人教版初二數學下冊教案(精選6篇)
人教版初二數學下冊教案 篇1
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本;=商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
人教版初二數學下冊教案 篇2
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……
反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
人教版初二數學下冊教案 篇3
教學目標
1、初步掌握頻率分布直方圖的概念,能繪制有關連續型統計量的直方圖;
2、讓學生進一步經歷數據的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學重點
掌握頻率分布直方圖概念及其應用;
教學難點
繪制連續統計量的直方圖
教學過程
Ⅰ.提出問題,創設情境,引入新課:
問題:我們班準備從63名同學中挑選出身高相差不多的40名同學參加比賽,那么這個想法可以實現嗎?應該選擇身高在哪個范圍的學生參加?
63名學生的身高數據如下:
158158160
168158154
159167170
149163163
162163157
155156165
156157153
解:(確定組距)最大值為172,最小值為149,他們的差為23
(身高x的變化范圍在23厘米,)
(分組劃記)頻數分布表:
身高(x)劃記頻數(學生人數)
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學生中選隊員
(繪制頻數分布直方圖如課本P72圖12.2-3)
探究:上面對數據分組時,組距取3,把數據分成8個組,如果組距取2或4,那么數據應分成幾個組,這樣做能否選出身高比較整齊的隊員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。
歸納:組距和組數的確定沒有固定的標準,要憑借經驗和研究的具體問題來決定,通常數據越多,分成的組數也越多,當數據在100個以內時,根據數據的多少通常分為5~12個組。
我們還可以用頻數折線圖來描述頻數分布的情況。頻數折線圖可以在頻數分布直方圖的基礎上畫出來。
首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數為0的點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數折線圖。
頻數折線圖也可以不通過直方圖直接畫出。
根據表12.2-2,求了各個小組兩個端點的平均數,而這些平均數稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數,以各小組的組中值為橫坐標,各小組對應的頻數為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數分布折線圖如課本P73圖。
II課堂小結:
(1)怎樣制作頻數分布直方圖和頻數分布折線圖
(2)組距和組數沒有確定標準,當數據在1000個以內時,通常分成5~12組
(3)如果取個長方形上邊的中點,可以得到頻數折線圖
(4)求各小組兩個斷點的.平均數,這些平均數叫組中值。
人教版初二數學下冊教案 篇4
一、創設情境導入新課
1、介紹七巧板
師:你們玩過七巧板嗎?你知道七巧板是由哪些不同的圖形組成的嗎?
一千多年前,中國人發明了七巧板。七巧板是由七塊圖形組成的,它可以拼出豐富的圖案來。外國人管它叫“中國魔板”,在他們看來,沒有哪一種智力玩具比它更神奇的了。
2、導入:今天就讓我們一起來認識其中的一個圖形—平行四邊形。(出示課題)
【設計意圖:以學生喜愛的“七巧板”為切入點,引發學生的學習熱情。】
二、嘗試探索建立模型
(一)認一認形成表象
師:老師這兒的圖形就是平行四邊形。改變方向后問:它還是平行四邊形嗎?
不管平行四邊形的方向怎樣變化,它都是一個平行四邊形。(圖貼在黑板上)
(二)找一找感知特征
1、在例題圖中找平行四邊形
師:老師這有幾幅圖,你能在這上面找到平行四邊形嗎?
2、尋找生活中的平行四邊形
師:其實在我們周圍也有平行四邊形,你在哪些地方見過平行四邊形?(可相機出示:活動衣架)
(三)做一做探究特征
1、剛才我們在生活中找到了一些平行四邊形,現在你能利用手邊的材料做出一個平行四邊形嗎?
2、在小組里交流你是怎么做的并選代表在班級里匯報。
3、剛才同學們成功的做出了一個平行四邊形,在做的過程中,你有什么發現或收獲嗎?你是怎樣發現的?(小組交流)
4、全班交流,師小結平行四邊形的特征。(兩組對邊分別平行并且相等;對角相等;內角和是360度。)
【設計意圖:新課程強調體驗性學習,學生學習不僅要用腦子去想,而且還要用眼睛看,用耳去聽,用嘴去說,用手去做,即用自己的身體去親身經歷,用自己的心靈去感悟。這里通過認平行四邊形、找平行四邊形和做平行四邊形,使學生經歷由表象到抽象的過程。在一系列的活動中,讓學生感悟到了平行四邊形的特征。】
(四)練一練鞏固表象
完成想想做做第1、2題
(五)畫一畫認識高、底
1、出示例題,你能量出平行四邊形兩條紅線間的距離嗎?(學生在自制的圖上畫)說說你是怎么量的?
2、師:剛才你們畫的這條垂直線段就是平行四邊形的高。這條對邊就是平行四邊形的底。
3、平行四邊形的高和底書上是怎么說的呢?(學生看書)
4、這樣的高能畫多少條呢?為什么?你能畫出另一組對邊上的高,并量一量嗎?(機動)
5、教學“試一試”。(學生各自量,交流時強調底與高的對應關系)
6、畫高(想想做做第5題)(提醒學生畫上直角標記)
三、動手操作鞏固深化
1、完成想想做做第3、4題
第3題:拼一拼、移一移,說說怎樣移的?
第4題引入:木匠張師傅想把一塊平行四邊形的木板鋸成兩部分,拼成一張長方形桌面,假如你是張師傅,該怎么鋸呢?想試試嗎?找一張平行四邊形的紙試一試。
2、完成想想做做第6題(課前做好,課上活動。)
(1)師拿出自做的長方形,捏住對角相反方向拉一拉,看你發現了什么?師做生觀察,互相交流。
(2)判斷:長方形是平行四邊形嗎?小組交流然后再說理由,此時老師可問學生長方形是什么樣的平行四邊形?(特殊)特殊在哪了?
(3)得出平行四邊形的特性
師再捏住平行四邊形的對角向里推。看你發現了什么?
師:三角形具有穩定性,通過剛才的動手操作,你覺得平行四邊形有什么特性呢?(不穩定性、容易變形)
(4)特性的應用
師:平行四邊形容易變形的特性在生活中有廣泛的應用。你能舉些例子嗎?(學生舉例后閱讀教科書P45“你知道嗎?”)
【設計意圖:】
四、暢談收獲拓展延伸
1、師:今天這節課你有什么收獲嗎?
2、用你手中的七巧板拼我們學過的圖形。
3、尋找平行四邊形容易變形的特性在生活中的應用。
【設計意圖:擴展課堂教學的有限空間,課內課外密切結合。課結束時,布置實踐作業,要學生尋找平行四邊形容易變形的特性在生活中的應用,使學生的課堂學習和課后生活聯系起來,使學生感受到課堂知識在生活中的應用,體驗到生活中時時處處離不開數學,增強數學學習的親切感和實用性。】
人教版初二數學下冊教案 篇5
一、學習目標:
1.添括號法則
2.利用添括號法則靈活應用完全平方公式
二、重點難點
重點:理解添括號法則,進一步熟悉乘法公式的合理利用
難點:在多項式與多項式的乘法中適當添括號達到應用公式的目的
三、合作學習
Ⅰ.提出問題,創設情境
請同學們完成下列運算并回憶去括號法則
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括號法則:
去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;
如果括號前是負號,去掉括號后,括號里的各項都要變號。
1.在等號右邊的括號內填上適當的項:
(1)a+b-c=a+(2)a-b+c=a-
(3)a-b-c=a-(4)a+b+c=a-
2.判斷下列運算是否正確
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。
五、精講精練
例:運用乘法公式計算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
隨堂練習:教科書練習
五、小結:
去括號法則
六、作業:
教科書習題
人教版初二數學下冊教案 篇6
一、教學目標
1.了解分式、有理式的概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
二、重點、難點
1.重點:理解分式有意義的條件,分式的值為零的條件。
2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。
3。認知難點與突破方法
難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數有許多類似之處,從分數入手,研究出分式的有關概念,同時還要講清分式與分數的聯系與區別。
三、例、習題的意圖分析
本章從實際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節課里不是重點,也不要求解這個方程。
1.本節進一步提出P4[思考]讓學生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數有什么相同點和不同點?
可以發現,這些式子都像分數一樣都是(即A÷B)的形式。分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母。
P5[歸納]順理成章地給出了分式的定義。分式與分數有許多類似之處,研究分式往往要類比分數的有關概念,所以要引導學生了解分式與分數的聯系與區別。
希望老師注意:分式比分數更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數。
2.P5[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。
3.P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今后求函數的自變量的取值范圍,打下良好的基礎。
4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。
四、課堂引入
1.讓學生填寫P4[思考],學生自己依次填出:
2.學生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數,列方程。
設江水的流速為x千米/時。