《反比例》教學設計(精選13篇)
《反比例》教學設計 篇1
教學內容:
P47~48,例7、正、反比例的比較。
教學目的:
進一步理解正、反比例的意義,弄清它們的聯系和區別,掌握它們的變化規律,能正確運用。
教學過程:
一、復習
判斷下面兩種理成不成比例,成什么比例,為什么?
(1)單價一定,數量和總價。
(2)路程一定,速度和時間。
(3)正方形的邊長和它的面積。
(4)工作時間一定,工作效率和工作總量。
二、新授。
1、揭示課題
2、學習例7
(1)認識:“千米/時”的讀法意義。
(2)出示書中的問題要求學生逐一回答。
(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關系式?
(4)填空:用下面的形式分別表示兩個表的內容。
當一定時,和成比例關系。
還有什么樣的依存關系?
(5)教師作評講并。
(6)用圖表示例7中的兩種量的關系。
指導學生描點、連線
觀察:在表里路程和時間成什么比例?表示正比例關系的是一條什么線?A點表示什么?B點呢?
在這條直線上,當時間的值擴大時,路程的對應值是怎樣變化的?時間的值縮小呢?
用同樣的方法觀察右表。
3、正、反比例的特點(異同點)
由學生比、說
三、鞏固練習
1、練一練第1、2題
2、P49第1題。
四、課堂:
正、反比例關系各有什么特點?怎樣判斷正比例或反比例關系?關鍵是什么?
五、作業
P49第2題(1)(4)(5)(6)(9)
六、課后作業
1、P49第2題(2)(3)(7)(8)(10)
2、收集生活中正、反比例關系的量并分析。
《反比例》教學設計 篇2
教學目的:
通過混合練習,加深學生對正比例和反比例的意義的理解,提高判斷能力。
教學過程:
一、引入
教師:前面我們學習了正比例和反比例的意義上節課我們又把它們進行了比較,你們會根據正比例和反比例的意義,比較熟練地判斷兩種相關聯的量是成正比例還是成反比例嗎?
二、課堂練習
1、分析、研究第3題。
讓學生先說出長方形的長、寬、面積三個量中其中一個量與另外兩個量的關系,教師板書出來:長寬=面積
= 長 =寬
提問:
當面積一定時,長和寬成什么比例關系?
當長一定時,面積和寬成什么比例關系?
當寬一定時,面積和長成什么比例關系?
教師:通過上面的分析,我們知道:要判斷三種相關聯的量在什么條件下組成哪種比例關系,我們可以先寫出它們中的一種量與另外兩種量的關系,再進行分析,。
2、第4題,讓學生仿照第3題的方法做。訂正后,教師板書如下:
每次運貨噸數運貨次數=運貨的總噸數(一定) 每次運貨噸數 與運貨次數 =運貨次數(一定) 成反比例關 系。
運貨的總噸 =每次運貨噸數(一定) 數與運貨次 數成正比例 關系
3、第5題,讓學生獨立做,教師巡視,注意個別輔導。
4、第6題,先讓學生自己判斷,然后指名回答,第(1)小題成反比例,第(2)、(4)、(6)小題成正比例,第(3)、(5)小題不成比例。
5、第7題,學生獨立解答后,選一題說說是怎樣解的。
6、學有余力的學生做第8題。
《反比例》教學設計 篇3
教學目標:
1、理解反比例的意義。
2、能根據反比例的意義,正確判斷兩種量是否成反比例。
3、培養學生的抽象概括能力和判斷推理能力。
教學重點:
引導學生理解反比例的意義。
教學難點:
利用反比例的意義,正確判斷兩種量是否成反比例。
教學過程:
一、復習鋪墊
1、成正比例的量有什么特征?
2、下表中的兩種量是不是成正比例?為什么?
二、自主探究
(一)教學例1
1.出示例1,提出觀察思考要求:
從表中你發現了什么?這個表同復習的表相比,有什么不同?
(1)表中的兩種量是每小時加工的數量和所需的加工時間。
教師板書:每小時加工數和加工時間
(2)每小時加工的數量擴大,所需的加工時間反而縮小;每小時加工的數量縮小,所需的加工時間反而擴大。
教師追問:這是兩種相關聯的量嗎?為什么?
(3)每兩個相對應的數的乘積都是600.
2.這個600實際上就是什么?每小時加工數、加工時間和零件總數,怎樣用式子表示它們之間的關系?
教師板書:零件總數
每小時加工數×加工時間=零件總數
3.小結
通過剛才的研究,我們知道,每小時加工數和加工時間是兩種相關聯的量,每小時加工數變化,加工時間也隨著變化,每小時加工數乘以加工時間等于零件總數,這里的零件總數是一定的。
(二)教學例2
1.出示例2,根據題意,學生口述填表。
2.教師提問:
(1)表中有哪兩種量?是相關聯的量嗎?
教師板書:每本張數和裝訂本數
(2)裝訂的本數是怎樣隨著每本的張數變化的?
(3)表中的兩種量有什么變化規律?
(三)比較例1和例2,概括反比例的意義。
1.請你比較例1和例2,它們有什么相同點?
(1)都有兩種相關聯的量。
(2)都是一種量變化,另一種量也隨著變化。
(3)都是兩種量中相對應的兩個數的積一定。
2.教師小結
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關系叫做反比例關系。
3.如果用字母x和y表示兩種相關聯的量,用k表示它們的積一定,反比例關系可以用一個什么樣的式子表示?
教師板書: xy =k(一定)
三、課堂小結
1、這節課我們學習了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學會了怎樣判斷兩種量是不是成反比例。在判斷時,同學們要按照反比例的意義,認真分析,做出正確的判斷。
2、通過今天的學習,正比例關系和反比例關系有什么相同點和不同點?
四、課堂練習
完成教材43頁做一做
五、課后作業
練習七6、7、8、9題。
六、板書設計
成反比例的量 xy=k(一定)
每小時加工數×加工時間=零件總數(一定)
每本頁數×裝訂本數=紙的總頁數(一定)
《反比例》教學設計 篇4
師:出示問題:解決問題:節日期間去公園游玩的 人數和所付門票費如下表所示:
人數/人 1 2 3 4 5 6 ……
門票費/元 5 10 15 20 25 30 ……
利用上圖,說一說哪兩個量是相關聯的,哪個量是不變的,題目中的兩個變量是什么關系?為什么?
生(仔細讀題后回答):人數和門票費是相關聯的量,每人應付的門票費是不變的,人數和門票費成正比例,因為人數和門票費是相關聯的,并且門票費與人數的比值不變。
師:誰能說一下什么是相關聯的量?
生:如果一個量變化時,另一個量也隨著變化,我們就說這兩個量是相關聯的。
師:如何判斷兩個量是否成正比例?
生:如果一個量變化時,另一個量也變化,并且它們的比值不變,我們就說這兩個量成正比例。
師:通過這些問題,我們回顧了相關量的量和正比例,這節課,我們來學習兩個量的另外一種關系:反比例。請同學們看一下這節課的學習目標(出示)。
生:閱讀目標:
1、結合豐富的實例,認識反比例;
2、能根據反比例的意義,判斷兩個相關聯的量是不是成反比例。
師:根據預習情況,下面我們分以下三部分進行展示:
1、 本節知識點;
2、 課本26頁練一練習題分析及解答(1、2、3);
3、 小組自測題。
給同學們3分鐘的時間準備一下,組長分好工,爭取讓本組同學都有發言的機會。
生:組長進行組內分工。
師:不展示的同學要認真傾聽,有任何一點問題都要及時指出來,并做好補充的準備。下面我們開始:先說知識點。一組。
生1(一組):本節課的知識點有兩個:一是反比例的意義,二是如何判斷兩個量是否成反比例。
生2(一組):一個量變化時,另一個量也隨著變化,如果這兩個量中相對應的兩個數的積一定,這兩個量就叫做成反比例的量,它們的關系叫做反比例關系。
生3(一組):成反比例的量要同時滿足兩個條件:1.兩個量是相關聯的;2.它們的乘積一定。
師:其他組的同學有需要補充的嗎?
生:我認為還應該將正比例和反比例作一下對比。
師:同學們總結的非常好。我們這節課的知識點總起來有以下三個(課件出示),引領同學們簡單的看一下。下面我們來展示課本上的習題。
師:三組。
生1(三組):我展示的是課本24頁第1題,從圖像上可以看出,這兩個變化關系不同。
生2(三組):我展示的是課本25頁第2題,表中應填3,1.5。我發現總路程一定。
師:其他同學有需要補充的嗎?
生:我發現速度與時間的乘積一定。
生:我發現當速度變大時,所用的時間減少。
生:客車的速度是自行車速度的4倍,而它所用的時間是自行車所用時間的1∕4;同樣,轎車速度是自行車速度的8倍,而它所用的時間是自行車所用時間的1∕8.
師:同學們說的都很好,尤其剛才這位同學的發現,待會我們的檢測題中會遇到。下面我們繼續。
生3(三組):我展示的是25頁第3題,表中應該填120、150、200、300,我發現果汁的總量一定,分的杯數與每杯的果汁量的積不變;分的杯數減少時,每杯的果汁量增多;3是6的1∕2,而200是100的2倍。
師:五組給三組同學的展示做出評價。
生:他們展示的很好,就是第2位同學的發現太少了。
師:三組同學總體表現還不錯,希望同學們爭取表現的更好,下面我們請六組的同學為我們展示課本26頁1、2、3題。
生1(六組):我為大家展示26頁第1題,表中應填8,6,4,3;平均每天看的頁數和看完全書所需的天數成反比例,因為當平均每天看的頁數變化時,看完全書所需天數也變化,并且平均每天看的頁數和看完全書所需天數的乘積不變。
生2(六組):同學們請看第2題,表中應填60,40,30;第一小題:不同的人在打同一份稿件的過程中,總字數沒有變;第二小題,打字的速度和所用的時間成反比例;第三小題,30×80=2400(個) 2400÷24=100(個) 答:她平均一分打100個字。
生3(六組):我講的是第3題,表中應填2,3,4,5;長和寬不成比例。
師:同學們認為有需要補充的嗎?
生:應該說在長方形的周長不變時,長和寬不成比例。
師:如果長方形的面積一定,長和寬成反比例嗎?
生:成反比例。
師:七組對六組進行評價。
生:六組同學們展示的不錯,就是宋亞飛的聲音小了點。
師:下面請十組的同學給我們展示他們組的小組自測題。
(十組組長帶領組員到前面,按照分工逐一展示)
生1(十組):同學們請看我們組的填空題:
1、 總價一定,購買算草本的本數和單價成(反)比例。
因為當單價變化時,購買算草本的本數也變化,并且它們的乘積一定。
2、 被除數一定,商和除數成(反)比例;
因為除數變化時,商也變化,并且它們的積一定;
3、 三角形的面積一定,它的底和高成(反)比例;
因為當底變化時,高也變化,并且它們的積一定。
師:由于時間關系,可以不用解釋理由了。
生2(十組):請同學們看我們組的判斷題:
1、 分子一定,分數值與分母。( )
成反比例,所以畫“√”。
2、 生產摩托車的總臺數一定,每天生產的臺數和所用的天數。( )
成反比例,所以畫“√”。
3、 出勤率一定,應出勤的人數和實際出勤的人數。( )
不成正比例,也不成反比例,所以畫“×”。
4、 樂樂拿一些錢買本,單價和購買的本數。( )
成反比例,所以畫“√”。
生3(十組):請同學們看著表格:表中兩種相關聯的量是所用的天數和每天看的頁數;表中兩種量相對應的兩個數的積不變,都是160.
生4(十組):這兩種量成反比例關系。
師:九組對十組同學的展示進行評價。
生:十組的同學選的題很好,展示的也不錯,就是兩個同學間缺少過度。
師:同學們這節課表現都不錯,希望你們在認真看一下知識點,尤其注意區分正比例和反比例。下課!
說明:由于小組自測題選的較多,占用的時間稍長了一點,所以當堂檢測題沒來得及做。
《反比例》教學設計 篇5
三維目標
一、知識與技能
1.能靈活列反比例函數表達式解決一些實際問題.
2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.
二、過程與方法
1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.
2. 體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.
三、情感態度與價值觀
1.積極參與交流,并積極發表意見.
2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.
教學重點
掌握從物理問題中建構反比例函數模型.
教學難點
從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.
教具準備
多媒體課件.
教學過程
一、創設問題情境,引入新課
活動1
問 屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數關系式;
(2)當電流I=0.5時,求電阻R的值.
設計意圖:
運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.
師生行為:
可由學生獨立思考,領會反比例函數在物理學中的綜合應用.
教師應給“學困生”一點物理學知識的引導.
師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.
生:(1)解:設I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當I=0.5時,R=10I=100.5 =20(歐姆).
師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么 樣的原理呢?
生:這是古希臘科學家阿基米德的名言.
師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設計意圖:
物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.
師生行為:
先由學生根據“杠桿定律”解決上述問題.
教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.
教師在此活動中應重點關注:
①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;
②學生能否面對困難,認真思考,尋找解題的途徑;
③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據“杠桿定律” 有
Fl=1200×0.5.得F =600l
當l=1.5時,F=6001.5 =400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有
Fl=600,
l=600F .
當F=400×12 =200時,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F=600l .
而F≤400×12 =200時.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.
生:還可由函數圖象,利用反比例函數的性質求出.
師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:
用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl (k為常數且k>0)
根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?
設計意圖:
在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.
師生行為:
由學生先獨立思考,然后小組內討論完成.
教師應給予“學困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數關系為y=15x-2
(2)根據題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的.值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值.
設計意圖:
進一步體現物理和反比例函數的關系.
師生行為
由學生獨立完成,教師講評.
師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數關系.
生:V和ρ的反比例函數關系為:V=990ρ .
生:當ρ=1.1kg/m3根據V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3.
四、課時小結
活動5
你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解 析式,再根據解析式解得.
設計意圖:
這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.
師生行為:
學生可分小組活動,在小組內交流收獲, 然后由小組代表在全班交流.
教師組織學生小結.
反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.
板書設計
17.2 實際問題與反比例函數(三)
1.
2.用反比例函數的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?
設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,
Fl=k 即F=kl (k>0且k為常數).
由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減小.
活動與探究
學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?
x(m) 10 20 30 40
y(m)
過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.
結果:(1)綠化帶面積為10×40=400(m2)
設該反比例函數的表達式為y=kx ,
∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數表達式為y=400x .
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。
《反比例》教學設計 篇6
教學內容:
教科書第22—24頁反比例的意義,練習六的第4—6題。
教學目的:
1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學生進一步認識事物之間的相互聯系和發展變化規律。
3.初步滲透函數思想。
教具準備:
投影儀、投影片、小黑板。
教學過程:
一、復習
1.讓學生說說什么是成正比例的量:
2.用投影片出示下面的題:
(1)下面各題中哪兩種量成正比例?為什么?
①筆記本單價一定,數量和總價:
⑨汽車行駛速度一定.行駛的路程和時間。
②工作效率一定.’工作時間和工作總量。
①一袋大米的重量一定.吃了的和剩下的。
(2)說出每小時加工零件數、加工時間和加工零件總數三者間的數量關系。在什么條件下,其中兩種量成正比例?
二、導入新課
教師:如果加工零件總數一定。每小時加工數和加工時間會成什么樣的變化.關系怎樣?就是我們這節課要學習的內容。
三、新課
1.教學例4。
出示例4;豐機械廠加工一批機器零件。每小時加工的數量和所需的加工時間如下表。
讓學生觀察這個表,然后每四人一組討論下面的問題:
(1)表中有哪兩種量?
(2)所需的加工時間怎樣隨著每小時加工的個數變化?
(3)每兩個相對應的數的乘積各是多少?
學生分組討論后集中發言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數加工時間
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“這個積600。實際上是什么?”在“加工時間”后面板書:零件總數
“積一定,就說明零件總數怎樣?”在零件總數后面板書:(一定)
“每小時加工數、加工時間和零件總數這三種量有什么關系呢?”
學生回答后,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數和所需的加工時間是兩種相關聯的量。所需的加工時間是隨著每小時加工數量的變化而變化的,每小時加工的數量擴大。所需的加工時間反而縮小3每小時加工的數量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規律是:每小時加工的零件的數量和所需的加工時間的積都等于600,即總是一定的:我們把這種關系寫成式子就是:每小時加工數×加工的時間=零件總數(一定)。
2.教學例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數和裝訂的本數有什么關系呢?請你先填寫下表。
(1)理解題意,填寫裝訂本數。
“誰能說說表中第一欄數據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)
“這40本是怎么計算出來的?”(用600÷15)
“如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數填在教科書第23頁的表中。”教師把學生報出的數據填在黑板上的表中。
(2)觀察分析表中兩種量的變化規律。
讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數裝訂的本數)
“裝訂的本數是怎樣隨著每本的頁數變化的?”隨著學生的回答,板書如下:每本的頁數 裝訂的本數
15 40
20 30
25 24
四、鞏固練習
1.做教科書第28頁“做一做”中的題目。
讓學生自己填,并說一說為什么。
2.做練習七的第1—2題。
教師巡視,個別輔導,最后訂正。
五、小結
教師:請同學們說說正比例和反比例關系有什么相同點和不同點?
《反比例》教學設計 篇7
教學目標:
1、理解反比例函數,并能從實際問題中抽象出反比例關系的函數解析式;
2、會畫出反比例函數的圖象,并結合圖象分析總結出反比例函數的性質;
3、滲透數形結合的數學思想及普遍聯系的辨證唯物主義思想;
4、體會數學從實踐中來又到實際中去的研究、應用過程;
5、培養學生的觀察能力,及數學地發現問題,解決問題的能力.
教學重點:
結合圖象分析總結出反比例函數的性質;
教學難點:
描點畫出反比例函數的圖象
教學用具:直尺
教學方法:
小組合作、探究式
教學過程:
1、從實際引出反比例函數的概念
我們在小學學過反比例關系.例如:當路程S一定時,時間t與速度v成反比例
即vt=S(S是常數);
當矩形面積S一定時,長a與寬b成反比例,即ab=S(S是常數)
從函數的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數,寫成:
(S是常數)
(S是常數)
一般地,函數 (k是常數, )叫做反比例函數.
如上例,當路程S是常數時,時間t就是v的反比例函數.當矩形面積S是常數時,長a是寬b的反比例函數.
在現實生活中,也有許多反比例關系的例子.可以組織學生進行討論.下面的例子僅供
2、列表、描點畫出反比例函數的圖象
例1、畫出反比例函數 與 的圖象
解:列表
說明:由于學生第一次接觸反比例函數,無法推測出它的大致圖象.取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖
一般地反比例函數 (k是常數, )的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結出反比例函數的性質
前面學習了三類基本的初等函數,有了一定的基礎,這里可視學生的程度或展開全面的討論,或在老師的引導下完成知識的學習
顯示這兩個函數的圖象,提出問題:你能從圖象上發現什么有關反比例函數的性質呢?并能從解析式或列表中得到論證
(1) 的圖象在第一、三象限,可以擴展到k 0時的情形,即k0時,雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個結論:xy=k,即x與y同號,因此,圖象在第一、三象限的討論與此類似。
抓住機會,說明數與形的統一,也滲透了數形結合的數學思想方法,體現了由特殊到一般的研究過程。
(2)函數 的圖象,在每一個象限內,y隨x的增大而減小;
從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢。有理數除法說明了同樣的道理,被除數一定時,若除數大于零,除數越大,商越小;若除數小于零,同樣是除數越大,商越小.由此可歸納出,當k0時,函數 的圖象,在每一個象限內,y隨x的增大而減小。
同樣可以推出 的圖象的性質。
(3)函數 的圖象不經過原點,且不與x軸、y軸交。從解析式中也可以看出, .如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零.因此,呈現的是雙曲線的樣子。同理,抽象出 圖象的性質。
函數 的圖象性質的討論與次類似。
4、小結:
本節課我們學習了反比例函數的概念及其圖象的性質.大家展開了充分的討論,對函數的概念,函數的圖象的性質有了進一步的認識.數學學習要求我們要深刻地理解,找出事物間的普遍聯系和發展規律,能數學地發現問題,并能運用已有的數學知識,給以一定的解釋.即數學是世界的一個部分,同時又隱藏在世界中.
5、布置作業
習題13.8 1-4
《反比例》教學設計 篇8
一、教學目標
1、利用反比例函數的知識分析、解決實際問題
2、滲透數形結合思想,提高學生用函數觀點解決問題的能力
二、重點、難點
1、重點:
利用反比例函數的知識分析、解決實際問題
2、難點:
分析實際問題中的數量關系,正確寫出函數解析式
三、例題的意圖分析
教材第57頁的例1,數量關系比較簡單,學生根據基本公式很容易寫出函數關系式,此題實際上是利用了反比例函數的定義,同時也是要讓學生學會分析問題的方法。
教材第58頁的例2是一道利用反比例函數的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數學問題的能力,掌握用函數觀點去分析和解決問題的思路。
補充例題一是為了鞏固反比例函數的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數形結合的思想方法,以便更好地解決實際問題
四、課堂引入
寒假到了,小明正與幾個同伴在結冰的河面上溜冰,突然發現前面有一處冰出現了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險區。你能解釋一下小明這樣做的道理嗎?
五、例習題分析
例1、見教材第57頁
分析:(1)問首先要弄清此題中各數量間的關系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積=底面積×高,由題意知S是函數,d是自變量,改寫后所得的函數關系式是反比例函數的形式,(2)問實際上是已知函數S的值,求自變量d的取值,(3)問則是與(2)相反
例2、見教材第58頁
分析:此題類似應用題中的“工程問題”,關系式為工作總量=工作速度×工作時間,由于題目中貨物總量是不變的,兩個變量分別是速度v和時間t,因此具有反比關系,(2)問涉及了反比例函數的增減性,即當自變量t取最大值時,函數值v取最小值是多少?
例1、(補充)某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數,其圖像如圖所示(千帕是一種壓強單位)
(1)寫出這個函數的解析式;
(2)當氣球的體積是0.8立方米時,氣球內的氣壓是多少千帕?
(3)當氣球內的氣壓大于144千帕時,氣球將爆炸,為了安全起見,氣球的體積應不小于多少立方米?
分析:題中已知變量P與V是反比例函數關系,并且圖象經過點A,利用待定系數法可以求出P與V的解析式,得,(3)問中當P大于144千帕時,氣球會爆炸,即當P不超過144千帕時,是安全范圍。根據反比例函數的圖象和性質,P隨V的增大而減小,可先求出氣壓P=144千帕時所對應的氣體體積,再分析出最后結果是不小于立方米
六、隨堂練習
1、京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間的函數關系式為
2、完成某項任務可獲得500元報酬,考慮由x人完成這項任務,試寫出人均報酬y(元)與人數x(人)之間的函數關系式
3、一定質量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數,當V=10時,=1.43,(1)求與V的函數關系式;(2)求當V=2時氧氣的密度
答案:=,當V=2時,=7.15
《反比例》教學設計 篇9
教學目標:
1、通過實踐活動,理解反比例的意義,并能根據反比例的意義,正確地判斷兩種相關聯的量是否成反比例;
2、通過小組間的合作學習,培養學生的合作意識、參與意識,訓練其觀察能力及概括能力;
3、利用多媒體動畫的演示,讓學生體驗到反比例的變化規律。
教學重點:感受反比例的變化,概括反比例的意義;
教學難點:正確判斷兩種相關聯的量是否成反比例;
教學準備:20支鉛筆、一個筆筒;相關課件;學生分小組(每組一份觀察記錄單)
每次拿的支數
10
5
4
2
1
拿的次數
總支數
教學過程:
一、復習
1、什么叫做“成正比例的量”?
2、判斷兩種量是否成正比例關鍵是什么?
3、練習:課本表中的兩種量是不是成正比例?為什么?
二、小組協作 概括“成反比例的量”的意義
(一)活動一
師:好,現在請同學們拿出課前準備的學具,以小組為單位,動手操作,按要求認真填寫觀察記錄單。看哪個組完成的又快又好!
1、學生匯報觀察記錄單的填寫結果。
2、引導觀察:在填、拿的過程中,你發現了什么?
3、師:你能根據表格,寫出這三個量的關系式嗎?
4、小結:通過剛才的活動,我們發現每次拿的支數變化,拿的次數也隨著變化,但每次拿的支數和拿的次數的積即總支數總是一定的。
5、揭示反比例的意義(閱讀課本,明確反比例關系)
6、如果用x、y 表示兩種相關聯的量,用k表示積,反比例關系式怎樣表示?
(二)活動二:(例3)
1、課件出示例3,指名讀題,學生獨立完成
2、總結歸納出正比例和反比例的相同點和不同點
三、強化練習 發展提高
1判定兩個量是否成反比例,主要看它們的( )是否一定。
2全班人數一定,每組的人數和組數。
( )和( )是相關聯的量。
每組的人數×組數=全班人數(一定)
所以( )和( )是成反比例的量。
3判斷下面每題中的兩種量是不是成反比例,并說明理由。
糖果的總數一定,每袋糖果的粒數和裝的袋數。
煤的總量一定,每天的燒煤量和能夠燒的天數。
生產電視機的總臺數一定,每天生產的臺數和所用的天數。
長方形的面積一定,它的長和寬。
4機動練習:
想一想:鋪地面積一定時,方磚邊長與所需塊數成不成反比例?為什么?
四、全課總結
1、你能不能結合日常生活舉一些反比例的例子。
2、今天這節課,你有什么收獲?還有什么遺憾?
《反比例》教學設計 篇10
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題
2、能根據實際問題中的條件確定反比例函數的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:
能利用反比例函數的相關的知識分析和解決一些簡單的實際問題
難點:
根據實際問題中的條件確定反比例函數的解析式
教學過程:
一、情景創設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒, 已知藥物燃燒時,室內每立方米空氣中的含藥量(g)與時間x(in)成正比例。藥物燃燒后,與x成反比例(如圖所示),現測得藥物8in燃畢,此時室內空氣中每立方米的含藥量為6g,請根據題中所提供的信息,解答下列問題:
(1)藥物燃燒時,關于x 的函數關系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后關于x的函數關系式為_______
(2)研究表明,當空氣中每立方米的含藥量低于1.6g時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3g且持續時間不低于10in時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
二、新授:
例1、小明將一篇24000字的社會調查報告錄入電腦,打印成文。
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?
(2)錄入文字的速度v(字/in)與完成錄入的時間t(in)有怎樣的函數關系?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為 的長方形蓄水池。
(1)蓄水池的底部S 與其深度 有怎樣的函數關系?
(2)如果蓄水池的深度設計為5,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100和60,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)
三、課堂練習
1、一定質量的氧氣,它的密度 (g/3)是它的體積V( 3) 的反比例函數, 當V=103時,=1.43g/3(1)求與V的函數關系式;(2)求當V=23時求氧氣的密度
2、某地上年度電價為0.8元&nt;/&nt;度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量(億度)與(x-0.4)(元)成反比例,當x=0.65時,=-0.8
(1)求與x之間的函數關系式;
(2)若每度電的成本價為0.3元,則電價調至多少元時,本年度電力部門的收益將比上年度增加20%? [收益=(實際電價-成本價)×(用電量)]
3、如圖,矩形ABCD中,AB=6,AD=8,點P在BC邊上移動(不與點B、C重合),設PA=x,點D到PA的距離DE=.求與x之間的函數關系式及自變量x的取值范圍.
四、小結
五、作業
30.3——1、2、3
《反比例》教學設計 篇11
教學內容:教科書第22—24頁反比例的意義,練習六的第4—6題。
教學目的:
1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學生進一步認識事物之間的相互聯系和發展變化規律。
3.初步滲透函數思想。
教具準備:投影儀、投影片、小黑板。
教學過程:
一、復習
1.讓學生說說什么是成正比例的量:
2.用投影片出示下面的題:
(1)下面各題中哪兩種量成正比例?為什么?
①筆記本單價一定,數量和總價:
⑨汽車行駛速度一定.行駛的路程和時間。
②工作效率一定.’工作時間和工作總量。
①一袋大米的重量一定.吃了的和剩下的。
(2)說出每小時加工零件數、加工時間和加工零件總數三者間的數量關系。在什么條件下,其中兩種量成正比例?
二、導入新課
教師:如果加工零件總數一定。每小時加工數和加工時間會成什么樣的變化.關系怎樣?就是我們這節課要學習的內容。
三、新課
1.教學例4。
出示例4;豐機械廠加工一批機器零件。每小時加工的數量和所需的加工時間如下表。
讓學生觀察這個表,然后每四人一組討論下面的問題:
(1)表中有哪兩種量?
(2)所需的加工時間怎樣隨著每小時加工的個數變化?
(3)每兩個相對應的數的乘積各是多少?
學生分組討論后集中發言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數加工時間
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“這個積600。實際上是什么?”在“加工時間”后面板書:零件總數
“積一定,就說明零件總數怎樣?”在零件總數后面板書:(一定)
“每小時加工數、加工時間和零件總數這三種量有什么關系呢?”
學生回答后,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數和所需的加工時間是兩種相關聯的量。所需的加工時間是隨著每小時加工數量的變化而變化的,每小時加工的數量擴大。所需的加工時間反而縮小3每小時加工的'數量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規律是:每小時加工的零件的數量和所需的加工時間的積都等于600,即總是一定的:我們把這種關系寫成式子就是:每小時加工數×加工的時間=零件總數(一定)。
2.教學例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數和裝訂的本數有什么關系呢?請你先填寫下表。
(1)理解題意,填寫裝訂本數。
“誰能說說表中第一欄數據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)
“這40本是怎么計算出來的?”(用600÷15)
“如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數填在教科書第23頁的表中。”教師把學生報出的數據填在黑板上的表中。
(2)觀察分析表中兩種量的變化規律。
讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數裝訂的本數)
“裝訂的本數是怎樣隨著每本的頁數變化的?”隨著學生的回答,板書如下:每本的頁數 裝訂的本數
15 40
20 30
25 24
一’然后讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。
1,單價一定.數量和總價。
2,路程一定,速度和時間。。
3,正方形的邊長和它的面積。
1.時間一定,工效和工作總量。
二、導入新課
教師:我們在前兩節課分別學習了成正比例的量和成反比例的量。初步學會判斷
兩種量是不是成正比例或反比例的關系,發現有些同學判斷時還不夠準確。這節課我
們要通過比較弄清成正比例的量和成反比例的量有什么相同點和不同點。
板書課題:正比例和反比例的比較
三、新課
1.教學例7。
出示例7的兩個表:
表1 表2
讓學生觀察上面的兩個表,然后根據兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:
在表l中: 在表2中:
相關聯的量是路程和時間. 路程隨著相關聯的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化
一定。因此,路程和時間 ,路程是一定的。因此,速
成正比例關系。 度和時間成反比例關系
然后提問:
(1)從表1,你怎樣發現速度是一定的?你根據什么判斷路程和時間成正比例/
(2)從表2,你怎樣發現路程是一定的?你根據什么判斷速度和時間成反比例?
教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關系?
板書:速度×時間=路程
=速度 =速度
教師:當速度一·定時,路程和時間成什么比例關系?
教師:當路程一定時,速度和時間成什么比例關系?
教師:當時間一定時。路程和速度成什么比例關系?
2.比較正比例和反比例關系。
教師:結合上面兩個例子,比較——下正比例關系和反比例關系,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納并板書:
四、鞏固練習
1.做教科書第28頁“做一做”中的題目。
讓學生自己填,并說一說為什么。
2.做練習七的第1—2題。
教師巡視,個別輔導,最后訂正。
五、小結
教師:請同學們說說正比例和反比例關系有什么相同點和不同點?
《反比例》教學設計 篇12
教學目標:
經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的 概念。
教學程序:
一、導入:
1、從現實情況和已有知識經驗出發,討論兩個變量之間的相依關系,加強對函數概念的理解,導入反比例函數。
2 、U=IR,當U=220V時,
(1)你能用含 R的代數式 表示I嗎?
(2)利用寫出的關系式完成下表:
R(Ω) 20 40 60 80 100
I(A)
當R越來越大時,I怎樣 變化?
當R越來越小呢?
( 3)變量I是R的函數嗎?為什么?
答:① I = UR
② 當R越來越大時,I越來越小,當R越來越小時,I越來越大。
③變量I是R的函數 。當給定一 個R的值時,相應地就確定了一個I值,因此I是R的函數。
二、新授:
1、反比例函數的概念
一般地,如果兩個變量x, y之間的關系可以表示成 y=kx (k為常數,k≠0)的形式,那么稱y是x的反比例函 數。
反比例函數的自變量x 不能為零。
2、做一做
一個矩形的 面積為20cm2,相鄰兩條邊長分別為xcm和 ycm,那么變量y是變量x的 函數嗎?是反比例函數嗎?
解:y=20x ,是反比例函數。
三、課堂練習 :
P133,12
四、作業:
P133,習題5.1 1、2題
《反比例》教學設計 篇13
教學目標
1、知識與技能目標:
使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯的量是否成反比例。進一步培養學生觀察、學析、綜合和概括等能力。初步滲透函數思想。
2、過程與方法:
為學生營造一個經歷知識產生過程的情境。
3、情感與態度目標:
使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數學的信心。
教學重點:
理解反比例的意義。
教學難點:
兩種相關聯的量的變化規律。
教學過程
一、談話引入,激發興趣。
1、談話:通過最近一段時間的觀察,我發現同學們越來越聰明了,會學數學了,這是因為同學們掌握了一定的數學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節課我們用同樣的學習方法來研究比例的另外一個規律。
2、導入:在實際生活中,存在著許多相關聯的量,這些相關聯的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。
二、創設情景引新
(出示:十二個小方塊)
師:同學們,這十二個小方塊有幾種排法?
(生答后,老師板書下表的排列過程)
每行個數 1 2 3 4 6 12
行 數 12 6 4 3 2 1
師:請你觀察上表中每行個數與行數成正比例關系嗎?為什么?
生:……
師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內容。
(出示課題:反比例的意義)
三、合作自學探知
1、學習例4。
(1)出示例4。
師:請同學們在小組內互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。
A、表中有哪兩種量?
B、怎樣隨著每小時加工的數量變化?
C、每兩個相對應的數的乘積各是多少?
學生討論……
生反饋:……
師:能不能舉出三個例子
生:10×20=600 20×30=600 30×20=600……
師:這里的600是什么數量?你能說出這里的數量關系式嗎?
生: ……
[板書出示: 每小時加工數×加工時間=零件總數(一定)]
2、自學例5:
(1)出示例5:
師:先請同學們按要求在書上填空,并說說是怎樣算的?根據什么?
生: ……
師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)
生: ……
3、討論準備題:
(1)請你根據例4的方法,四人小組內說一說。
(2)請你舉例說明表中每行個數與行數是什么關系?為什么?
四、比較感知特征
綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?
生: ……
五、引導概括意義
1、概括反比例意義。
學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。
師:請同學們根據我們上節課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?
生: ……
師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。
學生互相練習……
師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?
生: ……
師:例4、例5和準備題中的兩種量成不成反比例?為什么?
生: …… (學生回答后,老師及時糾正)
師:如果用x和y表示兩種相關聯的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?
生: …… [板書出示:y=k(一定) ]
2、教學例6。
(1) 課件出示例6。
(學生讀題、思考)
師:怎樣判斷兩種量成不成反比例?
師:哪位同學說說,每天播種的公頃數和要用的天數是不是成反比例?為什么?
生: 因為每天播種的公頃數×要用的天數=播種的總公頃數(一定),所以每天播種的公頃數和要用的天數是成反比例的量。
六、小結:
這節課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?