《有理數的減法》教案(精選12篇)
《有理數的減法》教案 篇1
一、教學目標:
知識與技能:理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算。
過程與方法:通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算能力。
情感態度與價值觀:通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想。
二、教學重點:
運用有理數的減法法則,熟練進行減法運算。
三、教學難點:
理解有理數減法法則。
四、教材分析:
本節是在學習了正負數、相反數、有理數加法運算之后,以初中代數第一冊第53頁的有理數減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用。
五、教學方法:
師生互動法
六、教具:
七、課時:
1課時
八、教學過程:
1、計算(口答):
(1)1+(-2)
。2)-10+(+3)
(3)+10+(-3)
2、出示幻燈片二:
如圖:
這是20xx年11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?教師引導觀察
教師總結:這就是我們今天要學習的內容(引入新課,板書課題)
1、師:誰能把10-3=7這個式子中的性質符號補出來呢?
。+10)-(+3)=7
再計算:(+10)+(-3),師讓學生觀察兩式結果,由此得到:
(+10)-(+3)=(+10)+(-3)
觀察減法是否可以轉化為加法計算呢?是如何轉化的呢?
。ń處煱l揮主導作用,注意學生的參與意識)
2、再看一題:
計算:(-10)-(-3)
教師啟發:要解決這個問題,根據有理數減法的意義,這就是要求一個數使它與-3相加會得到-10,那么這個數是多少?
問題:計算:(-10)+(+3)
教師引導,學生觀察上述兩題結果,由此得到
(-10)-(-3)=(-10)+(+3)
教師進一步引導學生觀察式子,你能得到什么結論呢?
教師總結:由以上兩式可以看出減法運算可以轉化成加法運算。
教師提問:(本站)通過以上的學習,同學們想一想兩個有理數相減的法則是什么?
教師對學生回答給予點評,總結有理數減法法則:減去一個數,等于加上這個數的相反數。
強調法則:(1)減法轉化為加法,減數要變成相反數(2)法則適用于任何兩個有理數相減(3)用字母表示一般形式為a-b=a+(-b)
3 、例題講解:
出示幻燈片三(例1和例2)
例1計算:
(1)6-(-8)
(2)(-2)-3
。3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教師板書做示范,強調解題的規范性,然后師生共同總結解題步驟,(1)轉化(2)進行加法運算。例2:小明家蔬菜大棚的氣溫是24℃,此時棚外的氣溫是-13℃,棚內氣溫比棚外氣溫高多少攝氏度?師巡視指導,最后師生講評兩個學生的解題過程。
課后練習1、2
教師巡視指導
師組織學生自己編題
1、談談本節課你有哪些收獲和體會?[
2、本節課涉及的數學思想和數學方法是什么
教師點評:有理數減法法則是一個轉化法則,要求同學們掌握并能應用進行計算。
課堂檢測(包括基礎題和能力提高題)
1、-9-(-11)
2、3-15
3、-37-12
4、水銀的凝固點是-38.87℃,酒精的凝固點是-117.3℃。水銀的凝固點比酒精的凝固點高多少攝氏度?
學生思考后搶答,盡量照顧不同層次的學生參與的積極性。
學生觀察思考如何計算
學生觀察思考
互相討論學生口述解題過程
由兩個學生板演,其他學生在練習本上做
第1小題學生搶答
第2小題找兩個學生板演。
學生回答
學生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。
綜合考查學以致用
既復習鞏固有理數加法法則,同時為進行有理數減法運算打下基礎
創設問題情境,激發學生的認知興趣。
讓學生通過嘗試,自己認識減法可以轉化為加法計算。
學生通過一個問題易于充分發揮學習的主動性,同時也培養了學生分析問題的能力
可以培養學生嚴謹的學風和良好的學習習慣,同時鍛煉學生的表達能力
可以照顧不層次的學生,調動學生學習積極性。
通過練習讓學生進一步鞏固新知,體驗知識的應用性。
能增強學生學習的主動性和參與意識。
學生嘗試小結,疏理知識,自由發表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。鍛煉學生綜合運用知識,獨立解題的能力
板書設計:
2.6有理數的減法
有理數減法法則:減去一個數等于加上這個數的相反數.
例1:(+10)-(+3)=(+10)+(-3)
(-10)-(-3)=(-10)+(+3)
例2:
練習:
教學反思:
本節課我在問題探索過程中,以提問的形式展現新問題,激發學生的好奇心,學生學習的積極性很高,討論交流的氣氛很熱烈,解決問題后有一種成就感,從而使學生更積極主動的學習,并且營造了良好的學習氛圍,從而收到較好的學習效果。
《有理數的減法》教案 篇2
一、課題2.4有理數的減法
二、教學目標
1.使學生掌握有理數減法法則并熟練地進行有理數減法運算;
2.培養學生觀察、分析、歸納及運算能力.
三、教學重點
有理數減法法則
四、教學難點
有理數減法法則
五、教學用具
三角尺、小黑板、小卡片
六、課時安排
1課時
七、教學過程
。ㄒ唬、從學生原有認知結構提出問題
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算.
(二)、師生共同研究有理數減法法則
問題1(1)(+10)-(+3)=______;
(2)(+10)+(-3)=______.
教師引導學生發現:兩式的結果相同,即(+10)-(+3)=(+10)+(-3).
教師啟發學生思考:減法可以轉化成加法運算.但是,這是否具有一般性?問題2(1)(+10)-(-3)=______;
(2)(+10)+(+3)=______.
對于(1),根據減法意義,這就是要求一個數,使它與-3相加等于+10,這個數是多少?
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的相反數.
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數.減數變號(減法============加法)
。ㄈ⑦\用舉例變式練習
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數減法算式,引導學生發現:
在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數.
例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?
閱讀課本63頁例3
。ㄋ模⑿〗Y
1.教師指導學生閱讀教材后強調指出:
由于把減數變為它的相反數,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統一用加法來解決.
2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的.
(五)、課堂練習
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.計算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數減法解下列問題
4.世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392m.兩處高度相差多少?
八、布置課后作業:
課本習題2.6知識技能的2、3、4和問題解決1
九、板書設計
2.5有理數的減法
(一)知識回顧(三)例題解析(五)課堂小結
例1、例2、例3
(二)觀察發現(四)課堂練習練習設計
十、課后反思
《有理數的減法》教案 篇3
一 說教材:
(一) 地位、作用:
本節課是在學習了正負數、相反數、有理數的加法運算之后,以初中代數第一冊p80頁的有理數的減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用
(二) 教學目標:
1、 知識目標:使學生掌握有理數的減法法則,熟練地進行有理數的減法運算。
2、 能力目標:培養學生探究思維能力和分析解決問題的能力
3、 情感目標:使學生了解加與減兩種運算的對立統一的關系,了解數學中轉化的數學思想方法,滲透辯證唯物主義思想,培養探究分析數學知識方法的興趣。
(三) 重點、難點:
重點:有理數的減法法則,熟練地進行有理數的減法運算
難點:理解有理數減法的意義,正確熟練地進行有理數的減法運算
二、說教學方法:
根據本節教材內容和學生的實際水平,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,我將采用探究發現法、多媒體輔助教學方法等。教學中教師精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,教師并適時運用電教多媒體動畫演示,激發學生探索知識的欲望來達到對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。
附教學工具:溫度計、投影儀、多媒體
三、說學法:
根據學法指導自主性的原則,讓學生在教師創設的問題情境下,通過教師的啟發點撥,學生的積極思考努力下,自主參與知識的發生、發展、發現的過程,使學生掌握了知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的。
四、說教學程序:
(一) 引入課題環節:
1、 復習有理數的加法法則,為新課的講授作好鋪墊。
2、 (提問)用算式表示:與-3的和等于-10的數。
(根據學過的知識,引導學生列出減法算式后提出問題:怎樣進行這里的減法運算呢?有理數的減法運算法則是什么呢?由問題的給出,激發學生探求解決問題方法的興趣,從而引出本節課的課題。
(二)新課講解環節:
1、 通過投影儀給出以下算式:
減法 加法
(+10)-(+3)=+7 (+10)+(-3)=+7
讓學生比較上面這兩個算式并討論后得出:
(+10)-(+3)=(+10)+(-3)
再給出以下算式:
減法 加法
(+5)-(+2)=+3 (+5)+(-2)=+3
繼續讓學生比較上面這兩個算式并討論后得出:
(+5)-(+2)=(+5)+(-2)
從而,它啟發我們有理數的減法可以轉化成加法進行
2、講解課本p80的內容,回答復習題2提出的問題即如何求(-10)-(-3)的結果。通過分析講解,請學生自己歸納出有理數的減法法則,最后老師再完整地總結出法則。
文字敘述:減去一個數,等于加上這個數的相反數
字母表示:a-b=a+(-b) (說明:簡明的表示方法,體現字母表示數的優越性,實際運算時會更加方便)
強調運用法則時:被減數不變,減號變加號,減數變成其相反數
減數變號
(減法============加法)
3、出示溫度計,用多媒體出現(如p81的圖2-20),并進行動畫演示,通過求15℃ 比5℃ 高多少?15℃ 比-5℃ 高多少?的實例來說明減法法則的合理性以及有理數減法的實際意義。同時進行練習反饋:課本p82的練習1,
4、通過例題教學使學生鞏固方法,初步具備解決問題的能力。
例1.計算 :(1) (-3)-(-5); (2) 0 - 7
例2.計算(1) 7.2 - (-4.8) ; (2) (-3 - ) - 5
說明:講解時注意讓學生復述有理數法減法法則,加深學生對法則的認識,并注意歸納有理數減法的規律,而不機械地將減法轉化成加法,為今后進一步學習減法運算逐步省略化成加法的中間步驟作準備。
(三) 鞏固練習環節:
讓學生完成課本p82的練習2、3,鞏固有理數減法法則的運用,強化學生對這節課的掌握。第2題口答,第3題請6個學生上臺板演。對回答好的同學給予表揚肯定,如果有錯誤,請其他同學糾正。
(四)課堂小結環節:(師生共同完成)
本節課學習了有理數的減法運算,進行有理數的減法運算時轉化成加法進行計算,即a-b=a+(-b)
(五)布置課后作業:課本p83習題2.6的2、3、4、5的偶數題
通過作業反饋對學生所學知識掌握的效果,以利課后解決學生尚有疑難的地方。(六)板書設計:(略)
《有理數的減法》教案 篇4
知識與能力:
1.使學生理解有理數的加減法法可以互相轉化。2.使學生熟練地進行有理數的加減混合運算。
過程與方法:
1.體會有理數的加減法法可以互相轉化的思想。2.培養學生的運算能力。
情感態度與價值觀:
培養學生認真、仔細的良好學習態度。
重點準確迅速地進行有理數的加減混合運算。
教材提示:
本節課是學習有理數減法的第二課時,在教學過程中,教師應該首先通過探究的方式組織學生分組討論,借助于已有知識,體會有理數的加減法法可以互相轉化的思想,如何省略加號,并且還要正確掌握省略加號后它們表示的是哪些數的和,強化混合運算的.準確性。
教學過程
一、自主學習
(一)、閱讀教材23-24頁。
(二)、導學練習 [活動1]:學生課前自主完成。 1.減法法則: ,用字母表示為:
2.計算(1)1-5= (2)8-11= (3)6-9=
(4)9-(-9)= (5)(- )-(- )=
[活動2]:學生先課前自主,然后在課堂上一起和大家交流討論。
1、紅星隊在4場足球賽中的戰績是:第一場3:1勝,第二場2:3負,第三場0:0平,第四場2:5負。紅星隊在4場比賽中總的凈勝球數是多少?
2、一20十3十(十5)十(一7)(讀作 , , , 的和 ) 3、 計算:(一20)十(十3)一(一5)一(十7). 注意:在進行有理數混合運算時,應該先將減法按規則統一成加法后再計算;第一個數前面的一常用括號括起來,但熟練后,第一個數帶負號時,通常可以不用括號手起來。 4、 計算在做有理數運算時,易出 符號錯誤。
計算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)
=(一9)十(十1) =一8
(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上兩個小題均有錯誤,指出錯在哪里,并改正。 [學法指導:有理數混合運算,只有將減法按規則統一成加法后,才能省略加號,而減號不能省略。在有理數加減混合運算中,當我們把減法轉化為加法時,為了書寫簡便,常常省略加號和括號。] 5、分別指出下列兩個式子的讀法,表示那些數的和,并計算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。
(三)自學疑難摘要:
自主學習小組長檢查等級 等,組長簽字
二、合作探究
計算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )
3、 4、
[學法指導:在完成以上計算題時,一定要注意當把 減號變為加號時,減數必須變為原數的相反數,再利用加法法則進行計算。在進行有理數的加減運算時,當減法轉 化為加法后,可以用加法交換律和加法結合律,這樣可以使運算簡便。]
[小組活動:1.在進行小組交流時,各位組長一定要注意每一位組員,看他們是否掌握了減法法則,特別是交流一下如何把減數變為原來的相反數。2.特別小心在省略加號時是否正確。3.組長注意自己小組到黑板上交流的任務,安排好展示的人員,督促大家掌握本節課的學習任務。]
三、展示提升
1、每個同學自主完成二中的練習后先在小組內交流討論。 2、每個組根據分配的任務把自己組的結論板 書到黑板上準備展示。 3、每個組在展示的過程中其他組的同學認真聽作好補充和提問。
四、反饋與檢測
1.計算:(1)(-41)-(-18)-(+39)-(-72) (2) 2.活動與探究:23. 1 ―3 +5―7 +9―11++97―99= 。 [學法指導:這個環節的處理方式是第1題在課堂上完成,第2題在課外由組長主持,進行探究活動,進而對所學知識加以鞏固。]
五、課后 反思
《有理數的減法》教案 篇5
教學目標:
1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。
(2)能熟練進行有理數的減法法則。
2、過程與方法
通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的.轉化,讓學生初步體會人歸的數學思想。
重點、難點
1、重點:有理數減法法則及其應用。
2、難點:有理數減法法則的應用符號的改變。
教學過程:
一、創設情景,導入新課
1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發現減法運算與加法運算的關系嗎?
(學生分組討論,大膽發言,總結有理數的減法法則)
減去一個數等于加上這個數的相反數
教師提問、啟發:(1)法則中的“減去一個數”,這個數指的是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?
三、應用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內練習:P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。
四、總結反思
(1) 有理數減法法則:減去一個數,等于加上這個數的相反數。
(2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。
五、作業
P.27習題1.4A組1、2、5、6
備選題
填空:比2小-9的數是 。
а比а+2小 。
若а小于0,е是非負數,則2а-3е 0。
《有理數的減法》教案 篇6
教學目標
1.理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算;(重點)
2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算技能.
教學過程
一、情境導入
北京天氣預報網每天實時播報天氣情況,它會告訴我們各個城市的天氣狀況和氣溫變化.下圖是20xx年1月30日北京天氣預報網上的北京天氣情況,從下圖我們可以得知北京從周五到下周二的最高溫度為6℃,最低溫度為-5℃.那么它的溫差怎么算?6-(-5)=?
《1.3.2有理數的減法》同步練習含答案
1.把-6-(+7)+(-2)-(-9)寫成省略加號和括號的'和的形式是
A.-6-7+2-9B.-6-7-2+9
C.-6+7-2-9D.-6+7-2+9
2.式子-20+3-5+7的正確讀法是
A.負20加3減5加7的和
B.負20加3減負5加正7
C.負20加3減5加7D.負20加正3減負5加正7
3.下列交換加數位置的變形中,正確的是
A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3
C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1
4.某地冬季一天中午的氣溫是5℃,下午上升到7℃,受冷空氣影響,到夜間氣溫最低時又下降了9℃,則這天夜間的最低氣溫是________℃.
1.3.2有理數的減法》同步練習題(含答案)
一、選擇題
1.下列等式計算正確的是( )
A.(-2)+3=-1B.3-(-2)=1
C.(-3)+(-2)=6D.(-3)+(-2)=-5
答案D(-2)+3=1,故選項A錯誤;3-(-2)=3+2=5,故選項B錯誤;
(-3)+(-2)=-5,故選項C錯誤,選項D正確,故選D.
2.-3,-14,7的和比它們的絕對值的和小( )
A.-34B.-10C.10D.34
答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.
《有理數的減法》教案 篇7
學習目標:
1、理解加減法統一成加法運算的意義。
2、會將有理數的加減混合運算轉化為有理數的加法運算。
3、培養學習數學的興趣,增強學習數學的信心。
學習重點、難點:有理數加減法統一成加法運算
教學方法:講練相結合
教學過程
一、學前準備
1、一架飛機作特技表演,起飛后的.高度變化如下表:
高度的變化 上升4。5千米 下降3。2千米 上升1。1千米 下降1。4千米
記作 +4。5千米 3。2千米 +1。1千米 1。4千米
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米。
2、你是怎么算出來的,方法是
二、探究新知
1、現在我們來研究(20)+(+3)(5)(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導。
3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉化為 。再把加號記在腦子里,省略不寫
如:(—20)+(+3)—(—5)—(+7) 有加法也有減法
=(—20)+(+3)+(+5)+(—7) 先把減法轉化為加法
= —20+3+5—7 再把加號記在腦子里,省略不寫
可以讀作:負20、正3、正5、負7的 或者負20加3加5減7。
4、師生完整寫出解題過程
三、解決問題
1、解決引例中的問題,再比較前面的方法,你的感覺是
2、例題:計算—4。4—(—4 )—(+2 )+(—2 )+12。4
3、練習:計算 1)(7)(+5)+(4)(10)
三、鞏固
1、小結:說說這節課的收獲
2、P241、2
3、計算
1)2718+(7)32 2)
四、作業
1、P255 2、P26第8題、14題
《有理數的減法》教案 篇8
教學目標
1、 經歷探索有理數減法法則的過程。
2、理解并初步掌握有理數減法法則,會做有理數減法運算。
3、能根據具體問題 ,培養抽 象概括能力和口頭表達能力。
教學重點
運用有理數減法法則做有理數減法運算。
教學難點
有理數減法法則的得出。
教具 學具
多媒體、教材 、計算器
教學方法
研討法、講練結合
教學過程
一、 引入新課:
師:下面列出的是連續四周的最高和最低氣溫:
第1周 第二周 第三周 第四周
最高氣溫 +6℃ 0℃ +4℃ -2℃
最低氣溫 +2℃ -5℃ -2℃ - 5℃
周溫差
求每 周的溫差時,應運用哪一種運算?你認為計算結果應是什么?請列出算式,并寫出計算結果。
生:溫差分別是4℃、5℃、6℃、3℃,應使用減法運算。
列式為;
(+6)-(+2)=4
0 -(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教學過程
二、 有理數減法法則的推倒:
師:1、根據上面的計算和計算結果,讓我們以求四周的溫差為例子研究一下,是否可以用加法的知識類做減法的.運算。
2、是否能直接把減法轉化為加法來求差?猜想一下,完成這個轉化的法則是什么?
3 、自己設計一些有理數的減法,用計算器檢驗一下你 歸納的減法法則是否正確。
舉例: (-5)+( )=-2
得出 (-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而 (-2)+(+5)=+3
有理數減法法則:減去一個數,等于加上這個數的相反數。
三、 法則的應用:
例1:先做筆算,再 用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教學過程
解:(1 )原式= -34+(-56)+(+28)
=-90+(+28)
= -62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:強調計算過程不能跳步,體現有理數減法法則的運用。
檢 測 題
五、 練習反饋:
書P411、2、 3
師:巡視個別指導,訂正答案。
六、小結
有理數減法法則:
減去一個數,等于加上這個數的相反數。
作業書P50、515、6(作業本上)
板書
25有理數的減法(一)
有理數減法法則:
減去一個數,等于加上
這個數的相反數。 例1:先做筆算,再用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
《有理數的減法》教案 篇9
教學目標
1.理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算;
2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算能力.
3.通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想.
教學建議
(一) 重點、難點分析
本節重點是運用有理數的減法法則熟練進行減法運算。解有理數減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據有理數加法法則確定所求結果的符號和絕對值.理解有理數的減法法則是難點,突破的關鍵是轉化,變減為加.學習中要注意體會:小學遇到的小數減大數不會減的問題解決了,小數減大數的差是負數,在有理數范圍內,減法總可以實施.
(二)知識結構
(三)教法建議
1.教師指導學生閱讀教材后強調指出:由于把減數變為它的相反數,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統一用加法來解決.
2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的
3. 因為任何減法運算都可以統一成加法運算,所以我們沒有必要再規定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶.
4.注意引入負數后,小的數減去大的數就可以進行了,其差可用負數表示。
秋高氣爽、瓜果飄香,在這個收獲的季節,我們又迎來了一個充滿希望的新學期。因此,編輯老師為各位老師準備了這篇20xx初一上冊數學第一單元教案,希望可以幫助到您!
教學目標
1.理解有理數除法的`意義,熟練掌握有理數除法法則,會進行有理數的除法運算;
2.了解倒數概念,會求給定有理數的倒數;
3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過有理數的除法運算,培養學生的運算能力。
教學建議
。ㄒ唬┲攸c、難點分析
本節教學的重點是熟練進行有理數的除法運算,教學難點是理解有理數的除法法則。
1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。
2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。
在有整除的情況下,應用第二個法則比較方便
在能整除的情況下,應用第二個法則比較方便。
教法建議
1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。
2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。
3.理解倒數的概念
(1)根據定義乘積為1的兩個數互為倒數。
(2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。
(3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。
4.關于倒數的求法要注意:
(1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.
(2)正數的倒數是正數,負數的倒數仍是負數.
(3)負倒數的定義:乘積是-1的兩個數互為負倒數.
《有理數的減法》教案 篇10
教學目標:
1. 知識與技能:使學生理解加減法統一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,
2. 過程與方法:經歷加減法統一成加法的過程,體會加法的運算律在運算中的應用
3. 情感、態度與價值觀:滲透用轉化的思想看問題以及解決問題,鼓勵學生依據法則簡化運算
教學重點:能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,
教學難點:準確、熟練地進行加減混合運算
教學過程
一、課前預習
1、有理數的加法法則是什么? 2、有理數的減法法則是什么? 3、有理數的加法有什么運算律?具體內容是什么? 4、計算下列各題 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12
二、自主探索
根據有理數減法法則,有理數的加減混合運算可以統一為加法運算
例1、計算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統一為加法 = 26+(-42)---------------------------------------運用運算律 =-16 (2) (3)(4) (5)
算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數的加減混合運算,我們還可以按下列步驟進行計算: 解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------統一加號 =-6+13-5-3+6----------------------------------------省略加號 =-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5 說明: 省略加號的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6這五個數的`和。
例2.計算:
(1) -3-5+4 (2)-26+43-24+13-46
解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 數據代入時,注意括號的運用]
(2) (3)(4)
例5、在伊拉克的戰爭中,謀生化小組沿東西方向路進行檢查, 約定向東為正,某天從A地到B地結束時行走記錄為(單位:km)
+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 問:(1)B地在A地何方,相距多少千米?
(2)這小組這一天共走了多少千米
三、學習小結
這節課你學會了哪幾種運算?
四、隨堂練習
A類
1、計算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)
(3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2 計算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B類
3. 計算 (1) + + ++ (2) + + ++
《有理數的減法》教案 篇11
教學目標
1.理解掌握法則,會將運算轉化為加法運算;
2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過運算,培養學生的運算能力.
3.通過揭示法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想.
教學建議
(一) 重點、難點分析
本節重點是運用法則熟練進行減法運算。解有理數減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據有理數加法法則確定所求結果的符號和絕對值.理解法則是難點,突破的關鍵是轉化,變減為加.學習中要注意體會:小學遇到的小數減大數不會減的問題解決了,小數減大數的差是負數,在有理數范圍內,減法總可以實施.
。ǘ┲R結構
。ㄈ┙谭ńㄗh
1.教師指導學生閱讀教材后強調指出:由于把減數變為它的相反數,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統一用加法來解決.
2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的.
3. 因為任何減法運算都可以統一成加法運算,所以我們沒有必要再規定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶.
4.注意引入負數后,小的數減去大的數就可以進行了,其差可用負數表示。
教學設計示例
一、素質教育目標
(一)知識教學點
1.理解掌握法則.
2.會進行運算.
(二)能力訓練點
1.通過把減法運算轉化為加法運算,向學生滲透轉化思想.
2.通過有理數減法法則的推導,發展學生的邏輯思維能力.
3.通過運算,培養學生的運算能力.
(三)德育滲透點
通過揭示法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想.
。ㄋ模┟烙凉B透點
在小學算術里減法不能永遠實施,學習了本節課知道減法在有理數范圍內可以永遠實施,體現了知識體系的完整美.
二、學法引導
1.教學方法:教師盡量引導學生分析、歸納總結,以學生為主體,師生共同參與教學活動.
2.學生學法:探索新知→歸納結論→練習鞏固.
三、重點、難點、疑點及解決辦法
1.重點:有理數減法法則和運算.
2.難點:有理數減法法則的推導.
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
教師提出實際問題,學生積極參與探索新知,教師出示練習題,學生以多種方式討論解決.
七、教學步驟
。ㄒ唬﹦撛O情境,引入新課
1.計算(口答)(1); (2)-3+(-7);
(3)-10+(+3); (4)+10+(-3).
2.由實物投影顯示課本第42頁本章引言中的畫面,這是北京冬季里的一天,白天的氣溫是10℃,夜晚的最低氣溫是-5℃.這一天的氣溫比最低氣溫高多少?
教師引導學生觀察:
生:10℃比-5℃高15℃.
師:能不能列出算式計算呢?
生:10-(-5).
師:如何計算呢?
教師總結:這就是我們今天要學的內容.(引入新課,板書課題)
【教法說明】1題既復習鞏固有理數加法法則,同時為進行有理數減法運算打基礎.2題是一個具體實例,教師創設問題情境,激發學生的認知興趣,把具體實例抽象成數學問題,從而點明本節課課題—.
。ǘ┨剿餍轮v授新課
1.師:大家知道10-3=7.誰能把10-3=7這個式子中的性質符號補出來呢?
生:(+10)-(+3)=+7.
師:計算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
師:讓學生觀察兩式結果,由此得到
。ǎ10)-(+3)=+10)+(-3). (1)
師:通過上述題,同學們觀察減法是否可以轉化為加法計算呢?
生:可以.
師:是如何轉化的呢?
生:減去一個正數(+3),等于加上它的相反數(-3).
【教法說明】教師發揮主導作用,注重學生的參與意識,充分發展學生的思維能力,讓學生通過嘗試,自己認識減法可以轉化為加法計算.
2.再看一題,計算(-10)-(-3).
教師啟發:要解決這個問題,根據有理數減法的意義,這就是要求一個數使它與(-3)相加會得到-10,那么這個數是誰呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.
教師給另外一個問題:計算(-10)+(+3).
生:(-10)+(+3)=-7.
教師引導、學生觀察上述兩題結果,由此得到:
。ǎ10)-(-3)=(-10)+(+3). (2)
教師進一步引導學生觀察(2)式;你能得到什么結論呢?
生:減去一個負數(-3)等于加上它的相反數(+3).
教師總結:由(1)、(2)兩式可以看出減法運算可以轉化成加法運算.
【教法說明】由于學生剛剛接觸有理數減法運算難度較大,為面向全體,通過第二個題給予學生進一步觀察比較的機會,學生自己總結、歸納、思考,此時學生的思維活躍,易于充分發揮學生的學習主動性,同時也培養了學生分析問題的能力,達到能力培養的目標.
師:通過以上兩個題目,請同學們想一想兩個有理數相減的法則是什么?
學生活動:同學們思考,并要求同桌同學相到敘述,互相糾正補充,然后舉手回答,其他同學思考準備更正或補充.
師:出示有理數減法法則:減去一個數,等于加上這個數的相反數.(板書)
教師強調法則:(1)減法轉化為加法,減數要變成相反數.(2)法則適用于任何兩有理數相減.(3)用字母表示一般形式為:.
【教法說明】結合引入新課中溫度計的實例,進一步驗證了法則的合理性,同時向學生指出了有理數減法的實際意義.從而使學生體會到數學來源于實際,又服務于實際.
4.例題講解:
[出示投影1 (例題1、2)]
例1 計算(1)(-3)-(-5); (2)0-7;
例2 計算(1)7.2-(-4.8); (2)-.
例1是由學生口述解題過程,教師板書,強調解題的規范性,然后師生共同總結解題步驟:(1)轉化,(2)進行加法運算.
例2兩題由兩個學生板演,其他學生做在練習本上,然后師生講評.
【教法說明】學生口述解題過程,教師板書做示范,從中培養學生嚴謹的學風和良好的學習習慣.例1(2)題是0減去一個數,學生在開始學時很容易出錯,這里作為例題是為引起學生的重視.例2兩題是簡單的變式題目,意在說明有理數減法法則不但適用于整數,也適用于分數、小數,即有理數.
師:組織學生自己編題,學生回答.
【教法說明】教師與學生以平等身份參與教學,放手讓學生自己編擬有理數減法的題目,其目的是讓學生鞏固怕學知識.這樣做,一方面可以活躍學生的思維,培養學生的表達能力.另一方面通過出題,相互解答,互相糾正,能增強學生學習的主動性和參與意識.同時,教師可以獲取學生掌握知識的反饋信息,對于存在的問題及時回授.
。ㄈ﹪L試反饋,鞏固練習
師:下面大家一起看一組題.
。鄢鍪就队2 (計算題1、2)]
1.計算(口答)
(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);
(4)(-4)-9 (5)0-(-5); (6)0-5.
2.計算
(1)(-2.5)-5.9; (2)1.9-(-0.6);
(3)-; (4)-.
學生活動:1題找學生口答,2題找四個學生板演,其他同學做在練習本上.
【教法說明】學生對有理數減法法則已經熟悉,學生在做練習時,要引導學生注意歸納有理數減法規律,而不要只是簡單機械地將減法化成加法,為以后逐步省略化成加法的中間步驟做準備.
用實物投影顯示課本第45頁的畫面.
3.世界峰是珠穆朗瑪峰,海拔高度是8848米,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392米,兩處高度相差多少?
生答:8848-(-392)=8848+392=9240.
所以兩地高度相差9240米.
【教法說明】此題是實際問題,與新課引入中的實際問題前后呼應,貫徹《教學大綱》中規定的“要使學生受到把實際問題抽象成教學問題的訓練,逐步形成用數學意識”的要求,把實際問題轉化為有理數減法,說明數學來源于實際,又用于實際.
(四)課堂小結
提問:通過本節課學習你學到了什么?生答:略.
師:有理數減法法則是一個轉化法則,要求同學們掌握并能應用其計算.對于小學不能解決的2-5這類不夠減的問題就不成問題了.也就是說,在有理數范圍內,減法總可能實施.
八、隨堂練習
1.填空題
(1)3-(-3)=____________; (2)(-11)-2=______________;
(3)0-(-6)=____________; (4)(-7)-(+8)=____________;
(5)-12-(-5)=____________; (6)3比5大____________;
(7)-8比-2小___________; (8)-4-( )=10;
(9)如果,,則的符號是___________;
(10)用算式表示:珠穆朗瑪峰的海拔高度是8848米,吐魯番盆地的海拔高度是-155米,兩處高度相差多少米__________.
2.判斷題
(1)兩數相減,差一定小于被減數.( )
(2)(-2)-(+3)=2+(-3).( )
(3)零減去一個數等于這個數的相反數.( )
(4)方程在有理數范圍內無解.( )
(5)若,,,.( )
九、布置作業
。ㄒ唬┍刈鲱}:課本第83頁中2.偶數題,3.偶數題,4.偶數題.
。ǘ┻x做題:課本第84頁中5、8.
十、板書設計
隨堂練習答案.
1.(1)6; (2)-13; (3)6; (4)-15;
(5)-7; (6)-2; (7)6; (8)-4;
(9)+; (10)8848-(-155).
2.× × √ × √
作業 答案
。ㄒ唬┍刈鲱}:2.(2)102;(4)-68;(6)-210;(8)92
3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11
4.(2);(4);(6);(8)
。ǘ┻x做題:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)
8.(1)4;(2)5;(3)7;(4)5
《有理數的減法》教案 篇12
第1課時
三維目標
一、知識與技能
(1)理解并掌握有理數的減法法則,能進行有理數的減法運算.
。2)通過把減法運算轉化為加法運算,讓學生了解轉化思想.
二、過程與方法
經歷探索有理數的加法運算律的過程,培養學生的觀察能力和思維能力.
三、情感態度與價值觀
體會有理數加法運算律的應用價值.
教學重、難點與關鍵
1.重點:掌握有理數減法法則,能進行有理數的減法運算.
2.難點:探索有理數減法法則,能正確完成減法到加法的`轉化.
3.關鍵:正確完成減法到加法的轉化.
四、教學過程
一、復習提問,新課引入
1.計算.
(1)(-2.6)+(-3.1)(2)(-2)+3
2.填空.
。1)__+6=20(2)20+______=17
(3)___+(-2)=5(4)(-20)+___=-6
五、新授
實際問題中有時還要涉及有理數的減法,例如,某地一天的氣溫是-3℃~4?℃,這天的溫差(最高氣溫減最低氣溫,單位:℃)就是4-(-3),?這里用到正數與負數的減法,你會計算它嗎?(鼓勵學生探索)
可以先從溫度計看出4℃比-3℃高7℃.
另外,我們知道減法和加法是互為逆運算.計算4-(-3),?就是要求出一個數x,使x與-3的和等于4,因為7+(-3)=4,所以
4-(-3)=7①
另外4+(+3)=7,②
比較①、②兩式,你發現了什么?
發現:4-(-3)=4+(+3).
這就是說減法可以轉化為加法,如何轉化呢?
減-3相當于加3,即加上“-3”的相反數.
比較上面的式子,計算下列各式:
50-20=50+(-20)=
50-10=50+(-10)=
50-0=50+0=
50-(-10)=50+10=
50-(-20)=50+20=
這些數減-3的結果與它們加+3的結果仍然相同.
歸納:通過上述討論,得出:
有理數的減法可以轉化為加法來進行.“相反數”是轉化的橋梁.有理數減法法則:
減去一個數,等于加上這個數的相反數.
用式子表示為:a-b=a+(-b).
注意:減法在運算時有2個要素要發生變化。
1減號變加號
2減數變相反數
例4:計算:
(1)-3-(-5)(2)7.2-(-4.8)
。3)0 – 8(4)(-5)-0
分析:以上是有理數的減法,按減法法則,把減法轉化為加法.
11-3(--5)2411113例3:計算:(1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:計算:(1) (-2.5) – 5.9(2)
強調:減號變加號、減數變相反數,必須同時改變,(4)?題中減數的符號為“+”號,省略沒有定.
綜合運用:課本25頁,6題
六、課堂練習
1:計算:
(1) 6-9(2)(+4)-(-7)
(3)(-5)-(-8)(4)0-(-5)
(5)(-2.5)-5.9(6)1.9-(-0.6)
2、列式計算:
(1)比2 ℃低8 ℃的溫度
(2)比-3 ℃低6 ℃的溫度
3、課本26頁7、8、10題略
2.差數一定比被減數小嗎?
提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7.
七、課堂小結
引進負數后,任意兩個有理數都可以求出它們的差,結果可能為正數(大數減去小數),也可能為負數(小數減去大數),還可能為0(相等的兩數相減),?學習有理數減法,關鍵在于處理好兩個“變”字;(1)?改變運算符號──即把減法轉化為加法.(2)改變減數的符號──即減數變為它的相反數,?這兩個“變”要同時進行,而被減數不變.
八、作業布置
1.課本第25頁至第26頁,習題1.3第3、4、11、12題.
九、板書設計: