七年級下冊數學教案(通用8篇)
七年級下冊數學教案 篇1
[教學目標]
1. 通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一.創設情境 激發好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的'位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2.學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數。
[鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數
[小結]
鄰補角、對頂角.
[作業]課本P9-1,2P10-7,8
七年級下冊數學教案 篇2
【知識講解】
一、本講主要學習內容
1、代數式的意義
2、列代數式的注意點
3、代數式值的意義
其中列代數式是重點,也是難點。
下面講述一下這三點知識的主要內容。
1、代數式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數及 表示數的字母連接而成的式子叫代數式。單個的數字或字母也叫代數式。如:5,a, 4x, ab, x+2y, , a2等
2.列代數式的注意點
⑴在代數式中出現的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數字與數字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
⑶數字寫在字母的前面。
⑷在代數式中出現除法運算時,一般按照分數的寫法來寫, 如s÷t寫作 。
⑸代數式中帶分數與字母相乘時,應寫成假分數與字母相乘的形式,如 應寫作 。
(6)兩個代數式相乘,應該用分數形式表示。
3.代數式值的意義
用數值代替代數式里的字母,按照代數式指明的運算,計算出的結果,就叫做代數式的值。
二、典型例題
例1 填空
①棱長是acm 的正方體的體積是___cm3。
②溫度由t°c下降2°c后是___°c。
③產量由m千克增長10%,就達到___千克。
④a和b 的倒數和是___。
⑤a和b的和的倒數是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數式的關鍵在于仔細審題,弄清題意,正確找出題中的數量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數量關系,可先分段考慮,要正確地使用括號。
⑵像a3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數式表示
⑴被4整除得 m的數
⑵被2除商為 a余1的數
⑶兩數的平均數
⑷a和b兩數的平方差與這兩數平方和的商
⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數式表示此人行完全路程的平均速度。
⑺個位數字是8,十位數字是 b 的兩位數。
解: ⑴4m ⑵2a+1 ⑶設這兩個數分別為a、b、則平均數為 。
⑷ ⑸ ⑹ ⑺10b+8
分析說明:
⑴數a除以數b,除得的商正好是整數,而沒有余數,我們稱a能被b整除。
⑵能被2整除的數叫偶數,不能被2整除的數叫奇數。兩個連續奇數,若較小的是n,則較大的是n +2 。
⑶對于題⑶中兩數沒有給出,為說明其一般性。可先設這兩個數為a, b;用字母表示數時,在同一個問題中,不同的數要用不同的字母表示。
⑷題⑷中的a,b兩數的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
⑹平均速度=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應清楚自然數的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數總可以用它各個數位上的數字來表示。
例3說出下列代數式的意義。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點。
①不含括號的代數式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
②含括號的代數應該把括號里的代數式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
③由于分數線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當x=7,y=4, z=0時,求代數式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數式值的一般步驟是:①代入 ②計算⑵在代數式中,數字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數據求值時,都變成了數字相乘,原來省略的乘號“×”應補上。
【一周一練】
1、選擇題
(1)下列各式中,屬于代數式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數式表示“a的 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數式 ,表述不正確的是( )
a、比a的倒數小2的數; b、a與2的差的倒數
c、1除以a減去2的商 d、比a小2的數的倒數
2、判斷題
⑴n除m用代數式可表示成 ( )
⑵三個連續的奇數,中間一個是n,其余兩個分別是n-2和n+2( )
⑶如果n是偶數,則緊跟在n后面的兩個連續奇數分別是n+1,n+3( )
3、填空題
⑴每本練習本是0.3元,買a本練習本需__元。
⑵小明有5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
⑶被3整除得n 的數是__。
⑷個位上的數是a,十位上的數是個位上的數的2倍少3的兩位數是_。
⑸加工一批零件共m個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。
⑹一種小麥磨成面粉后,重量減少數15%, b千克小麥磨成面粉后,面粉的重量是__千克。
⑺一個長方形的長是a,寬是長的 還多1,這個長方形的周長是__
⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4.求下列代數式的值。
⑴ 其中a=2
⑵當 時,求代數式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數比女生人數的 多16人,男生人數是a,問a的代數式表示:⑴女生人數。 ⑵該班學生總數;當a=25時,求該班學生總數。
七年級下冊數學教案 篇3
教學目標:
1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質
過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,
增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。
教學重點:
同底數冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數,則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?
(3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么
(5)當三個以上同底數冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.
四、應用提高
活動內容:
1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
五、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
六、課堂小結
活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
七、布置作業
1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
七年級下冊數學教案 篇4
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質
過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,
增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。
教學重點:同底數冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數,則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?
(3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么
(5)當三個以上同底數冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.
三、應用提高
活動內容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)7?8?73
(5)663(6)5535?.(7)?a?ba?b?7542
2(8)?b?aa?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
六、布置作業
1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)
七年級下冊數學教案 篇5
有序數對
課型:新授 備課人:霍紅超 審核人:霍紅超
學習目標
1. 理解有序數對的應用意義,了解平面上確定點的常用方法
2. 培養用數學的意識,激發學習興趣.
學習重點: 理解有序數對的意義和作用
學習難點: 用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1. 如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
[小結]
1. 為什么要用有序數對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
七年級下冊數學教案 篇6
學習目標:
1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。
2、會解由兩個一元一次不等式組成的一元一次不等式組,能借助數軸正確的表示一元一次不等式組的解集。
3、通過探討一元一次不等式組的解法以及解集的確定,滲透轉化思想,進一步感受數形結合在解決問題中的作用。
4、體驗不等式在實際問題中的作用,感受數學的應用價值。
學習重點:一元一次不等式組的解法
學習難點:一元一次不等式組解集的確定。
一、學前準備
【回顧】
1.解不等式 ,并把解集在數軸上表示出來。
【預習】
1、 認真閱讀教材34-35頁內容
2、____________ _ 叫做一元一次不等式組。
______ _______叫做一元一次不等式組的解集。
叫做解不等式組。
4、求下列兩個不等式的解集,并在同一條數軸上表示出來
①
二、探究活動
【例題分析】
例1. (問題1)題中的“買5筒錢不夠,買4筒錢又多”的含義是什么?
例2. (問題2)題中的相等關系是什么?不等關系又是什么?
例3. 解不等式組
【小結】
不等式組解集口訣
“同大取大,同小取小,大小小大中間找,大大小小解不了”
一元一次不等式組解集四種類型如下表:
不等式組(a<b) 數軸表示 解 集 記憶口訣
(1)x>ax>b
x>b 同大取大
(2)x<ax<b
x<a 同小取小
(3)x>ax<b
a<x<b 大小取中
(4)x<ax>b
無解 大大小小解不了
【課堂檢測】
1、不等式組 的解集是( )
A. B. C. D.無解
2、不等式組 的解集為( )
A.-1<x<2 B.-1<x≤2 C.x<-1 D.x≥2
3、不等式組 的解集在數軸上表示正確的是( )
A B C D
4、寫出下列不等式組的解集:(教材P35練習1)
三、自我測試
1.填空
(1)不等式組x>2x≥-1 的解集是_ __;
(2)不等式組x<-1x<-2 的解集 ;
(3)不等式組x<4x>1 的解集是__ __;
(4)不等式組x>5x<-4 解集是___ ___。
2、解下列不等式組,并在數軸上表示出來
(1)
四、應用與拓展
1、若不等式組 無解,則m的取值范圍是 ____ _____.
五、數學日記
七年級下冊數學教案 篇7
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業課本15頁-16頁練習的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的條件的應用.
學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級下冊數學教案 篇8
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創設情境激活思維
1.學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發學生自豪感。
2.聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關地點用什么代表?(直線上的點)
3.學校大門起什么作用?(基準點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1.0代表什么?
2.數的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1.什么樣的直線叫數軸?它具備什么條件。
2.如何畫數軸?
3.根據上述實例的經驗,“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1.判斷下列圖形是否是數軸。
2.口答:數軸上各點表示的數。
3.在數軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數軸上的點,你有什么發現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和-a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節課所學主要內容,回答以下問題:
1.什么是數軸?
2.數軸的“三要素”各指什么?
3.數軸的畫法。
設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。
(五)目標檢測設計
1.下列命題正確的是
A.數軸上的點都表示整數。
B.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數軸包括原點與正方向兩個要素。
D.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3.畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有X個。4.在數軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數軸上點A表示的數是。
五、板書
1.數軸的定義。
2.數軸的三要素(圖)。
3.數軸的畫法。
4.性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數軸?
定義:規定了、直線叫數軸。
數軸的三要素:、。
2.畫數軸的步驟是什么?
3.“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
練習:
1.畫一條數軸
2.在你畫好的數軸上表示下列有理數:1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數軸上的點,你有什么發現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的邊,與原點的距離是X個單位長度;表示數-a的點在原點的邊,與原點的距離是X個單位長度.
練習:
1.數軸上表示-3的點在原點的側,距原點的距離是;表示6的點在原點的側,距原點的距離是;兩點之間的距離為X個單位長度。
2.距離原點距離為5個單位的點表示的數是。
3.在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是。
附:目標檢測
1.下列命題正確的是
A.數軸上的點都表示整數。
B.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數軸包括原點與正方向兩個要素。
D.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數.列舉到原點的距離小于3的所有整數。
3.畫數軸,觀察數軸,在原點左邊的點有X個。
4.在數軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數軸上點A表示的數是。