卷五百六 列傳二百九十三
文鼏又有累年算稿,文鼎為錄存,名曰授時步交食式一卷。又有幾何類求新法,算書中比例規(guī)解,本無算例,文鼎作度算,用文鼏所補(bǔ),而參之以陳藎謨尺算用法。
明安圖,字靜庵,蒙古正白旗人。官欽天監(jiān)監(jiān)正。受數(shù)學(xué)於圣祖,預(yù)修御定歷象考成后編、御定儀象考成。因西士杜德美用連比例演周徑密率及求正弦、正矢之法,知其理深奧,索解未易,因積思三十馀年,著割圜密率捷法四卷。一曰步法,於杜氏三法外,補(bǔ)創(chuàng)弧背求通弦、求矢法,仍杜氏原法,但通加一四除耳。又弦、矢求弧背,并通弦、矢求弧背,凡六法,合杜氏共成九法。其弦求弧背法,以弦為連比例二率,半徑為一率,求得二、四、六、八、十諸率,以一、三、五、七、九之五數(shù)各自乘,為累次乘數(shù)。二、三、四、五、六、七、八、九相挨,兩兩相乘,為累次除數(shù),即用二率為第一得數(shù)。復(fù)置四率,以第一乘數(shù)乘之,第一除數(shù)除之,為第二得數(shù)。又置六率,以第一、第二乘數(shù)乘之,第一、第二除數(shù)除之,為第三得數(shù)。又置八率,以第一、第二、第三乘數(shù)乘之,第一、第二、第三除數(shù)除之,為第四得數(shù)。如是累求,至所得數(shù)祗一位止,乃并之,即所求之弧背也。矢求弧背法,倍正矢為連比例三率,亦以半徑為一率,求得五、七、九、十一諸率。以一、二、三、四、五之五數(shù)各自乘,為屢次乘數(shù),三、四、五、六、七、八、九、十相挨,兩兩相乘,為屢次除數(shù),即用三率為第一得數(shù)。復(fù)置五率,以第一乘數(shù)乘之,第一除數(shù)除之,為第二得數(shù)。又置七率,以第一、第二乘數(shù)乘之,第一、第二除數(shù)除之,為第三得數(shù)。又置九率,以第一、第二、第三乘數(shù)乘之,第一、第二、第三除數(shù)除之,為第四得數(shù)。如是累求,至所得數(shù)祗一位而止。開平方,即所求之弧背也,通弦求弧背,亦各加一四除。矢求弧背,則三率又多加一四。因更創(chuàng)馀弧求弦矢,馀弦矢求本弧,及借弧與正、馀弦互求四術(shù)。二曰用法,以角度求八線,及直線、弧線、三角形邊角相求,共設(shè)七題。謂今法所以密於古者,以用三角形也。然三角形非用八線表不能相求,惟用此法,以之立表則甚易,以之推三角形,則不用表而得數(shù)同。三、四兩卷曰法解,皆闡明弦、矢與弧背相求之根。其法先以一分弧通弦求二分弧通弧弦之?dāng)?shù),次以一分、二分弧通弦求三分、四分全弧通弦之?dāng)?shù),以一分三分弧通弦求五分全弧通弦之?dāng)?shù)。又因二分、五分相乘得十分,十分自乘得百分,十分、百分相乘得千分,十分、千分相乘得萬分。遂以半徑為一率,一分弧通弦為二率,各如相乘之率數(shù),求得十、百、千、萬諸分弧率數(shù)。比例得弧背求通弦,應(yīng)減四率二十四分之一,加六率八十分之一,減八率一百六十八分之一,加十率二百八十八分之一,減十二率四百四十分之一,加十四率六百二十四分之一,減十六率八百四十分之一。各四歸之,則二十四得六,為二三相乘數(shù);八十得二十,為四五相乘數(shù);一百六十八得四十二,為六七相乘數(shù);二百八十八得七十二,為八九相乘數(shù);四百四十得一百一十,為十與十一相乘數(shù);六百二十四得一百五十六,為十二與十三相乘數(shù);八百四十得二百一十,為十四與十五相乘數(shù)。故以二、三、四、五、六、七、八、九等數(shù)兩兩相乘,為屢次除數(shù)。又以通弦求得二率一分多,四率一分,六率九分,八率二百二十五分,十率一萬一千二十五分,十二率八十九萬三千二十五分,十四率一億八百五萬六千二十五分,得后率分?jǐn)?shù)為實。各遞降二等,使二率降為四率,四率降為六率,得前率分?jǐn)?shù)為法。以法除實,得四率一分,為一自乘數(shù);六率九分,為三自乘數(shù);八率二十五分,為五自乘數(shù);十率四十九分,為七自乘數(shù);十二率八十一分,為九自乘數(shù);十四率一百二十一分,為十一自乘數(shù);十六率一百六十九分,為十三自乘數(shù):故以一、三、五、七、九等數(shù)各自乘為屢次乘數(shù)。次求通弦法,求得十、百、千、萬諸分弧正矢率數(shù),比例得弧背求正矢,應(yīng)減五率十二分之一,加七率三十分之一,減九率五十六分之一,加十一率九十分之一,減十三率一百三十二分之一,加十五率一百八十二分之一,減十七率二百四十分之一;而十二為三四相乘數(shù),三十為五六相乘數(shù),五十六為七八相乘數(shù),九十為九與十相乘數(shù),一百三十二為十一與十二相乘數(shù),一百八十二為十三與十四相乘數(shù),二百四十為十五與十六相乘數(shù),故以三、四、五、六、七、八、九等數(shù)兩兩相乘,為屢次除數(shù)。又以正矢求得五率一分多,七率四分,九率三十六分,十一率五百七十六分,十三率一萬四千四百分,十五率五十一萬八千四百分,十七率二千五百四十萬一千六百分,為后率分?jǐn)?shù),各遞降二等為前率分?jǐn)?shù)。如前通弦法,除得五率一分為一自乘數(shù),七率四分為二自乘數(shù),九率九分為三自乘數(shù),十一率十六分為四自乘數(shù),十三率二十五分為五自乘數(shù),十五率三十六分為六自乘數(shù),十七率四十九為七自乘數(shù),故以一、二、三、四、五等數(shù)各自乘,為屢次乘數(shù)。書未成而卒,子新續(xù)之。