在學生易錯處反思
學生的知識背景、思維方式、情感體驗往往和成人不同,而其表達方式可能又不準確,這就難免有“錯”。例題教學若能從此切入,進行解后反思,則往往能找到“病根”,進而對癥下藥,常能收到事半功倍的效果!有這樣一個曾刊載于《中小學數學》初中(教師)版2004年第5期的案例:一位初一的老師在講完負負得正的規則后,出了這樣一道題:—3×(—4)= ?, A學生的答案是“9”,老師一看:錯了!于是馬上請B同學回答,這位同學的答案是“12”,老師便請他講一講算法:……,下課后聽課的老師對給出錯誤的答案的學生進行訪談,那位學生說:站在—3這個點上,因為乘以—4,所以要沿著數軸向相反方向移動四次,每次移三格,故答案為9。他的答案的確錯了,怎么錯的?為什么會有這樣的想法?又怎樣糾正呢?如果我們的例題教學能抓住這一契機,并就此展開討論、反思,無疑比講十道、百道乃至更多的例題來鞏固法則要好得多,而這一點恰恰容易被我們所忽視。
計算是初一代數的教學重點也是難點,如何把握這一重點,突破這一難點?各老師在例題教學方面可謂“千方百計”。例如在上完有關冪的性質,而進入下一階段——單項式、多項式的乘除法時,筆者就設計了如下的兩個例題:
(1)請分別指出(—2)2,—22,—2-2,2-2的意義;
(2)請辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
、-a3 ·(-a)2 =(-a)3+2 =-a5
、(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2