中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 說課稿 > 《勾股定理》優秀說課稿范文(精選14篇)

《勾股定理》優秀說課稿范文

發布時間:2024-03-03

《勾股定理》優秀說課稿范文(精選14篇)

《勾股定理》優秀說課稿范文 篇1

  本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發創造,優化課堂教學。努力做到有傳統的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養了學生的素質能力,達到了良好的教學效果。

  (一)創設情境,引入新課

  課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。

  (二)引導學生,探究新知

  ①初步感知定理:這一環節我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題,現在請同學觀察,看看有什么發現?(學案出示)使問題更形象、具體。

  ②提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

  ③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。

  ④總結定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數量關系即勾股定理。

  (三)反饋訓練,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養,我設計了一組坡有難度的練習題。

  (四)歸納總結,深化新知

  本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

  通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業。拓展新知

  讓學生收集有關勾股定理的證明方法,下節課展示、交流。使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

  (六)板書設計,明確新知

《勾股定理》優秀說課稿范文 篇2

  一、教材分析:

  (一)教材的地位與作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中情感態度方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

  第一、情境導入古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

  第二、追溯歷史解密真相

  勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用"數格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的.方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三、推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。

  教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

  教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

  第四、取其精華古為今用

  我按照"理解—掌握—運用"的梯度設計了如下三組習題。

  (1)對應難點,鞏固所學。

  (2)考查重點,深化新知。

  (3)解決問題,感受應用。

  第五、溫故反思任務后延

  在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業,分層作業體現了教育面向全體學生的理念。

《勾股定理》優秀說課稿范文 篇3

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級《數學》下冊內容。“勾股定理”是安排在學生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。

  二、教學目標

  綜上分析及教學大綱要求,本課時教學目標制定如下:

  1、知識目標

  知道勾股定理的由來,初步理解割補拼接的面積證法。

  掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

  2、能力目標

  在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養學生的觀察力、抽象概括能力、創造想象能力以及科學探究問題的能力。

  3、情感目標

  通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發生、發展過程。

  介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發學生的數學激情及愛國情感。

  三、教學重難點

  本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

  四、教學問題診斷

  本 節主要攻克的問題就是本節的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說, 有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。

  五、教法與學法分析

  [教學方法與手段] 針對八年級學生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

  [學法分析] 在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

  六、教學流程設計

  1、創設情境,引入新課

  本節課開始利用多媒體介紹了在北京召開的20xx年 國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發學生的興趣和民族自豪感,它是課堂教學的重要一環。“好的開始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學 生思維的閘門,激勵探究,使學生的學習狀態由被動變為主動,在輕松愉悅的氛圍中學到知識。

  2、觀察發現,類比猜想

  讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結 論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發現任意直角三 角形(圖2)斜邊上長出的正方形中網格不規則,沒法數出。通過同學們的討論,發現數不出來的原因是格子不規則,從而想到了用補或割的方法進行計算,其原則就是由不規則經過割補變為規則。

  3、實驗探究,證明結論

  因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規則的平面圖形經割補,變為規則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統證法”,此時讓學生自己探索,然后討論。選用“總統證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統證法”,大大增強了學生的自信心和自豪感。

  5、自己動手,拼出弦圖

  讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的 直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們 在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結反思

  通 過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創造與體驗的方 法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發興 趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗 室”,學生通過自己活動得出結論,使創新精神與實踐能力得到了發展。

  七、設計說明

  1、根據學生的知識結構,我采用的數學流程是:創設情境引入新課——觀察發現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發生、形成和發展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。

  2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發展也有很大作用。

《勾股定理》優秀說課稿范文 篇4

  一、說教材分析

  1.教材的地位和作用

  華師大版八年級上直角三角形三邊關系是學生在學習數的開方和整式的乘除后的一段內容,它是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個直角三角形三條邊之間的數量關系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。

  因此他的教育教學價值就具體體現在如下三維目標中:

  知識與技能:

  1、經歷勾股定理的探索過程,體會數形結合思想。

  2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養學生的數學語言表達能力和初步的邏輯推理能力。

  情感、態度與價值觀:

  1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養學生的合作意識和然所精神。

  3、讓學生通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。

  由于八年級的學生具有一定分析能力,但活動經驗不足,所以

  本節課教學重點:勾股定理的探索過程,并掌握和運用它。

  教學難點:分割,補全法證面積相等,探索勾股定理。

  二、說教法學法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

  先從學生熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生自己的課堂。

  學法:我想通過“操作+思考”這樣方式,有效地讓學生在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。

  三、說教學程序設計

  1、故事引入新課,激起學生學習興趣。

  牛頓,瓦特的故事,讓學生科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。

  2、探索新知

  在這里我設計了四個內容:

  ①探索等腰直角三角形三邊的關系

  ②邊長為3、4、5為邊長的直角三角形的三邊關系

  ③學生畫兩直角邊為2,6的直角三角形,探索三邊的關系

  ④三邊為a、b、c的直角三角形的三邊的關系,(證明)

  ⑤勾股定理歷史介紹,讓學生體會勾股定理的文化價值。

  體現從特殊到一般的發現問題的過程。

  3、新知運用:

  ①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

  ②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.

  ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

  ④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了步路(假設2步為1米),卻踩傷了花草.

  4、小結本課:

  學完了這節課,你有什么收獲?

  老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的`,我們要多思考。勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。

  反思:

  教學設計主要是體現從特殊到一般的知識形成過程,探索問題的設計上有點難,第二個問題應加個3,3為直角邊的等腰直角三角形讓學生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設計進去,就為后面的練習留足時間。探索時間較長,整個課程推行進度較慢,練習較少。

  對學生的啟發不夠,對學生的關注不夠,學生對問題的思考不能及時想出來,沒有及時很好的引導,啟發,應讓學生多一些思考的空間,并及時交給思考的方法。學生反應不是太好,能力差,也或許是因為問題設計的較難,沒有很好的體現出探究。

  預期的目標沒有很好的達成,學生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發展。

《勾股定理》優秀說課稿范文 篇5

  尊敬的各位領導,各位老師:

  大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節《勾股定理》(第一課時),下面我分五部分來匯報我這節課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

  一、教材分析

  (一) 教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節課有著舉足輕重的地位。

  (二)教學目標

  根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

  1、知識與技能方面

  了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。

  2、過程與方法方面

  經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。

  3、情感態度與價值觀方面

  (1)通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

  (2) 通過研究一系列富有探 究性的問題,培養學生與他人交流、合作的意識和品質。

  (三)教學重點難點

  教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

  教學難點:勾股定理的證明。

  二、學情分析

  我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和表現自己才華的機會;更希望教師滿足他 們的創造愿望。

  三、教法選擇

  根據本節課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發現法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

  四、學法指導:

  為了充分體現《新課標》的要求,培養學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主人。

  五、教學過程

  根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節課的教學過程我是這樣設計的:

  (一)創設情境,引入新課

  一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的是為了用數學解決實際問題。我設計了以下題目:

  星期日老師帶領全班同學去某山風景區游玩,同學們看到山勢險峻,查看景區示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

  答案是不能的。然后教師指出,通過這節課的學習,問題將迎刃而解。

  設計意圖:以趣味性題目引入。從而設置懸念,激發學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰,能激發學生探究的欲望,自然引出下面的環節。

  緊接著出示本節課的學習目標:

  1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、掌握勾股定理的內容,并會簡單應用。

  (二)勾股定理的探索

  1、猜想結論

  (1)探究一:等腰直角三角形三邊關系。

  由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

  提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

  (2、)探究二:一般的直角三角形三邊關系。

  在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發現了勾股定理, 但他比商高晚出生五百多年。

  設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發向上。

  (三)勾股定理的應用

  1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。

  2、教學例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內通過.

  因為對角線AC的長度最大,所以只能試試斜著 能否通過.

  從而將實際問題轉化為數學問題.

  提示:

  (1)在圖中構造出一個直角三角形。(連接AC)

  (2)知道直角△ABC的那條邊?

  (3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

  (四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

  設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

  (五)課堂小結

  對學生提問:"通過這節課的學習有什么收獲?"

  學生同桌間暢談自己的學習感受和體會,并請個別學生發言。

  設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養了學生口頭表達能力。

  (六)達標訓練與反饋

  設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。

  以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

《勾股定理》優秀說課稿范文 篇6

  各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。

  教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。

  一、說教材

  “勾股定理的逆定理”一節?是在上節“勾股定理”之后繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。

  二、說學情

  中學生心理學研究指出,初中階段是智力發展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發展,觀察能力、記憶能力和想象能力也隨著迅速發展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。

  三、說教學目標

  根據數學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。

  【知識與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  【過程與方法】

  通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  【情感態度與價值觀】

  通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

  四、說教學重難點

  重點:勾股定理逆定理的應用;

  難點:探究勾股定理逆定理的證明過程。

  五、說教學方法

  科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統一。基于此,我準備采用的教法是講練結合法,小組討論法。

  六、說教學過程

  (一)導入新課

  在導入新課環節,我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節課的課題——勾股定理逆定理。

  【設計意圖】通過復習回顧能很好地將新舊知識聯系起來,使學生形成對知識的系統的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。

  (二)探究新知

  一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題去提示本節課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現,馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發了學生的興趣,因而全身心地投入到學習中來創造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數學就在身邊。

  因為幾何來源于現實生活,對初二學生來說選擇適當的時機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

  接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發揮教科書的作用養成學生看書的習慣這也是在培養學生的自學能力。

  (三)鞏固提高

  本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。

  第二題則進了一層用字母代替了數字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

  思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節教法同時注意加強有針對性的個別指導把發展學生的思維和隨時把握學生的學習效果結合起來。

  (四)小結作業

  在小結環節,我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養能力方面比如輔助線的添法。

  設計意圖:這樣設計可以幫助學生以反思的形式回憶本節課所學的知識,加深對知識的印象,有利于學生良好的數學學習習慣的養成。

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。

《勾股定理》優秀說課稿范文 篇7

  尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理解與設計。

  一、教材分析:

  (一) 教材的地位與作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

  首先,情境導入 古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用“數格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了“從特殊到一般”的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運用”的梯度設計了如下三組習題。

  (1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

  第五步 溫故反思 任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業,分層作業體現了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節課探究體驗貫穿始終,展示交流貫穿始終,習慣養成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發學生再創數學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

《勾股定理》優秀說課稿范文 篇8

  一、說教材

  (一)教材分析

  本節內容選自人教版八年級數學下冊第17章第二節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判定定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法來證明幾何問題的思想,為將來學習解析幾何埋下了伏筆。

  (二)教學目標

  根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。

  知識技能:

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

  過程方法:

  1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程

  2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合方法的應用

  3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  情感態度:

  在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

  (三)學情分析

  盡管已到初二下學期的學生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構造法”證明勾股定理的逆定理學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,而勾股定理逆定理的應用是本節重點

  重點:勾股定理逆定理的應用

  難點:勾股定理逆定理的證明

  二、說教法學法

  數學課程不僅注重知識、技能,以及情感意識和創造力的培養,同樣注重社會實踐和體驗,教學要遵循以教師為主導,學生為主體的原則,因此我采用的教法學法如下:

  在教學中以小組合作,自主探索為形式,采用“提問引導法”,通過“提出疑問”來啟發誘導學生,讓學生自覺主動地去分析問題、解決問題,學生在操作過程中不斷“發現問題——解決問題”,變學生“學會”為“會學”.這樣不僅使學生學習目標明確,而且能夠培養他們的合作精神和自主學習的能力。根據學法指導自主性和差異性原則,本節我主要采用自主探究學習法,通過設計一系列問題,引導學生主動探究新知,體現學習自主性,從不同層面發掘不同學生的不同能力。

  三、說教學準備

  1、多媒體教學課件

  2、紙片、直尺、圓規等

  3、對學生事先分組

  四、說教學過程

  根據本課教學內容以及數學課程學科特點,結合八年級學生的實際認知水平,我設計了如下六個教學環節:

  (一)復習提問、引入新課

  問題1:前面我們學習了勾股定理,你能說出它的題設和結論嗎?

  問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

  (二)動手操作、觀察猜想

  探究一:分組做實驗

  第一組同學每人畫一個邊長為3cm、4 cm、5 cm的三角形;

  第二組同學每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

  第三組同學每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

  第四組同學每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

  問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

  問題2:前三個三角形三邊具有怎樣的關系呢?

  問題3: 結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

  學生活動:動手、觀察、測量、思考、猜想

  設計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養學生動手操作能力和尋求解決數學問題的一般方法,又體驗了數與形的內在聯系。

  (三)實踐驗證,歸納證明

  教師出示問題

  問題1:對于一個真命題,它的逆命題是否也為真?學生舉例說明。

  勾股定理的逆命題是否也正確?怎么證明?

  問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系,你是怎樣得到的?(出示紙片)

  問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

  學生活動:觀察思考,動手操作,分組討論,交流合作(教師引導學生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)

  設計意圖:把“構造直角三角形”這一方法的獲取過程交給學生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發現的愉悅,有效地突破本節的難點。

《勾股定理》優秀說課稿范文 篇9

  一、教學目標

  (一)知識點

  1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。

  2、會利用勾股定理解釋生活中的簡單現象。

  (二)能力訓練要求

  1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發展合情推理能力,體會數形結合的思想。

  2、在探索勾股定理的過程中,發展學生歸納、概括和有條理地表達活動過程及結論的能力。

  (三)情感與價值觀要求

  1、培養學生積極參與、合作交流的意識。

  2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的`勇氣。

  二、教學重、難點

  重點:

  探索和驗證勾股定理。

  難點:

  在方格紙上通過計算面積的方法探索勾股定理。

  三、教學方法

  交流探索猜想。

  在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關系。

  四、教具準備

  1、學生每人課前準備若干張方格紙。

  2、投影片三張:

  第一張:填空(記作1.1.1 A);

  第二張:問題串(記作1.1.1 B);

  第三張:做一做(記作1.1.1 C)。

  五。教學過程

  Ⅰ。創設問題情境,引入新課

  出示投影片(1.1.1 A)

  (1)三角形按角分類,可分為_________、_________、_________。

  (2)對于一般的三角形來說,判斷它們全等的條件有哪些?對于直角三角形呢?

  (3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?

《勾股定理》優秀說課稿范文 篇10

  (一)創設問題情境,引入新課:

  在這一環節中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。

  (二)實踐猜想

  本環節要圍繞以下幾個活動展開:

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發現。

  4、用恰當的語言敘述你的結論

  在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發展區,面向不同層次的每一名學生,每一名學生都有參與數學活動的機會,最后運用恰當的語言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的`時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;

  1)學生的參與意識與動手能力。

  2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。

  3)數形結合的思想方法及歸納能力。

  (三)推理證明

  八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。

  1、三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?

  2、△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?

  為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發現創造的愉悅,有效的突破了難點。

《勾股定理》優秀說課稿范文 篇11

  (一)創設情境,引入新課

  課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。

  (二)引導學生,探究新知

  ①初步感知定理:這一環節我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題,現在請同學觀察,看看有什么發現?(學案出示)使問題更形象、具體。

  ②提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

  ③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。

  ④總結定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數量關系即勾股定理。

  (三)反饋訓練,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養,我設計了一組坡有難度的練習題。

  (四)歸納總結,深化新知

  本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

  通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業。拓展新知

  讓學生收集有關勾股定理的證明方法,下節課展示、交流。使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

  (六)板書設計,明確新知

《勾股定理》優秀說課稿范文 篇12

  說課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學法、授課程序等方面的思路、教學設計、|板書設計及其依據面對面地對同行(同學科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數學《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。

  一、教材分析:

  (一)、本節課在教材中的地位作用

  “勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學生必須掌握。

  (二)、教學目標:

  根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。

  知識技能:

  1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

  過程與方法:

  1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程

  2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用

  3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  情感態度:

  1、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的`和諧及辯證統一的關系

  2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

  (三)、學情分析:

  盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節課的重點、難點和關鍵。

  重點:勾股定理逆定理的應用

  難點:勾股定理逆定理的證明

  關鍵:輔助線的添法探索

  二、教學過程:

  本節課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的。

  (一)、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。

  (二)、創設問題情境

  一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發了學生的興趣,因而全身心地投入到學習中來,創造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。

  (三)、學生在教師的指導下嘗試解決問題,總結規律(包括難點突破)

  因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

  接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發揮教課書的作用,養成學生看書的習慣,這也是在培養學生的自學能力。

  (四)、組織變式訓練

  本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養了學生靈活轉換、舉一反三的能力,發展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節教法,同時注意加強有針對性的個別指導,把發展學生的思維和隨時把握學生的學習效果結合起來。

  (五)、歸納小結,納入知識體系

  本節課小結先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養能力方面,比如輔助線的添法,數形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發現并證明的,這種討論問題的方法是培養我們發現問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

  (六)、作業布置

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養他們的思維素質,發展學生的個性有積極作用。

  三、說教法、學法與教學手段

  為貫徹實施素質教育提出的面向全體學生,使學生全面發展主動發展的精神和培養創新活動的要求,根據本節課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規律和認知水平,本節課我主要采用了以學生為主體,引導發現、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養學生的學習興趣,調動學生的學習積極性,發展學生的思維;有利于培養學生動手、觀察、分析、猜想、驗證、推理能力和創新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節課我還采用了理論聯系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯系學生現有的經驗和感性認識,由最鄰近的知識去向本節課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節課遵循從生動直觀到抽象思維的認識規律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發現知識的過程;力爭使學生在獲得知識的過程中得到能力的培養。

《勾股定理》優秀說課稿范文 篇13

  尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理解與設計。

  一、教材分析:

  (一) 教材的地位與作用

  從知識結構上看百度一下,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具備相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引領學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此教師利用幾何直觀提出問題,引領學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

  首先,情境導入 古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用“數格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具備局限性。因此教師應引領學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了“從特殊到一般”的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環節層層深入步步引領,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引領者與合作者”這一教學理念。學生會發現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運用”的梯度設計了如下三組習題。

  (1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

  第五步 溫故反思 任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業,分層作業體現了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節課探究體驗貫穿始終,展示交流貫穿始終,習慣養成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發學生再創數學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

《勾股定理》優秀說課稿范文 篇14

  今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節的第一課時。

  一、教學背景分析

  1、教材分析

  本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學情分析

  通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。

  3、教學目標:

  根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:

  知識與能力目標:了解勾股定理的發現過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養在實際生活中發現問題總結規律的意識和能力.

  過程與方法目標:通過創設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。

  情感態度價值觀目標:感受數學文化,激發學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。

  4、教學重點、難點

  通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重難點為探索和證明勾股定理。

  二、教材處理

  根據學生情況,為有效培養學生能力,在教學過程中,以創設問題情境為先導,運用直觀教具、多媒體等手段,激發學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

  三、教學策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

  2、學法

  “授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發掘不同學生的不同能力,從而達到發展學生思維能力的目的,發掘學生的創新精神。

  3、教學模式

  根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

  四、教學過程

  (一)創設情境,引入新課

  利用多媒體課件,給學生出示20xx年國際數學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現實生活中提出趙爽弦圖,激發學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。

  (二)引導學生,探究新知

  1、初步感知定理:這一環節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題:現在也請你觀察,看看有什么發現?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規律,使學生再次感知發現的規律。

  2、提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。培養了學生的發散思維、一題多解和探究數學問題的能力。

  4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數量關系即勾股定理,培養了學生的語言表達能力和歸納概括能力。

  (三)反饋訓練,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養,設計一組有坡度的練習題:A組動腦筋,想一想,是本節基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯系,培養學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。

  (四)歸納小結,深化新知

  本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業,拓展新知

  讓學生收集有關勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

  (六)板書設計,明確新知

  本節課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

《勾股定理》優秀說課稿范文(精選14篇) 相關內容:
  • 勾股定理說課稿(精選15篇)

    今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節的第一課時。一、教學背景分析1、教材分析本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案...

  • 《勾股定理》說課稿(精選17篇)

    尊敬的各位評委:您們好!我來自明光市張八嶺中學。今天我說課的課題是《勾股定理》。本課選自九年義務教育滬科版八年級下冊初中數學第十九章第一節的第一課時。...

  • 關于《勾股定理》優秀說課稿(精選15篇)

    一、教材分析(一)教材地位與作用勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。...

  • 《勾股定理》說課稿優秀(精選15篇)

    一、教材分析:(一)教材的地位與作用從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。...

  • 2023《勾股定理》說課稿范文(通用14篇)

    一、教學目標1、讓學生通過對的圖形創造、觀察、思考、猜想、驗證等過程,體會勾股定理的產生過程。2、通過介紹我國古代研究勾股定理的成就感培養民族自豪感,激發學生為祖國的復興努力學習。...

  • 《勾股定理》說課稿(通用6篇)

    尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理...

  • 勾股定理說課稿

    尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理...

  • 《勾股定理》的說課稿(通用15篇)

    本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。...

  • 蘇科版《勾股定理》說課稿(精選17篇)

    一、教材分析(一)教材地位與作用勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。...

  • 初二數學教案《勾股定理》(通用13篇)

    一、教材分析:(一)教材的地位與作用從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。...

  • 《勾股定理》的說課稿范文(通用17篇)

    本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。...

  • 滬科版《勾股定理》說課稿(精選16篇)

    一、教材分析它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。因此他的教育教學價值就具體體現在如下三維目標中:知識與技能:1、經歷勾股定理的探索過程,體會數形結合思想。...

  • 北師版八上《勾股定理》說課稿(精選15篇)

    勾股定理就是繼續學習的一個直角三角形的判斷定理,下面就是小編整理的勾股定理說課稿蘇教版,歡迎來參考!一、教材分析勾股定理就是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它就是直角三角形的一條非常重要的性質,就...

  • 《勾股定理》教學反思(精選6篇)

    星期四下午講了《勾股定理逆定理》第一課時,現對本節課反思如下:(1)這節課的設計思路比較合理:著重體現“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆...

  • 數學 - 勾股定理說課稿(精選2篇)

    一、教材分析勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直...

  • 說課稿
主站蜘蛛池模板: 一区二区三区无码按摩精油 | 日韩成人免费中文字幕 | 亚洲欧洲日韩精品中文字幕 | 成年男女免费视频在线观看不卡 | 一级bb片 | 又色又爽又黄又粗暴的小说 | 成人超碰在线观看 | 欧美性在线视频 | 麻豆视频91传媒视频在线观看 | 欧美精品毛片久久久久久久 | 人妻少妇波多野结衣黑人 | JULIA无码人妻中文字幕在线 | 99re国产视频 | av网站在线免费观看 | 国内精自视频品线一区 | 中国孕妇变态孕交XXXX | 把插八插露脸对白内射 | 国产精品中文久久久久久久 | av网页观看 | 天堂а在线最新版在线 | 高清无码不用播放器av | 国产十区 | 岛国AV无码免费无禁网站麦芽 | 国产成人自拍视频在线观看 | 久久艹在线观看 | 国产主播久久 | 免费日p视频 | 中文字幕理论片 | 日本成人综合 | 精品色欧美色国产一区国产 | 成年免费大片黄在线观看片 | 99视频在线免费看 | 乱码午夜-极国产极内射 | 欧美福利视频 | gay图片 | 亚洲黄页网 | 91网视频在线观看 | 午夜理论在线观看无码 | 色七七桃花综合影院 | 草莓AV福利网站导航 | 日韩精品无码久久久久久 |