《圓的面積》教案(精選13篇)
《圓的面積》教案 篇1
【圖解教材】
利用光盤幫助學生理解求圓環(huán)的面積是利用外圓的面積減去內(nèi)圓面積。
【課時目標】
1、學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。
2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。
3、培養(yǎng)學生的邏輯思維能力。
【教學重點】求圓環(huán)的面積的方法。
【教學難點】運用所學知識解決實際問題。
【教學過程】
一、復習
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
(1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
(2)求圓的面積需要知道什么條件?
(3)知道圓的周長能夠求它的面積嗎?
二、新課
1、教學練習十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米 s=πr2
r:125.6÷(2×3.14) 3.14×202
=125.6÷6.28 =3.14×400
=20(厘米) =1256(平方厘米)
答: 這棵樹干的橫截面積1256平方厘米。
3、教學環(huán)形面積。
(1)例2 光盤的銀色部分是個圓環(huán),內(nèi)圓半徑是2cm,外圓半徑是6cm。它的`面積是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二種解法:3.14×(62-22)=100.48(平方厘米)
(2)小結:環(huán)形的面積計算公式:
S=πR2-πr2 或 S=π×(R2-r2)
(3)完成做一做: 一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
三、課堂小結;
四、板書設計:
【評價方案】
一、達標測評
●學校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
●環(huán)形鐵片,外圈直徑20分米,內(nèi)圓半徑7分米,環(huán)形鐵片的面積是多少?
●課堂小結。
(1)這節(jié)課的學習內(nèi)容是什么?
(2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積 S=πr2
已知直徑求面積 S=π2
已知周長求面積 S=π2
(3)環(huán)形面積: S=π(R2-r2)
二、效度評價
參評人數(shù)( )
題號
1
2
3
答對人數(shù)
正確率
三、教學反思
學生參與程度
教學目標達成度
經(jīng)驗積累
問題分析
改進措施
《圓的面積》教案 篇2
教學目標:
1、讓學生經(jīng)歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的`學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活。】
二、猜想驗證、初步感知
1、實驗驗證
(1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
(引導學生發(fā)現(xiàn)可以先數(shù)出個圓的方格數(shù),再乘4就是圓的面積)
(讓學生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
(cm)
圓的面積
(cm2)圓的面積
(cm2)正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
(精確到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經(jīng)過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經(jīng)驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性。
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
(分別演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越接近于平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
(引導學生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接近于平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
(引導學生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調(diào)動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接近于平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想。
(2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內(nèi)交流一下。
(小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
(通過長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經(jīng)驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經(jīng)歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內(nèi)在美,品嘗到成功的喜悅。
四、解決問題、拓展應用
1、師:在日常生活中,經(jīng)常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經(jīng)常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經(jīng)驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。
教學反思
本節(jié)課是在學生掌握了面積的含義及長方形、正方形等平面圖形的面積計算方法,認識了圓,會計算圓的周長的基礎上進行教學的。
成功之處:
1.以數(shù)學思想為引領,探索圓的面積計算公式的推導。學生對于把圓的面積轉化為已學過圖形的面積并不陌生,通過以前相關知識的學習,學生很自然想到利用轉化思想把圓的面積轉化為長方形、平行四邊形的面積來推導計算圓的面積。在教學中,我首先通過出示學過的圖形長方形、正方形、三角形、平行四邊形、梯形,讓學生回顧這些圖形的面積計算,從而為教學圓的面積做好鋪墊。
2.利用多媒體的優(yōu)勢,與學生的實際操作相結合,使學生不僅知道圓的面積推導過程,還在學習中再一次溫習轉化思想,掌握解決問題的策略。在教學中,通過學生的操作,與多媒體的動態(tài)演示,使學生清楚的發(fā)現(xiàn)圓的面積與近似長方形面積之間的關系:近似長方形的長相當于圓周長的一半,寬相當于圓的半徑,由此推導出圓的面積是:S=∏ 。
不足之處:
學生由于事先在課前已把課本中的附頁圓等分剪下來,對于把圓的面積轉化成長方形、平行四邊形有了一定的思維限制,學生是不是只是單純的操作,而忽略了思維的進一步深入,還有待研究。
再教設計:
盡量放手給予學生最大的思考時間和空間,讓學生在思索、質(zhì)疑中不斷建構知識的來龍去脈,習題要精選,注意變化的形式。
《圓的面積》教案 篇3
教學目標:
1.讓學生結合具體的情境認識環(huán)形的特征,掌握計算環(huán)形的面積的方法,并能準確計算一些簡單組合圖形的面積。
2.通過自主探究與小組合作,進一步應用圓的周長公式和面積公式解決一些和生活相關的實際問題。
3.使學生進一步體驗圖形和生活的聯(lián)系,感受平面圖形的學習價值,提高數(shù)學學習的興趣和學好數(shù)學的信心。
教學重點:
掌握計算環(huán)形面積的方法,并能準確計算一些簡單組合圖形的面積。
教學難點:
應用圓的周長公式和面積公式解決一些和生活相關的實際問題。
教學準備:
圓規(guī),環(huán)形圖片,教學情境圖。
教學過程:
一、創(chuàng)設情境,引入新知
1.出示自然界中的一些環(huán)形圖片。
(l)觀察圖片,說說這些圖形都是由什么組成的。
(2)你能舉出一些環(huán)形的實例嗎?
2.引入:今天這節(jié)課我們就一起來研究環(huán)形面積的計算方法。
二、合作交流,探究新知
1.教學例11。
(1)出示例11題目,讀題。
(2)提問:這是由兩個同心圓組合成的圓環(huán),要計算它的面積,你有什么好的方法?獨立思考。
(3)小組討論,理清解題思路。
(4)集體交流
①求出外圓的面積。
②求出內(nèi)圓的面積。
③計算圓環(huán)的面積。
(5)學生按步驟獨立計算。
(6)組織交流解題方法,教師板書
①求出外圓的面積:3.14102 =314(平方厘米)
②求出內(nèi)圓的面積:3.1462 =113.04(平方厘米)
③計算圓環(huán)的面積:314-113.04=200.96(平方厘米)
(7)提問:有更簡便的計算方法嗎?
(8)學生回答后,小結:求圓環(huán)的面積一般是把外圓的面積減去內(nèi)圓的面積
還可以利用乘法分配率進行簡便計并。
簡便計算
3.14102-3.1462
=3.14(102-62)
=3.1464
= 200.96(平方厘米)
答:這個鐵片的面積是200.96平方厘米。
2.概括歸納:如果用R表示大圓的半徑,用r表示小圓的半徑,你能根據(jù)上面的計算過程推導出環(huán)形面積的計算公式嗎?
《圓的面積》教案 篇4
教學內(nèi)容:
蘇教國標版五年級下冊103-105頁及練一練和練習十九1-3題。
教材分析:
本課時內(nèi)容是在學生已掌握了圓的基本特征和圓的周長公式的基礎上,引導學生探索并掌握圓的面積公式。通過3個例題教學,采用兩種不同的的策略,推導出圓的面積,讓學生充分感受到圓的面積公式推導過程的合理性。
教學時,一要重點引導學生用數(shù)方格的方法計算圓面積及對相關數(shù)據(jù)進行分析和比較的過程中,發(fā)現(xiàn)圓的面積和以它的半徑為邊長的正方形面積之間的近似關系;二要把握兩個關鍵環(huán)節(jié):一是圓可以轉化成過去所學過的什么圖形;二是轉化成的這個圖形與原來的圓有什么聯(lián)系。最后通過應用實踐讓學生運用知識解決實際問題的成功體驗,增強學生學習數(shù)學的信心。
學情分析:
1、學生已有知識基礎
在學習本課內(nèi)容前,學生已經(jīng)認識了圓,會求圓的周長,在學習長方形、平行四邊形、三角形、梯形等平面圖形的面積時,已經(jīng)學會了用割、補、移等方式,把未知的問題轉化成已知的問題。因此教學本課時,可以引導學生用轉化的方法推導出圓的面積公式。
2、對后繼學習的作用
圓面積的計算是今后學習圓柱、圓錐等內(nèi)容的重要基礎。
教學目標:
1、知識與技能:
(1)理解圓的面積的含義。
(2)經(jīng)歷圓的面積公式的推導過程,理解和掌握圓的面積公式。
(3)培養(yǎng)學生分析、綜合、抽象、概括的能力和解決簡單實際問題的能力。
2、過程與方法:
經(jīng)歷圓的面積公式的推導過程,體驗實驗操作、邏輯推理的學習方法。
3、情感與態(tài)度:
感悟數(shù)學知識內(nèi)在聯(lián)系的邏輯之美,體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識,培養(yǎng)學生學習數(shù)學的興趣。
教學重點:
正確掌握圓面積的計算公式。
教學難點:
圓面積計算公式的推導過程。
教學準備:
1.CAI課件;
2.把圓16等分、32等分和64等分的硬紙板若干個;
教學設計:
一、創(chuàng)設情境,提出問題。
投影出示草坪噴水插圖
師:請大家觀察這幅插圖,說說從圖中你能發(fā)現(xiàn)數(shù)學知識嗎?
學生觀察、討論并交流:
生1:我能發(fā)現(xiàn)噴水頭轉動一周所走過的地方剛好是一個圓形。
生2:這個圓形的半徑就是噴頭噴水的距離,也就是5米;周長就是噴水所走過的路線;
生3:這個圓形的中心就是噴頭所在的地方。
師:請大家說說這個圓形的面積指的是哪部分呢?
生4:被噴到水的草坪大小就是這個圓形的面積。
師:今天這節(jié)課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)
二、自主探究,合作交流:
1、課件先出示一個正方形,再以正方形的一個頂點為圓心,邊長為半徑畫一個圓,請學生觀察:正方形的邊長與圓的什么有關系?如果半徑是r,正方形的面積是多少?
板書:正方形的邊長=圓的半徑r
正方形的面積=r2
2、猜想:圓的面積是正方形面積的多少倍?你是怎樣想的?
3、教學例7
⑴談話:剛才我們猜想圓的面積是正方形面積的3倍多,下面我們用數(shù)方格的方法來研究。
⑵課件出示例7第一幅圖表,請同學們按照圖表的要求數(shù)一數(shù),算一算,把表格填完整,再在小組里交流。
⑶小組匯報(實物投影展示學生填寫的表格)
⑷剛才我們通過一個圓驗證了我們的猜想圓的面積大約是正方形面積的3倍多一些,而一個圓還不足以說明問題,我們再找兩個圓用同樣的方法驗證。課件出示例7的第二幅圖表,小組合作完成表格。
⑸小組匯報交流
⑹談話:通過猜想、驗證,我們都認為圓的面積是正方形面積的3倍多一些,我們知道正方形的邊長等于圓的半徑r,正方形的面積等于r2,那么圓的面積與它的半徑有什么關系呢?
板書:S=r2×3倍多
[設計意圖]
讓學生仔細觀察正方形和圓的關系后大膽猜想圓的面積是正方形的多少倍,接著從學生熟悉的“數(shù)方格”初步驗證猜想,為進一步探索圓的面積公式作準備,獲得的結論與例8推導出來的公式互相印證,能使學生充分感受圓面積公式推導過程的合理性,加深對有關圓形轉化方法的體會。
三、動手操作,探索新知
1.回憶平行四邊形、三角形、梯形面積計算公式推導過程。
(1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?
(2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?
(3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?
2.推導圓面積的計算公式。
(1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
(2)學生小組討論。
看拼成的長方形與圓有什么聯(lián)系?
學生匯報討論結果。
(3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)
(4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr×r
S=πr2師小結公式S=πr2,讓學生小組內(nèi)說說圓的面積是怎樣推導出來的?
(5)讀公式并理解記憶。
(6)要求圓的面積必須知道什么?(半徑)
四、聯(lián)系實際,解決問題:
1教學例9
(1)課件出示例9;
(2)說出已知條件和問題;
(3)學生自己試做;
(4)講評,注意公式、單位使用是否正確。
2師:“老師的家中新買了一張圓桌,你們想看嗎?(教師用電腦顯示圖片)為了保護好桌面,我想為桌面配一塊和桌面一樣大的玻璃,但不知該畫一塊多大的玻璃?(電腦中標示出桌面直徑)。
五、全課總結,課后延伸:
1、今天這節(jié)課你學到了什么?
2、圓面積的計算方法,我們是怎樣探索出來的?
3、小結:這節(jié)課我們通過猜想、動手操作把圓轉化成近似的長方形來驗證猜想,這是一種重要的數(shù)學思想方法,希望大家在今后的學習中大膽猜想,勇于探索,解決生活中的數(shù)學問題。
六、布置作業(yè)
1.第107頁的第1-3題。
2.找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物直徑(厘米)半徑(厘米)面積(平方厘米)
七、板書設計:
圓的面積
S=r2×3倍多
長方形的面積=長×寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
教學反思
本課時從生活中噴水頭澆灌農(nóng)田這一生活場景引入,使學生理解了推導圓面積公式的必要性,激發(fā)了學生的求知欲望,調(diào)動了學生的積極性,使全體學生積極參與到數(shù)學學習活動中來。在強烈的求知欲望驅使下,學生憑借已有的生活經(jīng)驗和知識經(jīng)驗,發(fā)揮自己的想象,從估計到公式的推導;從數(shù)方格到剪拼成學過的平面圖形。在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時遵循學生的認識規(guī)律,從學生的生活經(jīng)驗和已有的知識出發(fā),重視學生獲取知識的思維過程,。重點引導學生將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,發(fā)展學生的空間觀念,從而正確掌握圓面積的計算公式。
《圓的面積》教案 篇5
小學數(shù)學第十一冊第四單元圓練習題
一、填空。
(1) 寫出下面各題的最簡整數(shù)比。
①圓的半徑和直徑的比是( ),圓的周長和直徑的比是( )。
②小圓的半徑是4厘米,大圓的半徑是6厘米。小圓直徑和大圓直徑的'比是( ),小圓周長和大圓周長的比是( ),小圓面積和大圓面積的比是( )。
(2)把圓分成若干等份,然后把它剪開,可以拼成一個近似于長方形的圖形,這個長方形的長相當于圓的( ),長方形的寬相當于圓的( )。
(3)圓的周長是37.68分米,它的面積是( )平方分米。
(4)圓的半徑擴大3倍,它的面積就擴大。
(5)一個圓的周長、直徑和半徑相加的和是9.28厘米,這個圓的直徑是厘米;面積是。
(6)在一個邊長為12厘米的正方形紙板里剪出一個最大的圓,剩下的面積是( )。
(7)要在底面半徑是10厘米的圓柱形水桶外面打上一個鐵絲箍,接頭部分是6厘米,需用鐵絲( )厘米。
(8)用圓規(guī)畫一個圓,如果圓規(guī)兩腳之間的距離是6厘米,畫出的這個圓的周長是( )厘米。這個圓的面積是( )平方厘米。
7、用一根長12.56厘米的鐵絲圍成一個正方形,正方形的面積是平方厘米;如果用這根鐵絲圍成一個圓,這個圓的面積是平方厘米。
二、判斷題。正確的畫“√”,錯的打“×”,并訂正。
(1)在一個圓里,兩端都在圓上的線段叫做圓的直徑。( )
(2)小圓半徑是大圓半徑的12 ,那么小圓周長也是大圓周長的12 。( )
(3)小圓半徑是大圓半徑的12 ,那么小圓面積也是大圓面積的12 。( )
(4)半圓的周長就是這個圓周長的一半。( )
(5)求圓的周長,用字母表示就是C=πd或C=2πr。( )
三、選擇題。將正確答案的序號填在括號里。(8%)
(1)畫圓時,固定的一點叫。
① 頂點② 圓心 ③ 字母O
(2)從圓心到圓上任意一點的叫做半徑。
① 直線② 射線 ③ 線段
(3)周長相等的圖形中,面積最大的是。
① 圓 ②正方形③長方形
(4)圓周率表示
① 圓的周長②圓的面積與直徑的倍數(shù)關系 ③圓的周長與直徑的倍數(shù)關系
(5)半徑為r的圓面積等于。
① πr2 ② 2πr2 ③πd
(6)圓的直徑長度決定圓的。
① 位置② 大小 ③ 形狀
(7)圓的半徑擴大3倍,它的面積就擴大。
① 3倍 ② 6倍 ③ 9倍
(8)已知圓的周長是106.76分米,圓的半徑是。
① 17分米②8.5分米 ③ 34分米
四、應用題。
(1)一個大廳里掛有一只大鐘,它的分針長40厘米。這根分針的針尖1天轉動多少厘米?
(2)一個大廳里掛有一只大鐘,它的時針長35厘米。這根時針的針尖1天轉動多少厘米?
(3)小明騎的自行車車輪直徑是70厘米,每分鐘轉100周,從家到學校有1300米,小明大約要騎幾分鐘?(得數(shù)保留整數(shù))
(4)一個農(nóng)民新開挖一個圓形水池,水池的周長是50.24米,求水池占地的面積是多少平方米?
(5)一張長方形紙片,長60厘米,寬40厘米。用這張紙剪下一個盡可能大的圓。剩下的面積是多少平方厘米?
(6)一個環(huán)形鐵片,內(nèi)圓半徑是8厘米,外圓半徑是10厘米,這個環(huán)形鐵片的面積是多少?
(7)公園里有一個圓形花壇,周長50.24米,在它的周圍有一條寬1米的小路,小路的面積是多少平方米?
(8)學校操場(如左圖,單位:米),操場的周長是多少米?面積是多少平方米?
小學數(shù)學六年級(上冊)圓測試題 (上)
一、填空
1、( )決定圓的大小,( )決定圓的位置。
2、圓是( )圖形,它有( )條對稱軸,( )是圓的對稱軸,
3、( )是圓中最長的線段。
4、一個圓周長擴大4倍,半徑擴大( )倍,直徑擴大倍,面積擴大倍。
5、大圓的半徑等于小圓的直徑,那么大圓的面積是小圓面積的( )倍。
6、圓的周長公式是( )或( ),圓的面積公式是( ),半圓形的周長公式( ),圓周長的一半公式是( )
7、周長相等的長方形,正方形,圓。( )的面積最大,的面積最小。
8、π,3.14,3.1414,0.314,31.4,從小到大排列是。
9、圓的周長總是直徑倍,是半徑的( )倍。
10、畫出一個圓的周長是18.84厘米,那么圓規(guī)兩腳間的距離是( )。
11、在同一個圓里,直徑和半徑的關系用字母表示是。
12、一個半圓,半徑是r,它的周長是( )。
二、判斷
1、直徑是半徑的2倍。
2、兩端都在圓上的線段,叫半徑。
3、半徑是2厘米的圓周長和面積相等。
4、將一個圓通過切拼,轉化成一個長方形,面積和周長沒有變化。
5、如果圓的直徑是d,它的面積是 πd2 。
6、圓周率就是3.14
7、半圓形的周長就是圓周長的一半。
8、直徑是圓的對稱軸。
9、一個圓的面積和一個正方形的面積相等,它們的周長也相等
10、半圓形的面積就是圓面積的一半
三、應用
1、 一個圓形水池,直徑是20米,在水池周圍圍一圈柵欄,再在水池外圍修一條寬4米的環(huán)形小路。
(1)、柵欄的長度是多少?
(2)、這條小路的面積是多少?
2、 一根12.96 米的繩子,繞樹10圈還長0.4米,樹干橫截面的面積是多少?
3、一輛自行車輪胎外直徑是80厘米,如果平均每分鐘轉動200圈,它要通過一座長1500米的橋,大約需要多少分鐘?(得數(shù)保留整數(shù))
4、一張長方形紙片,長4厘米,寬2厘米,要用它剪一個最大的半圓,這個半圓面積是多少,周長是多少,剩下的紙片的周長是多少?面積是多少?
5、 一個圓的周長是6280米,半徑增加1厘米,面積增加了多少平米?
6、 一只掛鐘的時針長8厘米,針尖一晝夜走過的路程是多少厘米?
7、 一只掛鐘的分針長8厘米,針尖一晝夜走過的路程是多少厘米?掃過的面積是多少?
8、 一只掛鐘的分針長8厘米,經(jīng)過15分鐘分針走過的路程是多少?掃過的面積是多少?
9、 一只掛鐘的分針長8厘米,從2時到5時,分針尖端走過的路程是多少?
10一個半圓的周長是10.28厘米,這個半圓的半徑是多少,面積是多少?
11、 一臺壓路機前輪直徑是10分米,長是15分米,這臺壓路機的前輪滾動一圈,壓過的路長是多少?壓過路面的面積是多少米?
12、一座圓形游泳池,劉星沿著游泳池走了一圈,一共是628步,他每步的長約是0.6米。這個游泳池占地面積是多少?
《圓的面積》教案 篇6
【第一課時】 圓的面積
一、 教學目標
1.知識與技能
理解圓的面積的概念,理解和掌握圓面積的計算公式,并能正確計算圓的面積,解答有關的實際問題。
2.過程與方法
引導學生利用已有的知識,通過猜想、操作、驗證、歸納等活動,經(jīng)歷圓面積計算公式的推導過程,培養(yǎng)學生觀察、操作、分析、概括的能力,發(fā)展空間觀念,滲透轉化、極限等數(shù)學思想方法。
3.情感態(tài)度與價值觀
通過自主探究圓面積轉化的過程,培養(yǎng)學生大膽創(chuàng)新,勇于嘗試,克服困難的精神,使學生體驗成功的樂趣。
二、教學重點
正確計算圓的面積。
三、教學難點
圓面積公式的推導。
四、教學具準備
課件、學具。
五、教學過程
(一)情境導入
1.敘述:俗話說的好:“民以食為天”。餐桌是家家戶戶必不可少的。這不,小明家就新購置了一張圓形的餐桌。為了起到保護作用,媽媽給了他一個任務,讓他去配一個與桌面相同大小的玻璃桌面。這可把小明難住了,這玻璃桌面該多大呢?【可使用圓的圖片2】 同學們,要想幫助小明解決他的問題我們需要用到什么知識呢?
今天這節(jié)課我們就來學習圓面積的求法。(板書題目:圓的面積)
2.看到今天的課題,你都想知道什么?
3.什么是圓的面積?在哪?摸摸看。
(學生摸手中圓形紙片,并用手指出圓的面積)
過渡語:圓的面積怎樣求呢?在這里,我們不妨先回憶一下其它圖形面積的推導過程。
(二)復習舊知識
1.你還記得我們已經(jīng)學過了哪些圖形的面積求法嗎?
(生:長方形、正方形、平行四邊形、三角形、梯形)
2.回憶一下,平行四邊形面積計算公式我們是怎樣推導出來的'?(課件演示)
3.問:其它圖形呢?(學生簡要敘述其他面積推導過程)
4.小結:這樣看來,當我們遇到新問題時,往往可以借助已有的知識進行解決。
(三)學習新課
1.請你猜猜看,圓的面積公式應該怎么推導出來?
(生:轉化成已知的圖形進行推導)
2.怎么轉化?想想辦法。任意的分成幾份行嗎?
(生:沿圓的直徑將圓平均分成若干份)
3.下面請大家動手實際拼擺一下,看看自己的想法能否實現(xiàn)。請看活動要求:
(1)以組為單位,先擺圖形。
(2)看看拼出的圖形的底和高與圓的關系,并推導圓的面積公式。
(3)有問題及時記錄,以便討論。
(學生動手拼擺并貼在白紙上)
4.你們遇到什么問題了嗎?
(生:邊不是直的,是彎的)。
5.誰能幫助他解決這個問題?
(學生談自己的想法)
6.是的,邊不是直的這可怎么辦呢?我們已拼成長方形為例,當我們把圓平均分成四份,拼成的圖形是這樣的;把圓平均分成8份,拼成的圖形是這樣的;把圓平均分成16份,拼成的圖形是這樣的;把圓平均分成32份;拼成的圖形是這樣的。(課件展示)
【可使用圓的圖片27】
7.同學們請你對比大屏幕上拼得的這幾幅圖,你有什么想法嗎?
(學生談自己的想法)
8.看來,把圓平均分的份數(shù)越多,曲線越接近于線段,拼得的圖形越接近我們所學過的圖形。當分成無數(shù)份時,曲線也就變成了直線。這個問題解決了么?下面繼續(xù)小組合作,推導圓面積計算公式。
(學生談自己的想法)
9.匯報不同推導方法:
轉化成長方形的:
長方形的面積=a × b 圓的面積=c×r 2
=π r × r
=π r 2
轉化成平行四邊形的:
平行四邊形的面積= a × h
圓的面積= c × r 2
=π r × r
=π r 2
轉化成三角形的:
三角形的面積= 1× a × h 2
圓的面積= 1c×4r 24
c× r 2 =
=π r 2
轉化成梯形的: 梯形面積=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圓形面積= ==
=π r 2
10.觀察一下,這些推導過程有什么相同的地方?
(生:都是將圓轉化成已知圖形去推導的)
11.總結:由此可知,我們在推導圓面積計算公式的時候可以用全部的小扇形推導,也可以用一個小扇形推導,當然也可以用部分小扇形推導。
現(xiàn)在我們圓面積的計算公式已經(jīng)推導出來了,小明的問題可以解決了我嗎?要想解決它的問題我們需要知道哪些條件?(圓的直徑、半徑或周長)
(四)鞏固練習
1.求圓的面積(單位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明測量出桌面的直徑是2米,你能算出玻璃桌面的面積嗎?
答案:3.14×22 =12.56(平方米)
3.判斷
(1)直徑是2厘米的圓,它的面積是12.56平方厘米。
(2)兩個圓的周長相等,面積也一定相等。
(3)圓的半徑越大,圓所占的面積也越大。
(4)圓的半徑擴大3倍,它的面積擴大6倍。
4.聽故事解題:
巴依老爺買來一群羊。
巴依老爺說:“阿凡提,快把新買的羊趕倒圈里去”。
阿凡提說:“老爺,這個長方形羊圈太小了!”
巴依老爺:“什么,太小了?你不把羊全部趕進去,哼哼,你的工錢就別拿了!要不,你自己花錢買些材料,把羊圈圍大些。”
阿凡提想:“該怎么辦呢?怎么樣才能既不花錢另買材料,又能夠讓羊圈的面積變大呢?”
同樣聰明的同學們,你們能幫阿凡提想個辦法嗎?并且請你說明你的理由。
(五)小結
今天這節(jié)課你有什么收獲?
【第二課時】 圓環(huán)面積
一、 教學目標
1.知識與技能
掌握圓環(huán)面積的計算方法,能靈活解決生活中相關的簡單實際問題。
2.過程與方法
在經(jīng)歷畫圓環(huán)、剪圓環(huán)的活動過程中,初步感受圓環(huán)的特點、形成過程,進而探索出圓環(huán)面積計算的方法。培養(yǎng)學生觀察、動手操作、比較、分析、概括等能力。
3.情感態(tài)度與價值觀
進一步體驗圖形與生活的聯(lián)系,感受平面圖形的學習價值,提高學習數(shù)學的興趣。
二、教學重點
圓環(huán)的特征、圓環(huán)面積公式的推導及運用。
三、教學難點
靈活運用圓環(huán)面積的計算方法解決相關的簡單實際問題。
四、教學具準備
課件、學具。
五、教學過程
(一)學習方法回顧、鋪墊回憶一下
我們在推導圓面積計算公式時用到了什么學習方法?
(生:把圓形轉化成學過的平面圖形,利用舊知識推導出新知識。)
這也就是我們常說的遇到不會的想會的,把新知識轉化成了舊知識解決。 板書:不會
想 會
新 舊
這節(jié)課我們繼續(xù)用這種方法研究新問題。
(二)創(chuàng)設實際應用的問題情境
1.同學們你們喜歡看動畫片嗎?今天老師帶來了幾張光盤,看,這是什么?
(1)動畫光盤(2)歌曲光盤
(3)空白封面光盤
2.想知道這張光盤的內(nèi)容嗎?我們一起來看看。
欣賞學生的校園活動照片。
這些照片見證了我們同學6年來快樂的校園生活,非常珍貴。想不想把它珍藏起來?老師打算把這些照片刻成光盤,等你們畢業(yè)時當畢業(yè)禮物送給你們好嗎?
3.現(xiàn)在這張光盤的封面還空著呢,你想不想親自為它設計一個有紀念意義的封面呢?要進行設計,咱們先了解一下哪部分是可以進行封面設計的。
4.小組內(nèi)摸一摸準備的光盤實物,再讓學生實投指一指。
師課件演示(由實物抽象出線條圖形、涂色圖形)【可使用圓動畫14】
5.這個圖形有什么特點?
生:由兩個圓組成,它們的圓心是相同的。(課件點擊出圓心)
6.師說明:這樣兩個同心圓所夾的部分我們把它叫做圓環(huán)。
板書課題:圓環(huán)
外面的圓我們叫它外圓,里面的小圓我們叫它內(nèi)圓。兩個圓周之間的距離我們叫做環(huán)寬。
《圓的面積》教案 篇7
教學目標
1、使學生學會圓環(huán)面積的計算方法,以及圓形與矩形混合圖形的相關計算方法。
2、學會利用已有的知識,運用數(shù)學思想方法,推導出圓環(huán)面積計算公式,有關于圓形與正方形應用的解答方法。
3、培養(yǎng)學生觀察、分析、推理和概括的能力,發(fā)展學生的空間概念。
教學重難點
1、教學重點
會利用圓和其他已學的相關知識解決實際問題。
2、教學難點
圓與其他圖形計算公式的混合使用。
教學工具
PPT卡片
教學過程
1、復習鞏固上節(jié)知識,導入新課
2、新知探究
2、1圓環(huán)面積
一、問題引入
同學們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。
回答(略)。
今天我們就來做一做與光盤相關的數(shù)學問題。
二、圓環(huán)面積求解
例2、光盤的銀色部分是一個圓環(huán),內(nèi)圓半徑是50px,外圓半徑是150px。圓環(huán)的面積是多少?
步驟:
師:求圓環(huán)面積需要先求什么?
生:內(nèi)圓和外圓的面積
師:同學們可以自己做一做,分組交流一下自己的解法。
師:給出計算過程與結果:
三、知識應用
做一做第2題:
一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
師:這是一道典型的圓環(huán)面積應用題。通過直徑得到半徑,代入圓環(huán)面積公式,很簡單。
2、2圓與正方形
一、問題引入
師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內(nèi)方或者外方內(nèi)圓是一種很常見的設計。
師:不僅是在園林中,事實上在中國的建筑和其他的設計中都經(jīng)常能見到“外圓內(nèi)方”和“外方內(nèi)圓”,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結合起來構成的圖形。
二、知識點
例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?
步驟:
師:題目中都告訴了我們什么?
生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m
師:分別要求的是什么?
生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。
師:應該怎么計算呢?
歸納總結
如果兩個圓的半徑都是r,結果又是怎樣的呢?
當r=1時,與前面的結果完全一致。
四、知識應用
70頁做一做:
下圖是一面我國唐代外圓內(nèi)方的銅鏡。銅鏡的直徑是600px。外面的圓與內(nèi)部的正方形之間的面積是多少?
師:同學們用我們剛剛學過的知識來解答一下這道題目吧。
解:銅鏡的半徑是300px
5、3隨堂練習
若還有足夠時間,課堂練習練習十五第5/6/7題。
(可以邀請同學板書解題過程)
6 小結
1、今天我們共同研究了什么?
今天我們在已知圓和正方形的面積公式的前提下,探索了圓環(huán)和“外圓內(nèi)方”“外方內(nèi)圓”圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以后遇到類似的問題可以自己運用學過的知識來解決問題。
2、在日常生活中經(jīng)常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!
7板書
例2解答步驟
《圓的面積》教案 篇8
教學目標
1、通過操作、觀察,引導學生推導出圓面積的計算公式,并能解決一些簡單的實際問題。
2、培養(yǎng)學生觀察、分析、推理和概括的能力,發(fā)展學生的空間觀念,并滲透極限、轉化的數(shù)學思想。
3、在圓面積計算公式的推導過程中,運用轉化的思考方法,通過讓學生觀察“曲”與“直”的轉化,向學生滲透極限的思想,使學生受到辯證唯物主義觀點的啟蒙教育。
教學重點
圓面積的計算公式推導和運用。
課前準備
一個大圓、剪刀、小正方形。
課時安排:
1課時
授課時間
教學過程
一、復習引入,導入新課。
教師引導交流:(出示一個圓)我們已經(jīng)認識了圓,說說你對圓的了解。
學生說出自己的見解。
教師引導交流:如果圓的半徑用r表示,周長怎樣表示?周長的一半怎樣表示?
學生做出回答。
教師引導交流:圓的周長和直徑、半徑有關。大家猜想一下,圓的面積與誰有關?
二、探索嘗試,解釋交流。
教師引導交流:同學們的猜想對不對呢?下面我們就一起來驗證一下。
大家可利用昨晚把圓剪開后,拼成的圖形展示一下,看看發(fā)現(xiàn)了什么?
全班匯報交流:誰想先來展示一下?(學生回答)
教師引導交流:你能讓平行四邊形的底再直一點嗎?
學生領悟:分成4份其中的一份是扇形,拼成一個近似的平行四邊形。
學生領悟:多分幾份,平行四邊形的底就會直一些。
教師引導交流:對,如果把圓平均分成8份、16份、32份會怎么樣?
教師引導交流:請大家閉上眼睛想象一下,分成128份呢?如果把這個圓平均分的份數(shù)越來越多呢?
教師引導交流:對,把圓分的份數(shù)越多,拼成的就越近似于平行四邊形。
教師引導交流:若把其中的一個小扇形平均分成2份,取一份放在另一邊,平行四邊形就變成了什么圖形?
師:這樣就把求圓轉化成了求長方形。
教師引導交流:你認為轉化成的長方形與圓有什么關系?
生:他們的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
教師引導交流:你能根據(jù)它們的關系,推出圓的面積公式嗎?
長方形的面積=長×寬
圓的面積=c÷2×r=πr×r=πr2
教師引導交流:如果用s表示圓的面積,那么圓的面積公式可以寫成:s=πr2
教師引導交流:黑板上的這個圓半徑是10厘米,它的面積是多少。
三、鞏固練習
1、請同學們利用公式,求出“神舟五號”飛船預先設定的降落范圍是多大。
建議:可以先畫模擬圖,然后想辦法得出比預定范圍小了多少平方米。
2、自主練習第1題。
3、自主練習第2題。
給出圓的直徑求圓的面積,必須先求出圓的半徑,再求圓的面積。
4、自主練習第3題。
總結:通過這節(jié)課的學習,你有什么收獲?
《圓的面積》教案 篇9
學習內(nèi)容:
圓的面積(教材16、17、18、頁)
學習目標:
1、了解圓的面積的含義,經(jīng)歷圓面積計算公式的推導過程,掌握圓面積的計算公式。
2、能正確運用圓的面積公式計算圓的面積,并能運用圓面積的知識解決一些簡單的實際問題。
3、在估一估和探究圓面積計算公式的活動中,體會“化曲為直”的思想,初步感受極限的思想。
學習重點:
經(jīng)歷圓面積計算公式的推導過程,掌握圓面積的計算公式。
學習難點:
了解圓的面積的含義,并能運用圓面積的知識解決一些簡單的實際問題。
教學準備:
等分好的圓形紙片
學習過程:
一、自主復習
寫出正方形、長方形、平行四邊形、三角形、梯形的面積公式并回憶面積公式的推導過程。
二、自主預習
(一)感知圓的面積。
任意畫一個圓,用彩筆涂出它的面積。
我知道:圓所占平面的( )叫做圓的面積。
(二)、觀察P16中草坪噴水插圖,思考:噴水頭轉動一周,所走過的地方剛好是一個什么圖形?說說這個圓形的面積指的是哪部分呢?圓的半徑是多少?
(三)估一估
請你估計半徑為5米的圓面積大約是多大?
先獨立思考后觀察分析書16頁的估算方法。你還有其他的方法嗎?可以記錄下來。
三、小組交流自主預習部分
四、自主探索圓面積公式
1、思考:怎樣計算圓的面積呢?我們能不能從平行四邊形、三角形、梯形的面積公式推導過程得到啟發(fā)呢?能不能也將圓通過剪拼成一個我們學過的圖形呢?(提示:可以把圓轉化成長方形來想一想)
2、動手操作:在硬紙上畫一個圓,把圓平均分成若干(偶數(shù))等份,沿半徑剪開拉直,再用這些近似等腰三角形的小紙片拼一拼。
拿出我們剪好的圖形拼一拼,看看能成為一個什么圖形?并考慮你拼成的圖形與原來的圓形有什么關系?
第一步:把圓平均分成8份,拼一拼,拼成了一個近似的( )
第二步:把圓平均分成16份,拼一拼,拼成了一個近似的( )
第三步:把圓平均分成32份,拼一拼,拼成了一個近似的( )
如果分的分數(shù)越,拼成的圖形就越接近于( )。)比較剪拼前后的圖形,發(fā)現(xiàn)變了,沒變。
3、我來推導:把圓轉化成平行四邊形后,平行四邊形的底相當于圓的( ),高相當于圓的。因為平行四邊形的面積等于,所以圓的面積等于( )。如果用S表示圓的面積,圓的面積公式表示為:
4、公式的推導:
平行四邊形面積=底×高
圓面積=
1、還可以怎樣拼接成長方形動手試一試并完成下面的填空
把圓轉化成長方形后,長方形的長相當于圓的( ),寬相當于圓的。因為長方形的面積等于,所以圓的面積等于。如果用S表示圓的面積,圓的面積公式表示為:
長方形的面積=長×寬
圓面積=用字母表示圓面積公式:
五、小組交流
1、圓面積公式的推導過程
2、如何計算圓的面積
六、全班交流教師總結
七、學習檢測
1、填空。
求圓的面積必須知道利用公式S =來計算。
2、解決書16頁上面噴水池轉一周澆灌草坪面積?
3、計算,求圓的面積: (1)r=2cm(2)d=10cm
4、一個圓形花壇的周長是6.28分米,它的面積是多少平方分米?
八、交流展示
九、回顧反思
通過今天的學習,你學會了什么?還有那些疑惑?
《圓的面積》教案 篇10
教學內(nèi)容:
國標本蘇教版五下第十單元P103-105例7、例8和“練一練”、練習十九的第1題
教學目標:
1、使學生經(jīng)歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓面積的計算公式,能正確計算圓的面積,并能應用公式解決相關的簡單問題。
2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已有知識解決新問題的能力,發(fā)展空間觀念和初步推理的能力。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高數(shù)學學習的興趣。
教學重點:
探索圓面積的計算
教學難點:
理解面積的意義,推導圓的面積計算公式
教學過程
一、導入新課。
(一)關于圓你已經(jīng)知道了什么?你還想知道什么?
(二)你覺得什么是圓的面積?(讓學生用手摸一摸圓的周長和面積)
(三)你覺得圓的面積可能和什么有關?
(四)出示下圖
(五)問:看了上圖你有什么想法?(課件動態(tài)顯示圓面積與4r2
和3r2的)關系。
(六)思考:圓的面積應該怎樣計算呢?對于這個問題你有些什么思考?
小結:將圓轉化成已學過的圖形,從而推導出它的面積計算公式。是一種不錯的想法。
二、探索圓積的計算公式
(一)讓學生試著將圓剪拼成長方形。
(二)閱讀課本P104頁
(三)讓學生再操作
(四)課件演示
(五)讓學生觀察、比較、想象。如果等分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。
(六)引導觀察討論:這個拼成的長方形和圓有什么關系?
(七)匯報討論結果。
這個用圓分割成的小塊拼成的長方形,寬就是圓的半徑r,長就是圓的周長的一半,也就是2πr÷2=πr。
因為長方形面積=長×寬
所以圓的面積=πr×r=πr2
用S表示圓的面積,那么圓的面積計算公式就是:
S=πr2
(八)讓學生用語言表述圓面積的推導過程(指名說、同桌互說)
(九)教學例9
1、出示例9。一個自動旋轉噴水器的最遠噴水距離大約是5米。它旋轉一周后噴灌的面積大約是多少平方米?
2、讓學生嘗試解答。
3、集體評議
4、思考:在進行圓面積的計算時要注意什么?(平方的計算和單位名稱)
三、知識運用
(一)求出下列各個圖形的面積。(P105頁的練一練)
(二)根據(jù)下面所給的條件,求圓的面積。
1)半徑2分米2)直徑10厘米3)周長12.56
(生獨立解答,思考3)面積和周長相等嗎?做了這些題目你有什么體會?)
四、本課小結。
通過本課的學習你有什么收獲?有什么體會?
《圓的面積》教案 篇11
教材分析
本節(jié)課的內(nèi)容是在學生初步認識了圓,學習了圓的周長以及學過幾種常見直線幾何面積的基礎上進行學習的。學生從學習平面圖形的面積到學習曲線圖形的面積,這是一次質(zhì)的飛躍。學生學習掌握了圓的面積的計算方法,不僅能解決簡單的實際問題,也為后面學習圓柱、圓錐的知識打下基礎。
學情分析
學生已經(jīng)有了一些平面圖形面積計算的經(jīng)驗,知道運用轉化的思想可以研究新的圖形的面積。在教學中要鼓勵學生大膽想象、勇于實踐,充分利用直觀教學具,結合多媒體課件,在觀察、操作中將圓轉化成已經(jīng)學過的平面圖形,從中發(fā)現(xiàn)圓的面積與半徑、直徑有關,從而推導出圓的面積計算公式。由于剛剛學習了圓的周長,學生容易把圓的面積和圓的周長混淆,所以教學中要讓學生注意區(qū)分周長和面積,正確進行計算,解決實際問題。
教學目標
知識與技能:
1.理解圓的面積的概念。
2.理解圓的面積公式的推導過程,掌握圓的面積的計算方法,能正確解決實際問題。
過程與方法:
經(jīng)歷圓的'面積的推導過程,通過動手操作,培養(yǎng)學生運用轉化思想解決問題的能力。
情感態(tài)度價值觀:
感悟數(shù)學知識的內(nèi)在聯(lián)系,體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點和難點
教學重點:
掌握圓的面積的計算公式,能夠正確地計算圓的面積,解決生活中的實際問題。
教學難點:
理解圓的面積公式的推導過程。
教學準備:
圓片、課件。
《圓的面積》教案 篇12
一、教學目標
【知識與技能】
掌握圓的面積計算公式,并能利用公式正確解決簡單問題。
【過程與方法】
通過操作、觀察、比較等活動,自主探索圓的面積計算公式,滲透轉化的數(shù)學思想方法。
【情感、態(tài)度與價值觀】
感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣。
二、教學重難點
【教學重點】
圓的面積計算公式。
【教學難點】
圓的面積計算公式的推導過程。
三、教學過程
(一)導入新課
創(chuàng)設情境:呈現(xiàn)校園中的圓形草坪,提問學生如何求解圓形草坪的占地面積。引導學生通過已有認知,認識到解決這個問題實際就是求這個圓的面積,從而引出課題。
(二)講解新知
提出問題:之前的圖形面積公式是如何推導的?
學生通過回憶,討論,得到是通過轉換成學過的圖形來推導得到的。
追問:能否將圓的圖形轉換成之前的圖形?
組織學生動手操作、合作探究,四人為一小組,討論分享自己的思路與剪拼過程,然后請各組的代表進行全班交流。
預設1:將圓平均分成4份,剪切拼接之后,沒有得到之前圖形;
預設2:將圓平均分成8份,剪切拼接之后,得到一個近似平行四邊形;
預設3:將圓平均分成16份,剪切拼接之后,得到一個近似長方形。
老師在此基礎上進行展示:大屏幕展示將圓平均分為32份,64份,128份,256份……的動圖,讓學生觀察其特點。
學生能夠發(fā)現(xiàn)圓平均分的份數(shù)越多,拼成的圖形越接近于長方形。
進一步追問:觀察原來的圓和轉化后的這個近似長方形,發(fā)現(xiàn)他們之前有哪些等量關系?
預設1:長方形的面積等于圓的面積;
預設2:長方形的長近似等于圓周長的一半;
預設3:長方形的寬近似等于圓的半徑。
《圓的面積》教案 篇13
教學目標:
1、讓學生經(jīng)歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活。】
二、猜想驗證、初步感知
1、實驗驗證
(1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
(引導學生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)
(讓學生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
(cm)
圓的面積
(cm2)圓的面積
(cm2)正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
(精確到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經(jīng)過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經(jīng)驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性。
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
(分別演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越接近了平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
(引導學生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接近了平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
(引導學生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調(diào)動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接近了平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想。
(2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內(nèi)交流一下。
(小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
(通過長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經(jīng)驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經(jīng)歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內(nèi)在美,品嘗到成功的喜悅。
四、解決問題、拓展應用
1、師:在日常生活中,經(jīng)常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經(jīng)常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經(jīng)驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。
圓的面積教學反思
本節(jié)課是在學生掌握了面積的含義及長方形、正方形等平面圖形的面積計算方法,認識了圓,會計算圓的周長的基礎上進行教學的。
成功之處:
1.以數(shù)學思想為引領,探索圓的面積計算公式的推導。學生對于把圓的面積轉化為已學過圖形的面積并不陌生,通過以前相關知識的學習,學生很自然想到利用轉化思想把圓的面積轉化為長方形、平行四邊形的面積來推導計算圓的面積。在教學中,我首先通過出示學過的圖形長方形、正方形、三角形、平行四邊形、梯形,讓學生回顧這些圖形的面積計算,從而為教學圓的面積做好鋪墊。
2.利用多媒體的優(yōu)勢,與學生的實際操作相結合,使學生不僅知道圓的面積推導過程,還在學習中再一次溫習轉化思想,掌握解決問題的策略。在教學中,通過學生的操作,與多媒體的動態(tài)演示,使學生清楚的發(fā)現(xiàn)圓的面積與近似長方形面積之間的關系:近似長方形的長相當于圓周長的一半,寬相當于圓的半徑,由此推導出圓的面積是:S=∏ 。
不足之處:
學生由于事先在課前已把課本中的附頁圓等分剪下來,對于把圓的面積轉化成長方形、平行四邊形有了一定的思維限制,學生是不是只是單純的操作,而忽略了思維的進一步深入,還有待研究。
再教設計:
盡量放手給予學生最大的思考時間和空間,讓學生在思索、質(zhì)疑中不斷建構知識的來龍去脈,習題要精選,注意變化的形式。