八年級數學上冊期末復習提綱(北師大版)
(3)矩形:有一個內角是直角的平行四邊形叫做矩形。矩形的對角線相等;四個角都是直角。對角線相等的平行四邊形是矩形;有一個角是直角的平行四邊形是矩形。直角三角形斜邊上的中線等于斜邊長的一半; 在直角三角形中30°所對的直角邊是斜邊的一半。
(4)正方形:一組鄰邊相等的矩形叫做正方形。正方形具有平行四邊形、菱形、矩形的一切性質。
(5)等腰梯形同一底上的兩個內角相等,對角線相等。同一底上的兩個內角相等的梯形是等腰梯形;對角線相等的梯形是等腰梯形;對角互補的梯形是等腰梯形。
(6)三角形中位線:連接三角形相連兩邊重點的線段。性質:平行且等于第三邊的一半
3.多邊形的內角和公式:(n-2)*180°;多邊形的外角和都等于 。
4.中心對稱圖形:在平面內,一個圖形繞某個點旋轉 ,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形。
第五章 位置的確定
1.直角坐標系及坐標的相關知識。
2.點的坐標間的關系:如果點a、b橫坐標相同,則 ∥ 軸;如果點a、b縱坐標相同,則 ∥ 軸。
3.將圖形的縱坐標保持不變,橫坐標變為原來的 倍,所得到的圖形與原圖形關于 軸對稱;將圖形的橫坐標保持不變,縱坐標變為原來的 倍,所得到的圖形與原圖形關于 軸對稱;將圖形的橫、縱坐標都變為原來的 倍,所得到的圖形與原圖形關于原點成中心對稱。
第六章 一次函數
1.一次函數定義:若兩個變量 間的關系可以表示成 ( 為常數, )的形式,則稱 是 的一次函數。當 時稱 是 的正比例函數。正比例函數是特殊的一次函數。
2.作一次函數的圖象:列表取點、描點、連線,標出對應的函數關系式。
3.正比例函數圖象性質:經過 ; >0時,經過一、三象限; <0時,經過二、四象限。
4.一次函數圖象性質:
(1)當 >0時, 隨 的增大而增大,圖象呈上升趨勢;當 <0時, 隨 的增大而減小,圖象呈下降趨勢。
(2)直線 與軸的交點為 ,與 軸的交點為 。
(3)在一次函數 中: >0, >0時函數圖象經過一、二、三象限; >0, <0時函數圖象經過一、三、四象限; <0, >0時函數圖象經過一、二、四象限; <0, <0時函數圖象經過二、三、四象限。
(4)在兩個一次函數中,當它們的 值相等時,其圖象平行;當它們的 值不等時,其圖象相交;當它們的 值乘積為 時,其圖象垂直。
4.已經任意兩點求一次函數的表達式、根據圖象求一次函數表達式。
5.運用一次函數的圖象解決實際問題。
第七章 二元一次方程組
1.二元一次方程及二元一次方程組的定義。
2.解方程組的基本思路是消元,消元的基本方法是:①代入消元法;②加減消元法;③圖象法。
3.方程組解應用題的關鍵是找等量關系。
4.解應用題時,按設、列、解、答 四步進行。
5.每個二元一次方程都可以看成一次函數,求二元一次方程組的解,可看成求兩個一次函數圖象的交點。
第八章 數據的代表
1.算術平均數與加權平均數的區別與聯系:算術平均數是加權平均數的一種特殊情況,(它特殊在各項的權相等),當實際問題中,各項的權不相等時,計算平均數時就要采用加權平均數,當各項的權相等時,計算平均數就要采用算術平均數。
2.中位數和眾數:中位數指的是n個數據按大小順序(從大到小或從小到大)排列,處在最中間位置的一個數據(或最中間兩個數據的平均數)。眾數指的是一組數據中出現次數最多的那個數據。