《數軸》教學設計(精選15篇)
《數軸》教學設計 篇1
一、教學目標
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
二、教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的對應關系.
三、課堂教學過程設計
(一)創設情境,引入新課
師:大家知識溫度計的'用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—數軸(板書課題).
(二)探索新知,講授新課
1.數軸的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).
第二步:規定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度).
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0。5個單位長度的a點表示什么數?原點向左個單位長度的b點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義.
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.
教師根據學生回答給予肯定或否定,糾正后板書.
2.數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸.
向學生提出問題:數軸上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道數軸三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是數軸的依據.
學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.
3.嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
(1)有人說一條直線是一條數軸,對不對?為什么?
(2)下列所畫數軸對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答.
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.
4.有理數與數軸上點的關系
通過剛才的學習我們知道所有的有理數都可以用數軸上的點來表示.
例1畫一條數軸,并畫出表示下列各數的點:
1,5,0,-2。5,.
學生練習:同學們在練習本上畫一條數軸,然后在數軸上標出各點,一名學生板演.教師巡回指導,發現問題及時糾正.
例2指出數軸上a、b、c、d、e各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答解:a表示-3;b表示;c表示3;d表示;e表.
《數軸》教學設計 篇2
一、教學目標
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
二、教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的對應關系.
三、課堂教學過程設計
(一)創設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—數軸(板書課題).
(二)探索新知,講授新課
1.數軸的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點 原點表示0(相當于溫度計上的0℃).
第二步:規定從原點向右的為正方向 那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當的長度為單位長度 (相當于溫度計上每1℃占1小格的長度).
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的a點表示什么數?原點向左 個單位長度的b點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義.
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.
教師根據學生回答給予肯定或否定,糾正后板書.
2.數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸.
向學生提出問題:數軸上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道數軸三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是數軸的依據.
學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.
3.嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
(1)有人說一條直線是一條數軸,對不對?為什么?
(2)下列所畫數軸對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答.
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.
4.有理數與數軸上點的關系
通過剛才的學習我們知道所有的有理數都可以用數軸上的點來表示.
例1 畫一條數軸,并畫出表示下列各數的點:
1,5,0,-2.5, .
學生練習:同學們在練習本上畫一條數軸,然后在數軸上標出各點,一名學生板演.教師巡回指導,發現問題及時糾正.
例2 指出數軸上 a、b、c、d、e各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答解:a表示-3;b表示 ; c表示3;d表示 ;e表 .
上一篇:2.2 數軸練習
下一篇:《2.2 數軸說課稿
《數軸》教學設計 篇3
一、教材分析
《數軸》是湘教版七年級上冊第一單元的內容。本節課主要是在學生學習了有理數概念的基礎上,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。
二、教學目標
知識技能:①了解數軸的概念,學會如何畫數軸;
②知道如何在數軸上表示有理數,能說出數軸上表示有理數的點所表示的數,知道任何一個有理數在數軸上都有唯一的點與之對應。
過程與方法:①從直觀認識到理性認識,從而建立數軸概念。
②通過數軸概念的學習,初步體會對應的思想,數形結合的思想方法。
情感態度價值觀:通過數軸的學習,體會數形結合的思想方法,進而初步認識事物之間的聯系性。
三、重難點
重點:
正確理解數軸的概念和有理數在數軸上的'表示方法。
難點:
建立有理數與數軸上的點的對應關系(數與形的結合)。
四、教學教法
教法:啟發式教學法和師生互動式教學模式。
學法:“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。
五、教學過程
(一)創設情景引入課題
1、觀察溫度計,體會數、形對應。學生觀察溫度計后回答下列問題:
①零上5℃怎樣表示?
②零下10℃怎樣表示?
③0℃怎樣表示?
2、畫情境圖,體會方向與距離
在一條東西向的馬路上,有一個汽車站,汽車站東3m和處有一棵柳樹和一棵楊樹,汽車站西3m和處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。
(二)得出定義揭示內涵
1、提問,到底什么是數軸?如何畫數軸?
2、豐富數軸的內涵:分數和小數在數上怎么表示?
3、觀察數軸上的有理數排列的大小?
4、數軸上表示—2的點在原點的____邊,距離原點的距離是____。
表示3的點在原點的___邊,距原點的距離是______。 小結
①位于數軸左(下)邊的數總比右(上)邊的數小。
②一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的
距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。
(三)手腦并用深入理解
1、學生討論下列圖形中哪些是數軸,哪些不是,為什么?
2、畫數軸并表示出下列有理數,—2,2,0,
3、指出數軸上A、B、C、D、E點分別表示什么數?
(四)歸納總結強化思想
1、你知道什么是數軸嗎?這節課你學會了用什么來表示有理數?
2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數?
(五)分層作業強化思想
1、教材第12頁第
1、2題。
2、補充練習。
⑴畫一條數軸,并表示出如下各點:±,±,±。
⑵畫一條數軸,并表示出如下各點:1000,5000,—20xx。
⑶在數軸上標出到原點的距離小于3的整數。
⑷在數軸上標出—5和+5之間的所有整數。
3、思考練習
在數軸上能否實際畫出表示一千分之一的點?這個點存在嗎?
《數軸》教學設計 篇4
一、教學目標
1、知識與能力:通過與溫度計的類比,認識數軸,會用數軸上的點表示有理數;借助數軸理解相反數的概念,知道互為相反的一對數在數軸上的位置關系;會求一個有理數的相反數;能利用數軸比較有理數的大小。
2、過程與方法:經歷從現實問題中建立數學模型,從數形兩個側面理解與解決問題,使學生認識用形來解決數的問題的優越性,培養學生用數形結合的數學思想方法學習數學的理念。
3、情感態度與價值觀:從學生熟悉的現實情境中學習數軸,體會數學知識與現實世界的聯系;通過分組動手操作實踐,體會數學充滿探索性,并在學習活動中學會合作、學會發現知識,找到獲取知識的方法,使學生體驗到成功的樂趣,數學知識的應用價值。
二、教學重點:
數軸和相反數的概念及用數軸上的點表示有理數
三、教學難點:
數軸的概念和相反數反映在數軸上的性質
四、教學設計
(一)創設情境,引出課題
教師出示一只溫度計,首先讓學生說說溫度計在日常生活中的應用,然出提問:
(1)溫度計上的刻度是怎樣表示溫度的?
(2)把溫度計橫放(零上溫度向右),你覺得它像什么?
(3)你能把溫度計的刻度畫在紙上嗎?引出新課:“數軸”。
(借助于溫度計,用類比的數學思想方法,使學生易于接受數軸。感受到數學是真實的、親切的。這些問題的創設有利于喚起學生的好奇心,激發學生的求知欲,調動學生的思維積極性,學生很自然地投入到學習活動中去。)
(二)合作討論,探究新知
1、動手操作:師生一起畫一條數軸。
[講清數軸的畫法:一畫(直線);二定(定原定);三選(選正方向);四統一(單位長度要統一)。]
2、觀察數軸有什么特征?(讓學生討論)
(如:數軸的三要素——原點、正方向、單位長度,類比溫度計三者缺一不可,正數都在原點的右邊,負數都在原點的左邊等等。)
3、考考你:下面圖形是數軸的是( )
(A) (B)
(C) (D)
(通過判斷,加深對數軸概念的理解,掌握正確的.畫法。)
4、問題:類似溫度計的刻度,任何有理數都能用數軸上的點表示嗎?
(引導學生獨立思考得出:正數用原點右邊的點表示,負數用原點左邊的點表示,零用原點表示,任何一個有理數都可以用數軸上的點來表示。)
(通過設置問題串,使學生了解知識的產生過程,培養學生分析、歸納的能力,實現從實踐到理論的提高。)
(三)解釋應用,體驗成功
1、例題教學
例1 指出數軸上A、B、C、D各點表示什么數?
(合作交流,獲取正確答案)
(指出數軸上已知點所表示的數,是由“形”到“數”的過程。)
例2畫出數軸,并用數軸上的點表示下列各數:
4,,-5,0,5,-4,-
(動手操作,體驗數學活動充滿探索。)
(把給定的數用數軸上的點表示,是“數”到“形”的思維過程。)
歸納:例1、例2,從兩個側面體現了數形結合的意思,是教學中要滲透的數學思想方法。
2.觀察例2中畫好的數軸,4與-4有什么相同與不同之處,與-,-5與5呢?像這樣關系的兩個數你還能找出多少對?
合作討論:相同點是:它們在數軸上的位置到原點的距離都是兩個長度單位;不同點是:它們位居原點的兩邊。這樣的數對可找出無數對,如:與-,5與-5等。
教師引導學生得出:如果兩個數只有符號不同,那么我們稱其中一個數為另一個數的相反數,也稱這兩個數是互為相反數,特別地,0的相反數是0。通常在一個數的前面添上“-”號,或改變符號,用這個新數表示原數的相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
3、考考你:
(1)下面兩個數是互為相反數的是( )
A、-與0.2 B、與-0.333
C、-2.25與2 D、π與3.14
(2)寫出三對非零相反數
(四)拓展創新,鞏固概念
(1)問題:數軸上的兩個點,右邊的點表示的數與左邊的點表示的數有怎樣的大小關系?你能舉例說明嗎?
(分組討論、合作交流、獲得數學的猜想。)
(猜想溫度計上顯示的溫度,上邊的溫度總比下邊的溫度高,如:-5℃比-7℃溫度高,所以右邊的點表示的數總比左邊的點表示的數大,即:-5>-7。)
(2)在數軸上距原點3個單位長度的點表示什么數?它們有什么關系?距原點5個單位呢?a個單位呢?(a>0)
(學生回答,并相互補充,培養學生發散思維的能力;知道若a為有理數,則它的相反數為-a。)
(3)書上12頁練習1與練習2
(五)課堂小結
通過本節課的學習,你有什么收獲?
(數軸和相反數的概念,把有理數表示在數軸上,
(六)課外延伸(有興趣的同學完成)
1、填一填:
右面是一個正方體紙盒的展開圖,請把-10、7、10、-2、-7、2分別填入六個正方形,使得按虛線折成正方體后,相對面上的兩上數互為相反數。
(課外同學之間討論,嘗試不同的填法,并用模型檢驗結果的正確性,本題要求學生有一定的空間想象力,將“數”和“形”有關內容有機地結合起來。)
2、想一想:某人在A地向東走10米,然后折回向西走3米,又折回向東走6米,問此人在A地哪個方向?距離為多少?答:此人在A地正東方向,距離A地13米。
(可借助于數軸求解,把實際問題轉化為數學模型,以A為原點,向東為正建立模型,實際行走的路線為A→B→C→D。)
向東走10米
-2 -1 0 1 2
1 2 3
-2 -1 0 1 2
-3-2 -1 0 1 2 3
-2 -1 0 1 2
A D C B
· · · ·
-2 0 2 4 6 8 10 12
A C B D
? ? ? ?
《數軸》教學設計 篇5
各位評委老師,
大家好!
我說課的內容是七年級教科書第一冊第二章第二節“數軸”的第一課時內容。我從以下幾個方面對本節課的教學設計進行說明。
一:教材分析:
本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。
二:教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下:
1. 使學生理解數軸的三要素,會畫數軸。
2. 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示
3. 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。
三:教學重難點確定:
正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。
四:學情分析:
⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。
⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。
⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。
五:教學策略:
由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。
為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環節:
(一)、溫故知新,激發情趣
(二)、得出定義,揭示內涵
(三)、手腦并用,深入理解
(四)、啟發誘導,初步運用
(五)、反饋矯正,注重參與
(六)、歸納小結,強化思想
(七)、布置作業,引導預習
六:教學程序設計:
(一)、溫故知新,激發情趣:
首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:
(1)零上5°C用 5 表示。
(2)零下15°C 用 -15 表示。
(3)0°C 用 0 表示。
然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。
(二)、得出定義,揭示內涵:
教師設問:到底什么是數軸?如何畫數軸呢?
(1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。)
(2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。)
(3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。)
由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。
畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發學生,以培養師生間的默契)
通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。
至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。
(三)、手腦并用,深入理解:
1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么?
A、
B、
C、
D、
E、
F、
A、B、C三個圖形從數軸的三要素出發,D和F是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。
2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上)
學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。
我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。
(四)、啟發誘導,初步運用:
有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。
安排課本23頁的例1,
利用黑板上的例題圖形讓學生來操作,教師提出要求:
1、要把點標在線上 2、要把數標在點的上方
通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。
當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。
(五)、反饋矯正,注重參與:
為鞏固本節的教學重點讓學生獨立完成:
1、課本23頁練習1、2
2、課本23頁3題的(給全體學生以示范性讓一個同學板書)
為向學生進一步滲透數形結合的思想讓學生討論:
3、數軸上的點P與表示有理數3的點A距離是2,
(1)試確定點P表示的有理數;
(2)將A向右移動2個單位到B點,點B表示的有理數是多少?
(3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少?
先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
(六)、歸納小結,強化思想:
根據學生的特點,師生共同小結:
1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數?
2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數?
讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
(七)、布置作業,引導預習:
為面向全體學生,安排如下:
1、全體學生必做課本25頁1、2、3
2、最后布置一個思考題:
與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何?
(來引導學生養成預習的學習習慣)
七:板書設計:(略)
總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。
以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝
以上是第一范文網小編為大家整理的七年級數學說課稿《數軸》,希望對大家有所幫助。
《數軸》教學設計 篇6
完成《數軸》這節課的教學,反思整個教學過程,我覺得自己有幾點還是很欣慰的,比如:
1、能較好的把握住了本節應讓學生掌握的內容:一、通過與溫度計的類比認識數軸,會用數軸上的點表示有理數;二、借助數軸了解相反數的概念,知道互為相反數的一對數在數軸上的位置關系。學生上完本節課后,相信對于以上兩點應能靈活掌握。
2、教學過程中充分調動學生的積極性,讓其主動參與到課堂中。比如:情境引入中,由學生模仿溫度計,自己設計出能表示有理數的圖形,后教師幫助總結得出數軸的形狀及概念,此過程就充分發揮了學生的主體性,讓其明白數學可來源于實際,以后也許對身邊的事物就會多留意,會去多一層的探索,培養創新意識;其次,為了調節課堂的活躍氣氛,還專門設計了一個游戲和一系列搶答題,游戲為:請一列同學所在直線為數軸,任一同學為原點,定好正方向,請其他同學分別說出此列同學代表的數及相反數。這一環節充分調動了學生的積極性,使課堂變得異常活躍,降低了學生的疲勞感,輕松完成了知識的鞏固。再者,在作業的選擇上,我也花了一定的心思,選擇由易到難,層層遞進,也結合了部分第一章的所學知識展開,較為理想。最后,本節課我向學生較好的滲透了“數形結合”的數學思想,為將來數學的學習奠定好基礎。
另不足之處也不少,如:在數軸的圖形與概念介紹前應讓學生將其模仿溫度計設計的數軸展示在黑板上,讓同學們自己總結,就更為完美了;在介紹相反數的概念時,竟將“0”的相反數是“0”忘記強調了。
我覺得本節課的教學讓我再次發覺:學生的潛能是無窮的,我們應多放手、多創造機會讓其充分發揮其主體。
《數軸》教學設計 篇7
一、在問題的引入上
新課標規定應從實際情景入手,并且使學生能夠對問題產生強烈的求知欲。
1.數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受, 讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過 程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。利用溫度計引入調動學生學習的積極 性。
2.教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
二、在問題的探索上
我采用了師生互動,通過師生雙邊活動產生一種動態效果,使學生在充滿好奇心的狀態下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索 發現,主動的獲取知識和技能。但在整個的實施過程中出現了一些問題,比如:在概念的得出上學生的總結出現了一些問題,我再處理時由于怕時間不夠充裕所以學 生出現的問題我給做出了解答,其實這里應由學生自己來解決,這樣對學生能力的提高非常有幫助。
三、習題的配備
整個習題的配備大致是按從易到難的順序排列的,面向全體學生,采用多種形式,使不同層次的學生都有所得,并且采用循序漸進的方。在講解完例題后,讓學生互 相提問,以促使學生積極踴躍的參與到教學活動中來,創造一種輕松的學習氛圍。但我總體感覺習題的量不夠充足,學生的練習機會較少。
四、不足之處
學生通過學習掌握了畫數軸時原點的位置和單位長度可以實際情況來確定,但由于受課本練習冊數軸圖形的影響,有部分學生認為只有向右的方向才能作為數軸的正 方向,遇到向其它方向為正方向數軸圖形就認為它不是數軸了。這有待在今后的教學中改進教學方法使學生加深對這方面的理解。
《數軸》教學設計 篇8
初中數學說課稿-《數軸》老師們:您們好!非常高興能有機會和大家來交流說課活動,謹此向在座的老師們學習。 我說課的內容是華師大版九年義務教育七年級教科書代數第一冊第二章第二節“數軸”的第一課時內容。 一:教材分析: 本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。 二:教學目標: 根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下: 1. 使學生理解數軸的三要素,會畫數軸。 2. 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示 3. 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。 三:教學重難點確定: 正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。 四:學情分析: ⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。 ⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。 ⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。 ⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。 五:教學策略: 由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。 為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環節: (一)、溫故知新,激發情趣 (二)、得出定義,揭示內涵 (三)、手腦并用,深入理解 (四)、啟發誘導,初步運用 (五)、反饋矯正,注重參與 (六)、歸納小結,強化思想 (七)、布置作業,引導預習 六:教學程序設計: (一)、溫故知新,激發情趣: 首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問: (1)零上5°C用 5 表示。 (2)零下15°C 用 -15 表示。 (3)0°C 用 0 表示。 然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。 (二)、得出定義,揭示內涵: 教師設問:到底什么是數軸?如何畫數軸呢? (1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。) (2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。) (3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。) 由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。 畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發學生,以培養師生間的默契) 通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。 至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。 (三)、手腦并用,深入理解: 1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么? A、 B、 C、 D、 E、 F、 A、B、C三個圖形從數軸的三要素出發,D和F是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。 2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上) 學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。 我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。 (四)、啟發誘導,初步運用: 有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。 安排課本23頁的例1, 利用黑板上的例題圖形讓學生來操作,教師提出要求: 1、要把點標在線上 2、要把數標在點的上方 通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。 當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。 (五)、反饋矯正,注重參與: 為鞏固本節的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論: 3、數軸上的點P與表示有理數3的點A距離是2, (1)試確定點P表示的有理數; (2)將A向右移動2個單位到B點,點B表示的有理數是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據學生的特點,師生共同小結: 1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數? 2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。 (七)、布置作業,引導預習: 為面向全體學生,安排如下: 1、全體學生必做課本25頁1、2、3 2、最后布置一個思考題: 與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何? (來引導學生養成預習的學習習慣) 七:板書設計:(略) 總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。 以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝.
《數軸》教學設計 篇9
一、教材分析:
本節是在引進了負數及分析了有理數的分類后給出的。數軸是理解有理數的概念與運算的重要工具,利用這個數學工具不但可以理解有理數的概念、大小比較等,還可以利用它來解決一些實際問題:包括絕對值,有理數的運算等,非常直觀地把數與點結合起來,滲透著初步的數形結合的思想。對以后的知識概念及實際問題的解決起著舉足輕重的作用。
二、學習任務分析:
1、要求學生會正確畫出數軸初步了解有理數與數軸上的點的對應關系。
2、能將有理數用數軸上的點來表示。
3、通過觀察數軸上的點的位置關系初步比較有理數的大小,并能通過數軸上點的移動說出表示點的數
三、目標分析:
1、通過回憶和實例使學生掌握數軸的概念,并理解其三要素。
2、通過動手畫數軸和數軸的概念,觀察數軸上點的位置關系,了解點與數之間的關系。
3、通過圖形與數量的對應關系了解數學研究的一種重要方法-----數形結合。
4、通過實例啟發思維調動學生學習數學的興趣使學生充分體驗實踐生活離不開數學
四、教法選擇:
創設情景、動手操作、模擬演示、啟發引導、學習應用、發展能力。針對學生的年齡特點和心理特征,以及他們的認知水平,采用探究式教學方法,教學中注意課堂民主、平等氛圍的營造使學生始終處于主動學習的狀態,鼓勵學生團結協作、大膽猜想、動手操作。同時,教師要給學生思維活動提供具體、直觀、感性的支持,所以本節課的設計借助直觀演示、動手操作、啟發誘導,由感性認識逐步上升到理性認識。
本節課的引入采用先回憶再從實例引入的教學方法,激發學生學習興趣。
概念的得出采用比較探索式的教學方法,堅持以學生為主體,充分發揮學生的主觀能動性。教學中,讓學生自已動手畫數軸,培養學生探究問題的能力。改變原來的"聽數學"為"做數學"。
數軸應用采用分層式的教學方法,根據不同學生的實際,進行不同層次的教學。促進他們的全面發展。特別注重基本理論在實際生活中的應用,體現數學應用于生活的一面。
五、教學重難點的確定和突破:
1、正確畫出數軸是本節教學的重點。
首先回憶小學生學過的知識直線上用點表示數量數軸的三角形,再通過實物如:標尺、溫度計等,要求同學們通過觀察能建立數軸的概念模型通過提問:標尺及溫度計上的數據有什么規律?從而引出數軸的方向性及數軸的原點和單位長度,上面的過程可以由學生討論,教師補充從而概括數軸的概念即三要素。
2、變式;從而也可歸納出數軸商店表示即,數與點的對應關系。
通過例題要求學生動手操作畫出數軸并描述點
說明:
(1)可能有不少學生會忘記正方向
(2)原點左邊的數的表識會發生標反的錯誤。
(3)數軸上的正方向,同時也表示由小到大的方向。
(4)單位長度的截取可以是任意長度,不是唯一的。
(5)數軸的方向也不是唯一的,如溫度折線圖等,方向也可以是向上的。
3、正確畫出數軸后,即使點在數軸上的表示,整數的表示學生很容易理解,強調一下,分數和小數的表示是這一節課的難點,首先通過例題:
通過在數軸上描點:4,-2,-4,5,1/3,0
先對數進行分類,正數,零,負數,負數在0(既原點)的左邊,正數在原點的右邊再按整數和分數描點,通過練習鞏固能說出數軸上的點表示什么數?
P23練習中第3題為下節課的內容做下了鋪墊,即數的大小比較,這里要求學生能在新排列一下,使學生能了解數軸哂納感,負數、0、正數,之間的關系。
4、提高:下列說法正確的是:
(1)在+3和+4之間沒有正數
(2)在0和—1之間沒有負數
(3)在+1和+2之間有無窮個正分數
(4)在0、1、和0、2之間沒有正分數
這題通過數軸的直觀描述進一步說明數軸上的點與有理數之間的關系,使學生能從感性認識上升到理性認識,進一步提高學生的邏輯思維能力和提高分析問題的能力。
《數軸》教學設計 篇10
一:教材分析:
本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。
二:教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下:
1. 使學生理解數軸的三要素,會畫數軸。
2. 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示
3. 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。
三:教學重難點確定:
正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。
四:學情分析:
⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。
⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。 ⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。
五:教學策略: 由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。 為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環節: (一)、溫故知新,激發情趣
(二)、得出定義,揭示內涵
(三)、手腦并用,深入理解
(四)、啟發誘導,初步運用
(五)、反饋矯正,注重參與
(六)、歸納小結,強化思想
(七)、布置作業,引導預習
六:教學程序設計:
(一)、溫故知新,激發情趣: 首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:
(1)零上5°c用 5 表示。
(2)零下15°c 用 -15 表示。
(3)0°c 用 0 表示。 然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。 (二)、得出定義,揭示內涵: 教師設問:到底什么是數軸?如何畫數軸呢? (1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。)
(2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。) (3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。) 由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。 畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發學生,以培養師生間的默契) 通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。 至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。
(三)、手腦并用,深入理解:
1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么? a、 b、 c、 d、 e、 f、 a、b、c三個圖形從數軸的三要素出發,d和f是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。 2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上) 學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。 我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。
(四)、啟發誘導,初步運用: 有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。 安排課本23頁的例1, 利用黑板上的例題圖形讓學生來操作,教師提出要求:
1、要把點標在線上 2、要把數標在點的上方 通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。 當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。
(五)、反饋矯正,注重參與: 為鞏固本節的教學重點讓學生獨立完成: 1、課本23頁練習1、2
2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論:
3、數軸上的點p與表示有理數3的點a距離是2, (1)試確定點p表示的有理數; (2)將a向右移動2個單位到b點,點b表示的有理數是多少? (3)再由b點向左移動9個單位到c點,則c點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
(六)、歸納小結,強化思想: 根據學生的特點,師生共同小結:
1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數?
2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
(七)、布置作業,引導預習: 為面向全體學生,安排如下:
1、全體學生必做課本25頁1、2、3
2、最后布置一個思考題: 與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何? (來引導學生養成預習的學習習慣)
七:板書設計:(略) 總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。 以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝.
《數軸》教學設計 篇11
教學反思一直以來是教師提高個人業務水平的一種有效手段,教育上有成就的大家一直非常重視之。下面小編為大家推薦3篇關于初中數學《數軸》教學反思范文,希望大家喜歡!
初中數學《數軸》教學反思一
完成《數軸》這節課的教學,反思整個教學過程,我覺得自己有幾點還是很欣慰的,比如:
1、能較好的把握住了本節應讓學生掌握的內容:一、通過與溫度計的類比認識數軸,會用數軸上的點表示有理數;二、借助數軸了解相反數的概念,知道互為相反數的一對數在數軸上的位置關系。學生上完本節課后,相信對于以上兩點應能靈活掌握。
2、教學過程中充分調動學生的積極性,讓其主動參與到課堂中。比如:情境引入中,由學生模仿溫度計,自己設計出能表示有理數的圖形,后教師幫助總結得出數軸的形狀及概念,此過程就充分發揮了學生的主體性,讓其明白數學可來源于實際,以后也許對身邊的事物就會多留意,會去多一層的探索,培養創新意識;其次,為了調節課堂的活躍氣氛,還專門設計了一個游戲和一系列搶答題,游戲為:請一列同學所在直線為數軸,任一同學為原點,定好正方向,請其他同學分別說出此列同學代表的數及相反數。這一環節充分調動了學生的積極性,使課堂變得異常活躍,降低了學生的疲勞感,輕松完成了知識的鞏固。再者,在作業的選擇上,我也花了一定的心思,選擇由易到難,層層遞進,也結合了部分第一章的所學知識展開,較為理想。最后,本節課我向學生較好的滲透了“數形結合”的數學思想,為將來數學的學習奠定好基礎。
另不足之處也不少,如:在數軸的圖形與概念介紹前應讓學生將其模仿溫度計設計的數軸展示在黑板上,讓同學們自己總結,就更為完美了;在介紹相反數的概念時,竟將“0”的相反數是“0”忘記強調了。
我覺得本節課的教學讓我再次發覺:學生的潛能是無窮的,我們應多放手、多創造機會讓其充分發揮其主體。
初中數學《數軸》教學反思二
這一課時學習的數軸概念是中學數學中數形結合的起點,數形結合是幫助學生理解數學、學好數學的重要思想方法。在教學與學習中注重數形結合是數學教學與學習的重要指導思想,以后學習有理數的有關性質和運算都是結合數軸進行的,由此可見這一課時學生學好數軸概念的重要性。
“數軸”這堂課我在教學的引人部分進行了一些修改和細化,我從“射線→數射線→數軸”一步步引入。先在屏幕上出示一個點,再從這個點引出一條射線,在射線上等距離地標上數,使之成為一條數射線,接著把數射線向另一方向延伸,就成了一條數軸。有了這樣動態的過程,學生對數軸的形成有了較為清晰的認識。
在此基礎上,讓學生帶著以下幾個問題進行自主學習:
1、怎樣用數學語言描述數軸?
2、說說數軸有哪些要素?
3、畫數軸有哪幾個步驟?
學生在自學的過程中非常認真,問題一一得到了解決,整個概念的教學流暢自然,而且讓學生充分地進行了思考和積極地探索,令學生對于數軸的三要素理解深刻,突破了難點。學生在畫數軸時容易出現一些畫法上的小錯誤,所以我在屏幕示范畫數軸的過程中邊畫邊附上幾點說明:原點、單位長度和正方向三要素缺一不可;直線一般畫水平并非只能畫水平;原點可取直線上任一點但一取定就不再改變;正方向用箭頭表示,一般取從左到右為正;單位長度取適當應結合實際需要但一旦取定就不再改變,要做到刻度均勻。這一示范和說明使他們對自學的內容進行了糾正和有效的強化,但簡單的說教所達到的效果并不顯著,所以, 我設置了一組典型的錯誤畫法讓學生辨別及時糾錯、深化理解,幫助他們真正領會了數軸的含義。
我想,作為教師,我們在備課時不但要備教材,更要備學生,學會換位思考,學生可能會出現怎樣的問題和疏忽,我們要有所準備,及時預防和糾正。我又想,如果先放手讓學生自己畫,然后把學生自己畫的數軸(特別是有錯誤的)展示,相互指正,以示警戒,也不失為一種很好的教學資源。
本節課,當學習用數軸上的點表示正負數時,學生不但要知道數軸上給定的點表示的數,還要能把給定的數用實心點表示在數軸上。在整個數軸的教學中始終注重數與形的結合教學,在最后設置了一個實際問題,如:上海楊浦大橋主跨602米的結合梁斜拉橋在1994年建成時居世界斜拉橋跨度之首,現名列第三。它是中國大跨度橋梁的又一里程碑,標志著中國正在走向世界橋梁強國之列。①上海楊浦大橋中孔跨徑A、B點的距離為602米。如果以AB的中點0為原點,向右方為正方向,適當的單位長度畫數軸,那么A、B兩點分別表示什么數?②如果以左塔A為原點,那么塔B所表示的數是多少?學生進一步認識到“數軸上的點表示的大小與點的位置有關”,并在解決實際問題的過程中充分體會到數學的應用價值。
初中數學《數軸》教學反思三
首先讓學生回顧有理數,同時借助多媒體讓學生舉手回答,使學生思維活躍迅速進入上課狀態。
在進入新課時,又借助實物讓學生對數軸有一個感性的認識,引導學生回答在實際生活中類似于溫度計的例子,讓學生注意力集中,思維活躍。
教師對教材中的例1進行靈活性的解釋,學生通過實際生活中的具體模型歸納他們所具有的共同特點,從而得出數軸的定義,教學中應在學生的歸納處突出數軸的三要素,學生踴躍發言,共同不漏,興趣提升,課堂氣氛活躍。
在這節課的教學過程中,學生的思維始終保持高度的活躍的性,出現了很多的閃光點,對我的啟發也很大。
在教學中應把握教材的精神,創造性的利用教材,在設計安排和組織教學過程的每一個環節都應當很意識的體現探索的內容和方法,避免教學內容的過分抽象和形成化,使學生通過直觀感受去理解和把握體驗數學學習的樂趣。積累數學活動經驗,體現數學學習的樂趣,積累數學活動經驗,體驗數學思維的意義,讓學生在中學中逐步形成創新意識。
本節課中,相信學生,并為學生提供充分展示自己的機會,教學活動的設計力求使學生多動手,多思考,多反思,充分發揮學生的主題作用,創設實際情景,情境,給學生足夠的時間和空間進行充分的探索和交流,通過動手實踐,自主探索,合作交流的學習方式進行有效的學習。
本節課注意改進的方面是課堂最后的小結中,教師提出數軸上的點與有理數并非一一對應的關系,將學生的思想引入更深一層做的不好,在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問,與其對困難學生的幫助等,使小組合作學習更具時效性。
《數軸》教學設計 篇12
一、教學內容分析1.2有理數1.2.2數軸。這一節是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。
二、學生學習情況分析
(1)知識掌握上,七年級的學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述;
(2)學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析;
(3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生的主動性。三、設計思想從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學目標
(一)知識與技能
1、掌握數軸的三要素,能正確畫出數軸。
2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
(二)過程與方法
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意 識。
2、對學生滲透數形結合的思想方法。
(三)情感、態度與價值觀
1、使學生初步了解數學來源于實踐,反過來又服務于實踐 的辯證唯物主 義觀點。
2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
五、教學重點及難點
1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。
2、難點:有理數和數軸上的點的對應關系。
六、教學建議
1、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
2、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下:
定 義 規定了原點、正方向、單位長度的直線叫數軸
三要素 原 點 正方向 單位長度
應 用 數形結合七、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
2、學生學法:動手畫數軸,動腦概括數軸的三要素,動手、動腦做練習。八、課時安排
1課時
九、教具學具準備
電腦、投影儀、三角板
十、師生互動活動設計 講授新課(出示投影1)問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)師:我們能否用類似的圖形表示有理數呢?
師:這種表示數的圖形就是今天我們要學的內容—數軸(板書課題).
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀 數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
師問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)讓學生觀察畫好的直線,思考以下問題:
(出示投影2)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的a點表示什么數?原點向左1.5個單位長度的b點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義.
師:在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.
進而提問學生:在數軸上,已知一點p表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么p對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.
師生同步畫數軸,學生概括數軸三要素,師出示投影,生動手動腦練習嘗試反饋,鞏固練習
(出示投影3).畫出數軸并表示下列有理數:1、1.5,-2.2,-2.5, , ,0.2.寫出數軸上點a,b,c,d,e所表示的數:請大家回答下列問題:
(出示投影4)
(1)有人說一條直線是一條數軸,對不對?為什么?
(2)下列所畫數軸對不對?如果不對,指出錯在哪里?【教法說明】此組練習的目的是鞏固數軸的概念.
十一、小結
本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.十二、課后練習 習題1.2第2題十三、教學反思1、數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。3、注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
《數軸》教學設計 篇13
教學目標
1.了解的概念和的畫法,掌握的三要素;
2.會用上的點表示有理數,會利用比較有理數的大小;
3.使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用這個工具打下基礎.
二、知識結構
有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義
三要素
應用
數形結合
規定了原點、正方向、單位長度的直線叫
原 點
正方向
單位長度
幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數
比較有理數大小,上右邊的數總比左邊的數要大
在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、的相關知識點
1.的概念
(1)規定了原點、正方向和單位長度的直線叫做.
這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規定的.
(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.
以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.
2.的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用比較有理數的大小
(1)在上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“ ”的寫法,正確應寫成“ ”。
五、定義的理解
1.規定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).
A點表示-4; B點表示-1.5;
O點表示0; C點表示3.5;
D點表示6.
從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:
正數都大于0,負數都小于0,正數大于一切負數.
因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用 ,表示 是正數;反之,知道 是正數也可以表示為 。
同理, ,表示 是負數;反之 是負數也可以表示為 。
3.正常見幾種錯誤
1)沒有方向
2)沒有原點
3)單位長度不統一
教學設計示例
(一)
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.
難點:正確理解有理數與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數的點:
例2 指出上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
課堂教學設計說明
從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.教學中,的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.
數 軸(二)
一、素質教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數在上表示出來,能說出上已知點所表示的數.
(二)能力訓練點
1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.
2.對學生滲透數形結合的思想方法.
(三)德育滲透點
使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數.
2.難點:有理數和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—(板書課題).
【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點 原點表示0(相當于溫度計上的0℃).
第二步:規定從原點向右的為正方向 那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當的長度為單位長度 (相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數?原點向左 個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義.
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.
教師根據學生回答給予肯定或否定,糾正后板書.
2.的定義:規定了原點、正方向和單位長度的直線叫做.
向學生提出問題:上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據.
學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.
3.嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
(1)有人說一條直線是一條,對不對?為什么?
(2)下列所畫對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答.
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.
【教法說明】此組練習的目的是鞏固的概念.
答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量.⑤⑦是,同時⑦為學習平面直角坐標系打基礎.
4.有理數與上點的關系
通過剛才的學習我們知道所有的有理數都可以用上的點來表示.
例1 畫一條,并畫出表示下列各數的點:
1,5,0,-2.5, .
學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演.教師巡回指導,發現問題及時糾正.
【教法說明】讓學生動手自己畫,有助于培養學生實際操作能力.例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解.
(出示投影4)
例2 指出上 A、B、C、D、E各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答
解:A表示-3;B表示 ; C表示3;D表示 ;E表 .
【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程.例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想.
5.嘗試反饋,鞏固練習
(出示投影5)
①說出下面上A、B、C、D、O、M各點表示什么數?
②將-3, ,1.5,-6, ,2.25,,-5,1
各數用上的點表示出來.
【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節所學的內容.
(三)歸納小結
師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法.本章有理數的有關性質和運算都是結合進行的.
②掌握三要素,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數.以后再研究.
八、隨堂練習
1.判斷題
(1)直線就是( )
(2)是直線( )
(3)任何一個有理數都可以用上的點來表示
(4)上到原點距離等于3的點所表示的數是+3( )
(5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0.( )
2.畫一條數輪,并畫出表示下列各數的點
,-5,0,+3.2,-1.4
九、布置作業
(-)必做題:課本第56頁1、2.
(二)選做題:課本第56頁及第57頁B組l.
(三)思考題:
①在數輪上距原點3個單位長度的點表示的數是_____________
②在數輪上表示-6的點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度.
【教法說明】由于學生在知識、技能、能力方面發展不盡相同,所以分層次地布置作業 ,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規定的基本要求,并使部分學生能發展他們的數學才能.
十、板書設計
隨堂練習答案
1.× √ √ × √ 2.略
作業 答案
(一)必做題
1.(1)依次是
(2)依次是
2.依次是
(二)選做題:
3.略 B組1.(1)-6,(2)-1,(3)3;(4)0
(三)思考題:① ②左,6,右,6
探究活動
(1)在上表示出距離原點3個單位長度和4.5個單位長度的點,并用“<”號將這些點所表示的數排列起來;
(2)寫出比-4大但不大于2的所有整數.
分析:畫時,的三要素:原點、正方向、單位長度缺一不可.
(1)在上,距離原點3個單位長度和4.5個單位長度的點各有兩個,它們分別在原點兩旁且關于原點對稱.畫出這些點,這些點所表示的數的大小就排列出來了;
(2)在上畫出大于-4但不大于2的數的范圍,這個范圍內整數點所表示的整數就是所求.“不大于2”的意思是小于或等于2.
解:(1)上,距離原點3個單位的點是+3和-3,距離原點4.5個單位的點是+4.5和-4.5.
由圖看出:
-4.5<-3<3<4.5
(2)在上畫出大于-4但不大于2的數的范圍.
由圖知,大于-4但不大于2的整數是:-3,-2,-1,0,1,2.
點評:利用,數形結合,是解這一類問題的好方法.
《數軸》教學設計 篇14
首先讓學生回顧有理數,同時借助多媒體讓學生舉手回答,使學生思維活躍迅速進入上課狀態。
在進入新課時,又借助實物讓學生對數軸有一個感性的認識,引導學生回答在實際生活中類似于溫度計的例子,讓學生注意力集中,思維活躍。
教師對教材中的例1進行靈活性的解釋,學生通過實際生活中的具體模型歸納他們所具有的共同特點,從而得出數軸的定義,教學中應在學生的歸納處突出數軸的三要素,學生踴躍發言,共同不漏,興趣提升,課堂氣氛活躍。
在這節課的教學過程中,學生的思維始終保持高度的活躍的性,出現了很多的閃光點,對我的啟發也很大。
在教學中應把握教材的精神,創造性的利用教材,在設計安排和組織教學過程的每一個環節都應當很意識的體現探索的內容和方法,避免教學內容的過分抽象和形成化,使學生通過直觀感受去理解和把握體驗數學學習的樂趣。積累數學活動經驗,體現數學學習的樂趣,積累數學活動經驗,體驗數學思維的意義,讓學生在中學中逐步形成創新意識。
本節課中,相信學生,并為學生提供充分展示自己的機會,教學活動的設計力求使學生多動手,多思考,多反思,充分發揮學生的主題作用,創設實際情景,情境,給學生足夠的時間和空間進行充分的探索和交流,通過動手實踐,自主探索,合作交流的學習方式進行有效的學習。
本節課注意改進的方面是課堂最后的小結中,教師提出數軸上的點與有理數并非一一對應的關系,將學生的思想引入更深一層做的不好,在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問,與其對困難學生的幫助等,使小組合作學習更具時效性。
《數軸》教學設計 篇15
一:教材分析:
本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低
這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題.數軸不僅是學生學習相反數,絕對值等有理數知識的重要工具,還是以后學好不等式的解法,函數圖象及其性質等內容的必要基礎知識.
二:教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下:
1. 使學生理解數軸的三要素,會畫數軸.
2. 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示
3. 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣.
三:教學重,難點:
正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點.
四:教材分析:
⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述.
⑵學生學習本節課的知識障礙.學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中丟三落四的現象,所以教學中教師應予以簡單明白,深入淺出的分析.
⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;
由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動,有趣,高效,特將整節課以觀察,
思考,討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生"多觀察,動腦想,大膽猜,勤鉆研"的研討式學習方法.教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,
使學生在動腦,動手,動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想.
為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環節:
(一),溫故知新,激發情趣
(二),得出定義,揭示內涵
(三),手腦并用,深入理解
(四),啟發誘導,初步運用
(五),反饋矯正,注重參與
(六),歸納小結,強化思想
(七),布置作業,引導預習
五:教學程序設計:
(一),溫故知新,激發情趣:
首先復習提問:有理數包括那些數 學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎 學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:
(1)零上5°c用 5 表示.
(2)零下15°c 用 -15 表示.
(3)0°c 用 0 表示.
然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數,負數和0呢 答案是肯定的,從而引出課題:數軸.結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備.
(二),得出定義,揭示內涵:
教師設問:到底什么是數軸 如何畫數軸呢
(1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀,畫方便,同時也為了有美的感覺.)
(2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與
方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸.)
(3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1,2,3…負數反之.單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同.)
由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范.
畫完數軸后教師引導學生討論:"怎樣用數學語言來描述數軸 "(通過教師的親切的語言啟發學生,以培養師生間的默契)
通過討論由師生共同得到數軸的定義:規定了原點,正方向和單位長度的直線叫做數軸.
至此,我們將一個具體的事物"溫度計"經過抽象而概括為一個數學概念"數軸",使學生初步體驗到一個從實踐到理論的認識過程.
(三),手腦并用,深入理解:
1,讓學生討論:下列圖形哪些是數軸,哪些不是,為什么
a,b,c三個圖形從數軸的三要素出發,d和f是學生可能出現的錯誤,給學生足夠的觀察,思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生.
2,為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上)
學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如"很好""很規范""老師相信你,你一定行"等語言來激勵學生,以促進學生的發展;并強調:原點,正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可.
我設計以上兩個練習,一個是動腦想,通過分析,判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解.
(四),啟發誘導,初步運用:
有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢 作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開.
安排課本23頁的例1,
利用黑板上的例題圖形讓學生來操作,教師提出要求:
1,要把點標在線上 2,要把數標在點的上方
通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,
同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體.
當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解.
(五),反饋矯正,注重參與:
為鞏固本節的教學重點讓學生獨立完成:
1,課本23頁練習1,2
2,課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論:
3,數軸上的點p與表示有理數3的點a距離是2,
(1)試確定點p表示的有理數;
(2)將a向右移動2個單位到b點,點b表示的有理數是多少
(3)再由b點向左移動9個單位到c點,則c點表示的有理數是多少
先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力.
(六),歸納小結,強化思想:
根據學生的特點,師生共同小結:
1,為了鞏固本節課的教學重點提問:你知道什么是數軸嗎 你會畫數軸嗎 這節課你學會了用什么來表示有理數
2,數軸上,會不會有兩個點表示同一個有理數 會不會有一個點表示兩個不同的有理數
讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數.
(七),布置作業,引導預習:
為面向全體學生,安排如下:
1,全體學生必做課本25頁1,2,3
2,最后布置一個思考題:
與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何
(來引導學生養成預習的學習習慣)
六:板書設計:(略)
總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主,探究,合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師.
以上是我對本節課的設想,不足之處請老師們多多批評,指正,謝謝!