初二數學上冊教案大全(精選9篇)
初二數學上冊教案大全 篇1
教材分析
1、本節課首先從最簡單的正比例函數入手、從正比例函數的定義、函數關系式、引入次函數的概念。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。
學情分析
1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。
3、學生認知障礙點:根據問題信息寫出一次函數的表達式。
教學目標
1、理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。
3、經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。
教學重點和難點
1、一次函數、正比例函數的概念及關系。
2、會根據已知信息寫出一次函數的表達式。
初二數學上冊教案大全 篇2
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點
1.教學重點:
菱形的性質1、2.
2.教學難點:
菱形的性質及菱形知識的綜合應用.
三、課堂引入
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
四、例習題分析
例1(補充)已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、隨堂練習
1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為.
2.已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
六、課后練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積.
初二數學上冊教案大全 篇3
一、教學目標
1.了解二次根式的意義;
2.掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3.掌握二次根式的性質和,并能靈活應用;
4.通過二次根式的計算培養學生的邏輯思維能力;
5.通過二次根式性質和的介紹滲透對稱性、規律性的數學美.
二、教學重點和難點
重點:
(1)二次根的意義;
(2)二次根式中字母的取值范圍.
難點:確定二次根式中字母的取值范圍.
三、教學方法
啟發式、講練結合.
四、教學過程
(一)復習提問
1.什么叫平方根、算術平方根?
2.說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式.
對于請同學們討論論應注意的問題,引導學生總結:
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態”.請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據二次根式定義,由學生分析、回答.
例1當a為實數時,下列各式中哪些是二次根式?
例2 x是怎樣的實數時,式子在實數范圍有意義?
解:略.
說明:這個問題實質上是在x是什么數時,x-3是非負數,式子有意義.
例3當字母取何值時,下列各式為二次根式:
初二數學上冊教案大全 篇4
教學目標
1、知識與技能目標
(1)通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性.
(2)能判斷給出的數是否為無理數,并能說出理由.
2、過程與方法目標
(1)學生親自動手做拼圖活動,感受無理數存在的必要性和合理性,培養學生的動手能力和合作精神.
(2)通過回顧有理數的有關知識,能正確地進行推理和判斷識別某些數是否為有理數、無理數,訓練他們的思維判斷力.
(3)借助計算器進行估算,培養學生的估算能力,發展學生的抽象概括能力,并在活動中進一步發展學生獨立思考、合作交流的意識和能力.
3、情感與態度目標
(1)激勵學生積極參與教學活動,提高大家學習數學的熱情.
(2)引導學生充分進行交流,討論與探索等教學活動,培養他們的合作精神與鉆研精神,借助計算器進行估算.
(3)了解有關無理數發現的知識,鼓勵學生大膽質疑,培養他們為真理而奮半的獻身精神.
教學重點
1、讓學生經歷無理數發現的過程,感知生活中確實存在著不同于有理數的數.
2、會判斷一個數是否為有理數,是否不是有理數.
3、用計算器進行無理數的'估算.
教學難點
1、把兩個邊長為1的正方形拼成一個大正方形的動手操作過程.
2、無理數概念的建立及估算.
3、判斷一個數是否為有理數.
教學準備:
多媒體,兩個邊長為1的正方形,剪刀,短繩.
教學過程:
第一環節:章節引入(2分鐘,學生閱讀感受)
內容:.小紅是剛升入八年級的新生,一個周末的上午,當工程師的爸爸給小紅出了兩個數學題:
(1)兩個數3.252525……與3.252252225……一樣嗎?它們有什么不同?
(2)一個邊長為6cm的正方形木板,按如圖的痕跡鋸掉四個一樣的直角三角形.請計算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個問題嗎?
b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數或分數(即有理數)來表示嗎?
第二環節:復習引入(3分鐘,學生口答)
內容:閱讀下面的資料,在數學中,有理數的定義為:形如的數(p、q為互質的整數,且p≠0)叫做有理數,當p=1,q為任意整數時,有理數就是指所有的整數,如:=-2等,當p≠1時,由p、q互質可知,有理數就是指所有的分數,如,-,-等,綜上所述,有理數就是整數和分數的統稱.
請用上述材料中所涉及的知識證明下面的問題:
a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數?
b.復習前面學過的數,有理數包括整數和分數,有理數范圍是否滿足實際生活的需要呢?
第三環節:活動探究(15分鐘,學生動手操作,小組合作探究)
(一)發現新數
內容:將課前已準備好的兩個邊長為1的小正方形剪一剪,拼一拼,設法得到一個大正方形.
在學生活動的基礎上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
(1)設大正方形的邊長為,應滿足什么條件?
(2)滿足:2=2的數是一個什么樣的數?可能是整數嗎?說明你的理由?
(3)可能是分數嗎?說說你的理由?
引出課題《數怎么又不夠用了》
(二)感受新數的廣泛性
內容:面積為5的正方形,它的邊長b可能是有理數嗎?說說你的理由。
(三)鞏固驗證,應用拓展
內容:aB,C是一個生活小區的兩個路口,BC長為2千米,A處是一個花園,從A到B,C兩路口的距離都是2千米,現要從花園到生活小區修一條最短的路,這條路的長可能是整數嗎?可能是分數嗎?說明理由.
b如圖(1)是由16個邊長為1的小正方形拼成的,試從連接這些
小正方形的兩個頂點所得的線段中,分別找出兩條長度是有理數的線段,兩條長度不是有理數的線段
第四環節:介紹歷史,開闊視野(3分鐘,學生閱讀)
內容:早在公元前,古希臘數學家畢達哥拉斯認為萬物皆“數”,即“宇宙間的一切現象都能歸結為整數或整數之比”,也就是一切現象都可用有理數去描述.后來,這個學派中的一個叫希伯索斯的成員發現邊長為1的正方形的對角線的長不能用整數或整數之比來表示,這個發現動搖了畢達哥拉斯學派的信條,據說,為此希伯斯被投進了大海,他為真理而獻出了寶貴的生命,但真理是不可戰勝的,后來,古希臘人終于正視了希伯索斯的發現.
第五環節:課時小結(2分鐘,全班交流)
內容談談本節課你有什么收獲與體會?有哪些困難需要別人幫你解決?
b感受數不夠用了,會確定一個數是有理數或不是有理數.
c本節課用到基本方法:動手、操作、觀察、思考,猜想驗證,推理,歸納等過程,獲取數學知識.
第六環節:布置作業
初二數學上冊教案大全 篇5
分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式.
解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式.
(2)-3x≥0,x≤0,即x≤0時,是二次根式.
(3),且x≠0,∴x>0,當x>0時,是二次根式.
(4),即,故x-2≥0且x-2≠0, ∴x>2.當x>2時,是二次根式.
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零.
解:(1)由2a+3≥0,得.
(2)由,得3a-1>0,解得.
(3)由于x取任何實數時都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范圍是全體實數.
(4)由-b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
初二數學上冊教案大全 篇6
教學目標
1.知識與技能
能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”.
2.過程與方法
經歷探索一次函數的應用問題,發展抽象思維.
3.情感、態度與價值觀
培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值.
重、難點與關鍵
1.重點:一次函數的應用.
2.難點:一次函數的應用.
3.關鍵:從數形結合分析思路入手,提升應用思維.
教學方法
采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的應用.
教學過程
一、范例點擊,應用所學
【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象.
y=
【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉.從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?
解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200-x)噸.B城運往C、D鄉的肥料量分別為(240-x)噸與(60+x)噸.y與x的關系式為:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元.
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?
二、隨堂練習,鞏固深化
課本P119練習.
三、課堂總結,發展潛能
由學生自我評價本節課的表現.
四、布置作業,專題突破
課本P120習題14.2第9,10,11題.
板書設計
14.2.2一次函數(4)
初二數學上冊教案大全 篇7
教學目標:
經歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
教學重點和難點
重點:
圓與圓之間的幾種位置關系
難點:
兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
教學過程設計
一、從學生原有的認知結構提出問題
(1)復習點與圓的位置關系;
(2)復習直線與圓的位置關系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關系。
2.圓與圓的位置關系
每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系時,可先讓學生探索,老師不要生硬地把答案說出來
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;
若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關系。
3.圓與圓相切的性質
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質:如果兩圓相切,那么兩圓的連心線經過切點,這一性質是下面議一議的基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數;2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結
圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。
五、作業
書本 P 130 習題3.9 1
初二數學上冊教案大全 篇8
教學目標
1.會解簡易方程,并能用簡易方程解簡單的應用題;
2.通過代數法解簡易方程進一步培養學生的運算能力,發展學生的應用意識;
3.通過解決問題的實踐,激發學生的學習興趣,培養學生的鉆研精神。
教學建議
一、教學重點、難點
重點:簡易方程的解法;
難點:根據實際問題中的數量關系正確地列出方程并求解。
二、重點、難點分析
解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當的數;將方程兩邊同時乘以(或除以)同一個適當的數。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數是否“適當”,關鍵是看運算的第一步能否使方程的一邊只含有帶有未知數的那個數,第二步能否使方程的一邊只剩下未知數,即求出結果。
列簡易方程解應用題是以列代數式為基礎的,關鍵是在弄清楚題目語句中各種數量的意義及相互關系的基礎上,選取適當的未知數,然后把與數量有關的語句用代數式表示出來,最后利用題中的相等關系列出方程并求解。
三、知識結構
導入方程的概念解簡易方程利用簡易方程解應用題。
四、教法建議
(1)在本節的導入部分,須使學生理解的是算術運算只對已知數進行加、減、乘、除,而代數運算的優越性體現在未知數獲得與已知數平等的地位,即同樣可以和已知數進行加、減、乘、除運算。對于方程、方程的解、解方程的概念讓學生了解即可。
(2)解簡易方程,要在學生積極參與的基礎上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個數,以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個數。另一個重要的問題就是“適當的數”的選擇了。通常,整式方程并不需要檢驗,但為了學生從一開始就養成自我檢查的好習慣,可以讓學生在草稿紙上檢驗,同時也是對前面學過的求代數式的值的復習。
(3)教材給出了三道應用題,其中例4是一道有關公式應用的方程問題。列簡易方程解應用題,關鍵在引導學生加深對代數式的理解基礎上,認真讀懂題意,弄清楚題目中的關鍵語句所包含的各種數量的意義及相互關系。恰當地設未知數,用代數式表示數學語句,依據相等關系正確的列出方程并求解。
(4)教學過程中,應充分發揮多媒體技術的輔助教學作用,可以參考運用相關課件提高學生的學習興趣,加深對列簡易方程解簡單的應用題的整個分析、解決問題過程的理解。此外,通過應用投影儀、幻燈片可以提高課堂效率,有利于對知識點的掌握。
五、列簡易方程解應用題
列簡易方程解應用題的一般步驟
(1)弄清題意和題目中的已知數、未知數,用字母(如x)表示題目中的一個未知數.
(2)找出能夠表示應用題全部含義的一個相等關系.
(3)根據這個相等關系列出需要的代數式,從而列出方程.
(4)解這個方程,求出未知數的值.
(5)寫出答案(包括單位名稱).
概括地說,列簡易方程解應用題,一般有“設、列、解、驗、答”五個步驟,審題可在草稿紙上進行.其中關鍵是“列”,即列出符合題意的方程.難點是找等量關系.要想抓住關鍵、突破難點,一定要開動腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.
初二數學上冊教案大全 篇9
教學目標:
1. 掌握三角形內角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態
5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。
教學重點:
三角形內角和定理及其推論。
教學難點:
三角形內角和定理的證明
教學用具:
直尺、微機
教學方法:
互動式,談話法
教學過程:
1、創設情境,自然引入
把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。
問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?
問題2 你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。
2、設問質疑,探究嘗試
(1)求證:三角形三個內角的和等于
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內角拼成了一個 什么角?
問題2 此實驗給我們一個什么啟示?
(把三角形的三個內角之和轉化為一個平角)
問題3 由圖中AB與CD的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值 ,那么對三角形的其它角還有哪些特殊的關系呢?
問題1 直角三角形中,直角與其它兩個銳角有何關系?
問題2 三角形一個外角與它不相鄰的兩個內角有何關系?
問題3 三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內角關系的定理及推論
通過上面四個例題的分析與討論,有利于學生基礎知識與基本能力的掌握與提高,同時更有利于學生創新意識與創造性思維能力的培養,在練習、講評等教學環節中,形成師生之間的、學生之間的“雙向反饋”是很重要的。
4、變式訓練,鞏固提高
根據例4 的度數的求法,思考如下問題:
(3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則 的度數多少?
(4)當MN繞著點D旋轉過程中, 會有怎樣的變化?
提示:變化1 當直線MN與AC、BC的交點仍在線段AC、BC上時, =
變化2 當直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,
變化3 當直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時, =
變化4當直線MN與AC、BC的交點在C點時, =
經過這樣的變式、發展、學習,不僅使學生鞏固了所學的數學知識,也使學生體驗了數學的運動變化觀,使學生的思維得到了培養。
5、小結
通過設置問題:“本節在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結。強調學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結論的關系。
6、布置作業
a、書面作業P43#3
b、上交作業P42#16、17