中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 八年級數學教案 > 勾股定理的逆定理(精選7篇)

勾股定理的逆定理

發布時間:2022-12-30

勾股定理的逆定理(精選7篇)

勾股定理的逆定理 篇1

  知識結構:

  重點、難點分析

  本節內容的重點是及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是的應用.在用時,分不清哪一條邊作斜邊,因此在用判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標:

  1、知識目標:

  (1)理解并會證明;

  (2)會應用判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:及其應用

  教學難點:及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程:

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積

  解:連結AC

  ∵∠B= ,AB=3,BC=4

  ∴

  ∴AC=5

  ∵

  ∴

  ∴∠ACD=

  例3 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形

  證明:∵CD⊥AB

  ∴

  又∵

  ∴

  ∴△ABC為直角三角形

  以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

  4、課堂小結:

  (1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

  (2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用.

  5、布置作業 :

  a、書面作業 P131#9

  b、上交作業 :已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

  板書設計:

  探究活動

  分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關系?為什么?

  提示:設直角三角形邊長分別為

  則三個半圓面積分別為

勾股定理的逆定理 篇2

  知識結構:

  重點、難點分析

  本節內容的重點是及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是的應用.在用時,分不清哪一條邊作斜邊,因此在用判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標 

  1、知識目標:

  (1)理解并會證明;

  (2)會應用判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:及其應用

  教學難點 :及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程 

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積

  解:連結AC

  ∵∠B= ,AB=3,BC=4

  ∴

  ∴AC=5

  ∵

  ∴

  ∴∠ACD=

  例3 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形

  證明:∵CD⊥AB

  ∴

  又∵

  ∴

  ∴△ABC為直角三角形

  以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

  4、課堂小結:

  (1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

  (2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用.

  5、布置作業 :

  a、書面作業 P131#9

  b、上交作業 :已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

  板書設計 

  探究活動

  分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關系?為什么?

  提示:設直角三角形邊長分別為

  則三個半圓面積分別為

勾股定理的逆定理 篇3

  知識結構:

  重點、難點分析

  本節內容的重點是及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是的應用.在用時,分不清哪一條邊作斜邊,因此在用判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標 

  1、知識目標:

  (1)理解并會證明;

  (2)會應用判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:及其應用

  教學難點 :及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程 

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積

  解:連結AC

  ∵∠B= ,AB=3,BC=4

  ∴

  ∴AC=5

  ∵

  ∴

  ∴∠ACD=

  例3 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形

  證明:∵CD⊥AB

  ∴

  又∵

  ∴

  ∴△ABC為直角三角形

  以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

  4、課堂小結:

  (1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

  (2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用.

  5、布置作業 :

  a、書面作業 P131#9

  b、上交作業 :已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

  板書設計 

  探究活動

  分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關系?為什么?

  提示:設直角三角形邊長分別為

  則三個半圓面積分別為

勾股定理的逆定理 篇4

  知識結構:

  重點、難點分析

  本節內容的重點是及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是的應用.在用時,分不清哪一條邊作斜邊,因此在用判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標:

  1、知識目標:

  (1)理解并會證明;

  (2)會應用判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:及其應用

  教學難點:及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程:

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  第 1 2 頁  

勾股定理的逆定理 篇5

  知識結構:

  重點、難點分析

  本節內容的重點是及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是的應用.在用時,分不清哪一條邊作斜邊,因此在用判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標 

  1、知識目標:

  (1)理解并會證明;

  (2)會應用判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:及其應用

  教學難點 :及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程 

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積

  解:連結AC

  ∵∠B= ,AB=3,BC=4

  ∴

  ∴AC=5

  ∵

  ∴

  ∴∠ACD=

  例3 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形

  證明:∵CD⊥AB

  ∴

  又∵

  ∴

  ∴△ABC為直角三角形

  以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

  4、課堂小結:

  (1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

  (2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用.

  5、布置作業 :

  a、書面作業 P131#9

  b、上交作業 :已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

  板書設計 

  探究活動

  分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關系?為什么?

  提示:設直角三角形邊長分別為

  則三個半圓面積分別為

勾股定理的逆定理 篇6

  各位專家領導,上午好:

  今天我說課的課題是《勾股定理的逆定理》

  一、教材分析 :

  (一)、本節課在教材中的地位作用

  “勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學生必須掌握。

  (二)、教學目標:

  根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。

  知識技能:

  1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

  過程與方法:

  1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程

  2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用

  3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  情感態度:

  1、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統一的關系

  2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

  (三)、學情分析:

  盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節課的重點、難點和關鍵。

  重點:勾股定理逆定理的應用

  難點:勾股定理逆定理的證明

  關鍵:輔助線的添法探索

  二、教學過程:

  本節課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的。

  (一)、復習回顧: 復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。

  (二)、創設問題情境

  一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發了學生的興趣,因而全身心地投入到學習中來,創造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。

  (三)、學生在教師的指導下嘗試解決問題,總結規律(包括難點突破)

  因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

  接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發揮教課書的作用,養成學生看書的習慣,這也是在培養學生的自學能力。

  (四)、組織變式訓練

  本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養了學生靈活轉換、舉一反三的能力,發展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節教法,同時注意加強有針對性的個別指導,把發展學生的思維和隨時把握學生的學習效果結合起來。

  (五)、歸納小結,納入知識體系

  本節課小結先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養能力方面,比如輔助線的添法,數形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發現并證明的,這種討論問題的方法是培養我們發現問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

  (六)、作業布置

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養他們的思維素質,發展學生的個性有積極作用。

  三、說教法、學法與教學手段

  為貫徹實施素質教育提出的面向全體學生,使學生全面發展主動發展的精神和培養創新活動的要求,根據本節課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規律和認知水平,本節課我主要采用了以學生為主體,引導發現、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養學生的學習興趣,調動學生的學習積極性,發展學生的思維;有利于培養學生動手、觀察、分析、猜想、驗證、推理能力和創新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節課我還采用了理論聯系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯系學生現有的經驗和感性認識,由最鄰近的知識去向本節課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節課遵循從生動直觀到抽象思維的認識規律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發現知識的過程;力爭使學生在獲得知識的過程中得到能力的培養。

勾股定理的逆定理 篇7

  知識結構:

  重點、難點分析

  本節內容的重點是勾股定理的逆定理及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

  本節內容的難點是勾股定理的逆定理的應用.在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

  教法建議:

  本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

  (1)讓學生主動提出問題

  利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

  (2)讓學生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

  (3)通過實際問題的解決,培養學生的數學意識.

  教學目標 

  1、知識目標:

  (1)理解并會證明勾股定理的逆定理;

  (2)會應用勾股定理的逆定理判定一個三角形是否為直角三角形;

  (3)知道什么叫勾股數,記住一些覺見的勾股數.

  2、能力目標:

  (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

  (2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

  3、情感目標:

  (1)通過自主學習的發展體驗獲取數學知識的感受;

  (2)通過知識的縱橫遷移感受數學的辯證特征.

  教學重點:勾股定理的逆定理及其應用

  教學難點 :勾股定理的逆定理及其應用

  教學用具:直尺,微機

  教學方法:以學生為主體的討論探索法

  教學過程 

  1、新課背景知識復習(投影)

  勾股定理的內容

  文字敘述(投影顯示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的獲得

  (1)讓學生用文字語言將上述定理的逆命題表述出來

  (2)學生自己證明

  逆定理:如果三角形的三邊長 有下面關系:

  那么這個三角形是直角三角形

  強調說明:(1)勾股定理及其逆定理的區別

  勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角為 、②垂直、③勾股定理的逆定理

  2、  定理的應用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  證明:∵

  ∴

  ∵∠C=

  例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積

  解:連結AC

  ∵∠B= ,AB=3,BC=4

  ∴

  ∴AC=5

  ∵

  ∴

  ∴∠ACD=

  例3 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形

  證明:∵CD⊥AB

  ∴

  又∵

  ∴

  ∴△ABC為直角三角形

  以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

  4、課堂小結:

  (1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

  (2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用.

  5、布置作業 :

  a、書面作業 P131#9

  b、上交作業 :已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

  板書設計 

  探究活動

  分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關系?為什么?

  提示:設直角三角形邊長分別為

  則三個半圓面積分別為

勾股定理的逆定理(精選7篇) 相關內容:
  • 數學教案-勾股定理的逆定理

    知識結構: 重點、難點分析 本節內容的重點是勾股定理的逆定理及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據. 本節內容的難點是勾股定理的逆定理的應用.在用勾股定理的逆定理時,分不清...

  • 勾股定理說課稿(精選12篇)

    一、教材分析(一)教材地位與作用勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。...

  • 初二數學教案《勾股定理》(通用13篇)

    一、教材分析:(一)教材的地位與作用從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。...

  • 《勾股定理》的說課稿范文(通用17篇)

    本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。...

  • 滬科版《勾股定理》說課稿(精選16篇)

    一、教材分析它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。因此他的教育教學價值就具體體現在如下三維目標中:知識與技能:1、經歷勾股定理的探索過程,體會數形結合思想。...

  • 關于《勾股定理》說課稿范文(精選17篇)

    一、教學目標1、讓學生通過對的圖形創造、觀察、思考、猜想、驗證等過程,體會勾股定理的產生過程。2、通過介紹我國古代研究勾股定理的成就感培養民族自豪感,激發學生為祖國的復興努力學習。...

  • 有關《勾股定理》說課稿范文(通用14篇)

    尊敬的各位評委、老師,大家好!我說課的題目是華師版八年級上冊第十四章第一節第一課時《勾股定理》。教材分析:如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中...

  • 北師版八上《勾股定理》說課稿(精選15篇)

    勾股定理就是繼續學習的一個直角三角形的判斷定理,下面就是小編整理的勾股定理說課稿蘇教版,歡迎來參考!一、教材分析勾股定理就是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它就是直角三角形的一條非常重要的性質,就...

  • 《勾股定理》教學反思(精選6篇)

    星期四下午講了《勾股定理逆定理》第一課時,現對本節課反思如下:(1)這節課的設計思路比較合理:著重體現“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆...

  • 《勾股定理》優秀說課稿(通用16篇)

    尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理...

  • 數學 - 勾股定理說課稿(精選2篇)

    一、教材分析勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直...

  • 勾股定理(通用13篇)

    18.1 勾股定理(第1課時)教學案例南漳縣肖堰中學 尹世強教學任務分析教學目標知識技能了解勾股定理的文化背景,體驗勾股定理的探索過程.數學思想在勾股定理的探索過程中,發展合情推理能力,體會數形結合的思想.解決問題1. 通過拼圖活動,體驗...

  • 有關《勾股定理》優秀說課稿(精選17篇)

    一、教材分析(一)教材地位與作用勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。...

  • 滬科版《勾股定理》說課稿范文(精選13篇)

    一、教材分析它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。因此他的教育教學價值就具體體現在如下三維目標中:知識與技能:1、經歷勾股定理的探索過程,體會數形結合思想。...

  • 《勾股定理》優秀教案(精選16篇)

    教學目標1.靈活應用勾股定理及逆定理解決實際問題。2.進一步加深性質定理與判定定理之間關系的認識。重難點1.重點:靈活應用勾股定理及逆定理解決實際問題。2.難點:靈活應用勾股定理及逆定理解決實際問題。...

  • 八年級數學教案
主站蜘蛛池模板: 四虎WWW永久在线精品 | 欧美日本不卡视频 | 极品少妇被猛得白浆直流草莓视频 | 欧美精品色婷婷五月综合 | 国产α级毛片 | 精品国产免费久久久久久桃子图片 | 黄色的网站色干网 | 热99re久久国免费超精品首页 | 91丨porny在线牛牛影视 | 国产乱码精品一区二区三区四川人 | 人妻少妇精品久久 | 久久人妻国产精品 | 黄污视频在线 | 天天噜噜噜在线视频 | 男女aa视频 | 久久精品中文字幕一区二区三区 | 免费毛片全部不收费的 | 久久亚洲国产成人精品性色 | 97影院理论片手机在线观看 | 秋霞一级国产毛片视频 | 亚洲国产精品一区二区久久亚洲午夜 | 麻豆少妇| 8x最新网站入口 | 精品无码国产一区二区三区AV | 久久久黄色一级片 | 日本道色综合久久影院 | JIZZ国产丝袜18老师女人生产 | 玩偶姐姐免费 | 91欧美激情一区二区三区成人 | 美女被按在床上 | 黄色毛片黄色毛片 | 午夜少妇拍拍视频在线观看 | 亚洲色图av在线 | 久久综合狠狠综合久久狠狠色综合 | 国产日产久久高清欧美一区 | 欧洲色情三级欧美三级视频 | 日本一区二区久久久 | 人妻精品久久无码专区精东影业 | 国产精品久久久久久粉嫩影视 | 九九爱这里只有精品 | 色小妹网站 |