1. 學法:
(1)自主+探究性學習:讓學生自己由和角公式導出倍角公式,領會從一般化歸為特殊的數學思想,體會公式所蘊涵的和諧美,激發學生學數學的興趣。
(2)反饋練習法:以練習來檢驗知識的應用情況,找出未掌握的內容及其存在的差距.
2. 教學方法:觀察、歸納、啟發、探究相結合的教學方法。
引導學生復習二倍角公式,按課本知識結構設置提問引導學生動手推導出半角公式,課堂上在老師引導下,以學生為主體,分析公式的結構特征,會根據公式特點得出公式的應用,用公式來進行化簡證明和求值,老師為學生創設問題情景,鼓勵學生積極探究。
3. 教學用具:多媒體、實物投影儀.
【授課類型】:新授課
【課時安排】:1課時
【教學思路】:
一、創設情景,揭示課題
二、研探新知
四、鞏固深化,反饋矯正
五、歸納整理,整體認識
1.鞏固倍角公式,會推導半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關系(升角--降次,降角--升次).
3.特別注意公式的三角表達形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結構,尤其是符號.
六、承上啟下,留下懸念
七、板書設計(略)
八、課后記:略
《二倍角的三角函數》教案 篇2
教學目標:
掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導學生發現數學規律,讓學生體會化歸這一基本數學思想在發現中所起的作用,培養學生的創新意識.
教學重點:
二倍角公式的推導及簡單應用.
教學難點:
理解倍角公式,用單角的三角函數表示二倍角的三角函數.
教學過程:
Ⅰ.課題導入
前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當α=β時,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當α=β時cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當α=β時,tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學們推證所得結果是否與此結果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學們是否也考慮到了呢?
另外運用這些公式要注意如下幾點:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).
當α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].
同樣在一般情況下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.