中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教案模板 > 初中數(shù)學《完全平方公式》教學設計(通用17篇)

初中數(shù)學《完全平方公式》教學設計

發(fā)布時間:2023-08-30

初中數(shù)學《完全平方公式》教學設計(通用17篇)

初中數(shù)學《完全平方公式》教學設計 篇1

  課題名稱:完全平方公式(1)

  一、內(nèi)容簡介

  本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。

  關鍵信息:

  1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標準的數(shù)學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

  二、學習者分析:

  1、在學習本課之前應具備的基本知識和技能:

  ①同類項的定義。

  ②合并同類項法則

  ③多項式乘以多項式法則。

  2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平:

  在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

  三、教學/學習目標及其對應的課程標準:

  (一)教學目標:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

  2、會推導完全平方公式,并能運用公式進行簡單的計算。

  (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

  數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

  (四)解決問題:能結合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同

  角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

  (五)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難

  和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。

  四、教育理念和教學方式:

  1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

  教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時

  候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

  2、采用“問題情景—探究交流—得出結論—強化訓練”的模式

  展開教學。

  3、教學評價方式:

  (1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主

  動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。

  (2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,

  揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調(diào)查教學。

  (3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預期的

  教學效果。

  五、教學媒體:多媒體六、教學和活動過程:

  教學過程設計如下:

  〈一〉、提出問題

  [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析問題

  1、[學生回答]分組交流、討論

  (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

  (2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

  (1)原式的特點。

  (2)結果的項數(shù)特點。

  (3)三項系數(shù)的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關系。

  2、[學生回答]總結完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學生回答]完全平方公式的數(shù)學表達式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

  (m+n)2=____________,(m-n)2=_______________,

  (-m+n)2=____________,(-m-n)2=______________,

  (a+3)2=______________,(-c+5)2=______________,

  (-7-a)2=______________,(0.5-a)2=______________.

  2、判斷:

  ①(a-2b)2=a2-2ab+b2

  ②(2m+n)2=2m2+4mn+n2

  ③(-n-3m)2=n2-6mn+9m2

  ④(5a+0.2b)2=25a2+5ab+0.4b2

  ⑤(5a-0.2b)2=5a2-5ab+0.04b2

  ⑥(-a-2b)2=(a+2b)2

  ⑦(2a-4b)2=(4a-2b)2

  ⑧(-5m+n)2=(-n+5m)2

  3、小試牛刀

  ①(x+y)2=______________;②(-y-x)2=_______________;

  ③(2x+3)2=_____________;④(3a-2)2=_______________;

  ⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

  ⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

  〈四〉、[學生小結]

  你認為完全平方公式在應用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  〈五〉、冒險島:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m)2=__________________________________

  (3)(-0.5m+2n)2=_______________________________

  (4)(3/5a-1/2b)2=________________________________

  (5)(mn+3)2=__________________________________

  (6)(a2b-0.2)2=_________________________________

  (7)(2xy2-3x2y)2=_______________________________

  (8)(2n3-3m3)2=________________________________

  〈六〉、學生自我評價

  [小結]通過本節(jié)課的學習,你有什么收獲和感悟?

  本節(jié)課,我們自己通過計算、分析結果,總結出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協(xié)作共同取得了進步。

  〈七〉[作業(yè)]P34隨堂練習P36習題

初中數(shù)學《完全平方公式》教學設計 篇2

  教學目標

  1、知識與技能:體會公式的發(fā)現(xiàn)和推導過程,了解公式的幾何背景,理解公式的本質(zhì),會應用公式進行簡單的計算.

  2、過程與方法:通過讓學生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學生的數(shù)形結合能力.

  3、情感態(tài)度價值觀:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立學習自信心.

  教學重難點

  教學重點:

  1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.

  2、會運用公式進行簡單的計算.

  教學難點:

  1、完全平方公式的推導及其幾何解釋.

  2、完全平方公式的結構特點及其應用.

  教學工具

  課件

  教學過程

  一、復習舊知、引入新知

  問題1:請說出平方差公式,說說它的結構特點.

  問題2:平方差公式是如何推導出來的?

  問題3:平方差公式可用來解決什么問題,舉例說明.

  問題4:想一想、做一做,說出下列各式的結果.

  (1)(a+b)2(2)(a-b)2

  (此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學生的學習興趣.)

  二、創(chuàng)設問題情境、探究新知

  一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

  (1)四塊面積分別為:、;

  (2)兩種形式表示實驗田的總面積:

  ①整體看:邊長為的大正方形,S=;

  ②部分看:四塊面積的和,S=.

  總結:通過以上探索你發(fā)現(xiàn)了什么?

  問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

  問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

  (教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發(fā)表見解,但要驗證)

  問題3:你能說說(a+b)2=a2+2ab+b2

  這個等式的結構特點嗎?用自己的語言敘述.

  (結構特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

  問題4:你能根據(jù)以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

  總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

  問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

  語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.

  強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

  三、例題講解,鞏固新知

  例1:利用完全平方公式計算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流總結:運用完全平方公式計算的一般步驟

  (1)確定首、尾,分別平方;

  (2)確定中間系數(shù)與符號,得到結果.

  四、練習鞏固

  練習1:利用完全平方公式計算

  練習2:利用完全平方公式計算

  練習3:

  (練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現(xiàn)問題,學生、教師應及時幫助.)

  五、變式練習

  六、暢談收獲,歸納總結

  1、本節(jié)課我們學習了乘法的完全平方公式.

  2、我們在運用公式時,要注意以下幾點:

  (1)公式中的字母a、b可以是任意代數(shù)式;

  (2)公式的結果有三項,不要漏項和寫錯符號;

  (3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.

  七、作業(yè)設置

初中數(shù)學《完全平方公式》教學設計 篇3

  總體說明:

  完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數(shù)知識的后繼學習具有相當重要的意義.

  本節(jié)是北師大版七年級數(shù)學下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷探索與推導完全平方公式的過程,培養(yǎng)學生的符號感與推理能力,讓學生進一步體會數(shù)形結合的思想在數(shù)學中的作用.

  一、學生學情分析

  學生的技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎.

  學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經(jīng)歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

  二、教學目標

  知識與技能:

  (1)讓學生會推導完全平方公式,并能進行簡單的應用.

  (2)了解完全平方公式的幾何背景.

  數(shù)學能力:

  (1)由學生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感與推理能力.

  (2)發(fā)展學生的數(shù)形結合的數(shù)學思想.

  情感與態(tài)度:

  將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

  三、教學重難點

  教學重點:1、完全平方公式的推導;

  2、完全平方公式的應用;

  教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

  2、完全平方公式結構的認知及正確應用.

  四、教學設計分析

  本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.

  第一環(huán)節(jié):學生練習、暴露問題

  活動內(nèi)容:計算:(a+2)2

  設想學生的做法有以下幾種可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正確做法;

  針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

  活動目的:在很多學生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

  (a+2)2=a2+22,如果不將這種定式思維*,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

  第二環(huán)節(jié):驗證(a+2)2=a2–4a+22

  活動內(nèi)容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

  活動目的:在前一環(huán)節(jié)已經(jīng)打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.

  第三環(huán)節(jié):推廣到一般情況,形成公式

  活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活動目的:讓學生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.

  第四環(huán)節(jié):數(shù)形結合

  活動內(nèi)容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

  展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

  學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

  活動目的:讓學生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結合在一起,從而發(fā)展學生的數(shù)形結合的數(shù)學思想.

  第五環(huán)節(jié):進一步拓廣

  活動內(nèi)容:推導兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活動目的:讓學生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應用.

  第六環(huán)節(jié):總結口訣、認識特征

  活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

  ②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)

  口訣:首平方,尾平方,首尾相乘的兩倍在中央.

  活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現(xiàn)錯誤.

  第七環(huán)節(jié):公式應用

  活動內(nèi)容:例:計算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9

  ②(4x+)2=(4x)2+2•••••(4x)+2=16x2+2xy+

  活動目的:在前幾個環(huán)節(jié)中,學生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習,使學生逐步經(jīng)歷認識——模仿——再認識.從而上升到理性認識的階段.

  第八環(huán)節(jié):隨堂練習

  活動內(nèi)容:計算:①;②;③(n+1)2–n2

  活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.

  第九環(huán)節(jié):學生PK

  活動內(nèi)容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

  活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.

  第十環(huán)節(jié):學生反思

  活動內(nèi)容:通過今天這堂課的學習,你有哪些收獲?

  收獲1:認識了完全平方公式,并能簡單應用;

  收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

  收獲3:感受到數(shù)形結合的數(shù)學思想在數(shù)學中的作用.

  活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數(shù)學思想的精妙.

  第十一環(huán)節(jié):布置作業(yè):

  課本P43習題1.13

初中數(shù)學《完全平方公式》教學設計 篇4

  一、教學目標 :

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

  二、教學過程 :

  1.檢查學生的“預習知識樹”,導入  課題:

  師:前面學習了平方差公式,同學們對平方差公式的結構特點、運用以及學習公式的意義有了初步的認識。今天,我們繼續(xù)學習、研究另一種“乘法公式”——完全平方公式。請拿出你的“預習知識樹”,小組內(nèi)互查并交流,在預習中有疑問的同學請詢問。

  (活動:老師巡視、檢查學生的預習情況,并解答學生在預習中存在的問題)生:(互查、討論“預習知識樹”,有問題的詢問問題。)師:(老師點評學生預習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預習提到課前,利用“知識樹”引導學生自學,學生可以獨立思考、自主學習,也可合作交流、討論研究,這樣預習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預習知識樹”,了解學生新課學習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學生的能力。

  2.自學檢測,制造通用工具:師:下面進行自學檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?

  生:可以表示一個數(shù),也可以表示一個單項式、多項式。

  說明:點評時,老師反復引導學生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學生明確“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學習平方差公式時,學生應該認識到這個道理,在這里再次強化。

  師:說得非常好,明確“公式中的a、b可以表示一個數(shù),也可以表示一個單項式、多項式”的變化規(guī)律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?

  生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導學生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學練習。)說明:引導學生現(xiàn)場出題,一是激發(fā)學生興趣、活躍氣氛,二是驗證變化規(guī)律。

  師:下面思考,如何計算:(a+b+c)2生1:可根據(jù)多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。

  生:(緊張地做題,同時找兩個學生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個學生都會解這樣的題了。課下,請同學們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律。

  3.通過大量的習題驗證通用工具,學生并且自造通用工具。

  師:通過前面的檢測,看出同學們已經(jīng)基本掌握了完全平方公式。下面進入達標檢測。

  (活動:投影顯示達標檢測題)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計算:

  ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極

  、主動地在作業(yè) 本上完成上面練習題。)師:(巡視,批閱完成快的學生的作業(yè) ,最后集體點評,只講不會的。)說明:第2①

  題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時訓練學生的逆向思維;第3題是下節(jié)課訓練內(nèi)容,在這里可以提前,引導學生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業(yè) 。師:本節(jié)課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè) .[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結果,觀察有什么規(guī)律,感興趣的同學還可計算(a+b)3、(a+b)4的結果,你又能發(fā)現(xiàn)什么規(guī)律.預習指導:①課本第38-39頁內(nèi)容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設計下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構建知識,同時更加強化了學生的“能力樹”。作業(yè) 是推薦性的作業(yè) ,達標檢測就是“堂堂清”,學生課下只須做好預習作業(yè) 就行了,這樣會有更多自由安排的時間,發(fā)展個性。

初中數(shù)學《完全平方公式》教學設計 篇5

  一、教學目標

  (1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2)過程與方法目標;學生探究完全平方公式,體會數(shù)形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、1、創(chuàng)設情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、1、學生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  教師活動

  學生活動

  (2)做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、2、教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、3、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a-b)

  4、請同學們自己敘述上面的`等式

  5、說一說,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清ab

  7、練一練

  (1)(2X-3Y)(2)(2XY-3X)

  8、試一試(a+b+c)

  作業(yè):P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的面積分別是

  (3)大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

初中數(shù)學《完全平方公式》教學設計 篇6

  一、教學內(nèi)容:

  本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時――完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

  本節(jié)課內(nèi)容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的`數(shù)學工具。

  重點:掌握完全平方公式,會運用公式進行簡單的計算。

  難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

  三、教學目標

  (1)經(jīng)歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

  (2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

  (3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

  (4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

  四、學情分析與教法學法

  學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,本節(jié)課就是在前面的學習中,學生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學生的學習熱情,本節(jié)內(nèi)容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

  學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

  總結反思中獲得數(shù)學知識與技能。

  教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。

  五、教學過程(略)

  六、教學評價

  在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經(jīng)歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

  在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

初中數(shù)學《完全平方公式》教學設計 篇7

  說課稿是老師為了方便自己講課而寫的,有一定的步驟。下面是初中數(shù)學《完全平方公式》說課稿范文,歡迎借鑒!

  《完全平方公式》說課稿

  今天我說課的題目是《完全平方公式》,所選用的教材為北師大版義務教育課程標準實驗教科書。

  根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標,教學方法,教學過程四個方面加以說明。

  一、 教材分析

  1、教材的地位和作用

  本節(jié)教材是初中數(shù)學七年級下冊第一章第八節(jié)的內(nèi)容,是初中數(shù)學的重要內(nèi)容之一。一方面,這是在學習了整式的加、減、乘、除及平方差公式的基礎上,對多項式乘法的進一步深入和拓展;另一方面,又為學習《因式分解》《配方法》等知識奠定了基礎,是進一步研究《一元二次方程》《二次函數(shù)》 的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

  2、學情分析

  從心理特征來說,初中階段的學生邏輯思維能力有待培養(yǎng),從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時,這一階段的學生好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚,所以在教學中應抓住這些特點,一方面運用直觀生動的形象,引發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。

  從認知狀況來說,學生在此之前已經(jīng)學習了多項式乘法法則、平方差公式的探索過程,對“完全平方公式”已經(jīng)有了初步的認識,為順利完成本節(jié)課的教學任務打下了基礎,但對于“完全平方公式” 的理解,(由于其抽象程度較高,)學生可能會產(chǎn)生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

  3、教學重難點

  根據(jù)以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:

  對公式(a+b) 2=a2+2ab+b2的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋。

  難點確定為:從廣泛意義上理解完全平方公式的符號含義,培養(yǎng)學生有條理的思考和語言表達能力。

  二、 教學目標分析

  新課標指出,教學目標應包括知識與技能目標,過程與方法目標,情感與態(tài)度目標這三個方面,而這三維目標又應是緊密聯(lián)系的一個有機整體,學生學會知識與技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識與技能為主線,滲透情感態(tài)度價值觀,并把前面兩者充分體現(xiàn)在過程與方法中。借此,我將三維目標進行整合,確定本節(jié)課的教學目標為:

  1. 經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。會推導完全平方公式,并能運用公式進行簡單的運算。

  2.在探索討論、歸結總結中,培養(yǎng)學生語言表達能力、邏輯思維能力。

  3. 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生積極參與對數(shù)學問題的討論并敢于表達自己的觀點。

  三、 教學方法分析

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結合本節(jié)課的內(nèi)容特點和學生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯(lián)想、探索,從真正意義上完成對知識的自我建構。

  另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現(xiàn)教學素材,從而更好地激發(fā)學生的學習興趣,增大教學容量,提高教學效率。

  四、教學過程分析

  新課標指出,數(shù)學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下教學環(huán)節(jié):

  (1) 復習舊知,溫故知新

  設計意圖:建構注意主張教學應從學生已有的知識體系出發(fā), 是本節(jié)課深入研究 的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

  (2) 創(chuàng)設情境,提出問題

  設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產(chǎn)生設疑,從而激發(fā)學生的學習興趣和求知欲望‘

  通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)———

  (3) 發(fā)現(xiàn)問題,探求新知

  設計意圖:現(xiàn)代數(shù)學教學論指出, 的教學必須在學生自主探索,經(jīng)驗歸納的基礎上獲得,教學中必須展現(xiàn)思維的過程性,在這里,通過 觀察分析、獨立思考、小組交流 等活動,引導學生歸納 。

  (4) 分析思考,加深理解

  設計意圖:數(shù)學教學論指出, 數(shù)學概念(定理等) 要明確其內(nèi)涵和外延(條件、結論、應用范圍等) ,通過對定義的幾個重要方面的闡述,使學生的認知結構得到優(yōu)化,知識體系得到完善,使學生的數(shù)學理解又一次突破思維的難點。

  通過前面的學習,學生已基本把握了本節(jié)課所要學習的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入下一 環(huán)節(jié)。

  (5) 強化訓練,鞏固雙基

  設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學生在數(shù)學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內(nèi)化知識。

  (6) 小結歸納,拓展深化

  我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗等幾個方面進行歸納,我設計了這么三個問題:

  ① 通過本節(jié)課的學習,你學會了哪些知識;

  ② 通過本節(jié)課的學習,你最大的體驗是什么;

  ③ 通過本節(jié)課的學習,你掌握了哪些學習數(shù)學的方法?

  (7) 布置作業(yè),提高升華

  以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

  以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調(diào)控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態(tài)。

初中數(shù)學《完全平方公式》教學設計 篇8

  學習目標:

  1、能說出有序數(shù)對的定義。

  2、能用有序數(shù)對表示實際生活中物體的位置。

  學習重點:用有序數(shù)對表示位置。

  學習難點:用有序數(shù)對表示位置。

  學習過程:

  自學過程: (一)、自學知識清單

  1、教材64頁,在圖7.1—1中找出參加數(shù)學問題討論的同學。

  小組內(nèi)交流一下,看一看你們找的位置相同嗎?

  思考:(2,4)和(4,2)在同一位置嗎?為什么?

  2、請回答教材65頁:思考題。

  3、我們把這種有順序的______個數(shù)a與b組成的_______叫做_______,記作( , )。

  (二)、自學反饋

  練習1、利用________________,可以準確地表示出一個位置,

  如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為 。

  練習2、如圖(1)所示,一方隊正沿箭頭所指的'方向前進,A的位置為三列四行,表示為A(3,4),則B,C,D表示為B( , ),C( , )

  D( , )

  練習3、完成課本第65頁的練習。

  練習4、用有序數(shù)對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結合下面圖形加以說明.

  練習5、如圖所示,A的位置為(2,6),小明從A出發(fā),經(jīng)

  (2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小剛也從A出發(fā),經(jīng)

  (3,6)→(4,6)→(4,7)→(5,7)→(6,7),則此時兩人相距幾個格?

初中數(shù)學《完全平方公式》教學設計 篇9

  一、教材分析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學八年級上冊第十四章的內(nèi)容。在此之前,學生已學習了多項式的乘法,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)課通過學生合作學習,利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學習因式分解,解一元二次方程都具有舉足輕重的作用。

  作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生滲透換元思想和數(shù)形結合思想 。

  二、學情分析

  學生剛學過多項式的乘法,已具備學習和運用完全平方公式的知識結構,但是由于學生初步學習乘法公式,認清公式結構并不容易,因此教學時要循序漸進。

  三、教學目標

  知識與技能

  1.完全平方公式的推導及其應用。

  2.完全平方公式的幾何證明。

  過程與方法

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。

  情感態(tài)度與價值觀

  對學生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學思想的滲透。

  四、教學重點難點

  教學重點

  完全平方公式的推導過程;結構特點與公式的應用。

  教學難點

  完全平方公式結構特點及其應用。

  五、教法學法

  多媒體輔助教學,將知識形象化、生動化,激發(fā)學生的興趣。教學中逐步設置疑問,引導學生動手、動腦、動口,積極參與知識全過程。

  六、教學過程設計

  師生活動

  設計意圖

  一.復習多項式與多項式的乘法法則

  1、多項式與多項式的乘法法則內(nèi)容。

  2、多項式與多項式的乘法練習。

  二.講授新課

  完全平方公式的'推導

  1、利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式

  附:有簡單的填空練習

  2、利用多項式乘法則和換元法推導完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、總結完全平方公式的特點

  介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

  三、課堂練習

  1、改錯練習

  2、例題講解(總結利用完全平方公式計算的步驟)

  第一步選擇公式,明確是哪兩項和(或差)的平方;

  第二步準確代入公式;

  第三步化簡。

  計算練習

  (1)課本110頁第一題

  (2) (x-6)2 (y-5)2

  四、課堂小結:

  1、應用完全平方公式應注意什么?

  在解題過程中要準確確定a和b,對照公式原形的兩邊, 做到不丟項、不弄錯符號、2ab時不能少乘以2。

  2、助記口訣

  復習多項式與多項式的乘法法則為新課的學習做準備。

  利用不同的的方法來推導完全平方公式,讓學生認知數(shù)學中的不同解題方法。

  利用助記口訣幫助學生更加準確的掌握完全平方公式的特點。

  通過課堂練習,使學生掌握用完全平方公式計算的步驟,加強學生解題的準確率。

  強調(diào)應用完全平方公式解題的注意點和助記口訣,提高學生解決問題的能力和解題的準確率。

初中數(shù)學《完全平方公式》教學設計 篇10

  學習了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

  (1)切勿把此公式與平方差公式混淆,而隨意寫.

  (2)切勿把“乘積項”2ab中的2丟掉.

  (3)計算時,要先觀察題目是否符合公式的條件.若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應運用乘法法則進行計算.

  今后在教學中 ,要注意以下幾點:

  1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

  2.引入完全平方公式,讓學生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

初中數(shù)學《完全平方公式》教學設計 篇11

  運用完全平方公式計算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  學生活動:學生在練習本上完成,然后同學互評,教師抽看結果,練習中存在的共性問題要集中解決.

  5.變式訓練,培養(yǎng)能力

初中數(shù)學《完全平方公式》教學設計 篇12

  一、教材分析

  完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

  本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

  二、學情分析

  多數(shù)學生的.抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。

  三、教學目標

  知識與技能

  利用添括號法則靈活應用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。

  情感態(tài)度與價值觀

  鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。

  四、教學重點難點

  教學重點

  理解添括號法則,進一步熟悉乘法公式的合理利用.

  教學難點

  在多項式與多項式的乘法中適當添括號達到應用公式的目的.

  五、教學方法

  思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。

  六、教學過程設計

  師生活動

  設計意圖

  一.提出問題,創(chuàng)設情境

  請同學們完成下列運算并回憶去括號法則.

  (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

  (1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

  (學生分組討論,最后總結)

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學們利用添括號法則完成下列練習:

  1.在等號右邊的括號內(nèi)填上適當?shù)捻棧?/p>

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運算是否正確.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

  (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結:添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數(shù)式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數(shù)式是否正確.

  三、新知運用

  有些整式相乘需要先作適當?shù)淖冃危缓笤儆霉剑@就需要同學們理解乘法公式的結構特征和真正內(nèi)涵.請同學們分組討論,完成下列計算.

  例:運用乘法公式計算

  (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習:

  1.課本P111練習

  2.《學案》101頁——鞏固訓練

  五、課堂小結:

  通過本節(jié)課的學習,你有何收獲和體會?

  我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

  我體會到了轉化思想的重要作用,學數(shù)學其實是不斷地利用轉化得到新知識,比如由繁到簡的轉化,由難到易的轉化,由已知解決未知的轉化等等.

  六、檢測作業(yè)

  習題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學導入,激發(fā)學生的學習熱情

  交流合作,探究新知,以問題驅(qū)動,層層深入。

  歸納總結,提升課堂效果。

  作業(yè)檢測,檢測目標的達成情況。

初中數(shù)學《完全平方公式》教學設計 篇13

  教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養(yǎng)學生的思維條理性和表達能力.

  教學重點與難點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.

  教學過程:

  一、提出問題,學生自學

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

  (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

  (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學生討論,教師歸納,得出結果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的`二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學上冊《完全平方公式》教案教案《新人教版八年級數(shù)學上冊《完全平方公式》教案》,來自網(wǎng)!

初中數(shù)學《完全平方公式》教學設計 篇14

  教學過程

  一、議一議

  探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x y.學生動筆:寫出(2)(3)題的結果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正.出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

  二、做一做

  鞏固新知例1計算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學生活動:在練習本上計算.教師引導學生按法則進行運算,首先確定它們的系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的指數(shù)之差作為商式中對應字母的'指數(shù),只在被除式中含有的字母指數(shù)不變,最后化簡.第(1)(2)題對照法則進行,第(3)題要按運算順序進行.第(4)題先把(2a+b)看作一個整體 (一個字母)相除,后用完全平方公式計算.教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b

  三、隨堂練習

  P40 1學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正.教師巡回檢查,對存在問題及時更正.待四名板演同學完成后,師生共同訂正.

  四、小結

  本節(jié)課主要學習了單項式除以單項式的運算.在運用法則計算時應注意以下幾點:

  1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;

  2.符號問題;

  3.指數(shù)相同的同底數(shù)冪相除商為1而不是0;4.在混合運算中,要注意運算的順序.五、作業(yè)課本習題1.15.P41 1、2. 3

初中數(shù)學《完全平方公式》教學設計 篇15

  教學目標

  1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。

  2、掌握運用完全平方公式分解因式的.方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學方法:對比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動:學生活動

  復習鞏固:上節(jié)課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調(diào)注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習:第88頁練一練第1、2題

初中數(shù)學《完全平方公式》教學設計 篇16

  總體說明:

  完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數(shù)知識的后繼學習具有相當重要的意義.

  本節(jié)是北師大版七年級數(shù)學下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷探索與推導完全平方公式的過程,培養(yǎng)學生的符號感與推理能力,讓學生進一步體會數(shù)形結合的思想在數(shù)學中的作用.

  一、學生學情分析

  學生的技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎.

  學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經(jīng)歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

  二、教學目標

  知識與技能:

  (1)讓學生會推導完全平方公式,并能進行簡單的應用.

  (2)了解完全平方公式的幾何背景.

  數(shù)學能力:

  (1)由學生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感與推理能力.

  (2)發(fā)展學生的數(shù)形結合的數(shù)學思想.

  情感與態(tài)度:

  將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

  三、教學重難點

  教學重點:

  1、完全平方公式的推導;

  2、完全平方公式的應用;

  教學難點:

  1、消除學生頭腦中的前概念,避免形成“相異構想”;

  2、完全平方公式結構的認知及正確應用.

  四、教學設計分析

  本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題――驗證――推廣到一般情況,形成公式――數(shù)形結合――進一步拓廣――總結口訣――公式應用――學生反饋――學生PK――學生反思――鞏固練習.

  第一環(huán)節(jié):學生練習、暴露問題

  活動內(nèi)容:計算:(a+2)2

  設想學生的做法有以下幾種可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正確做法;

  針對這幾種結果都將a=1代入計算,得出①②都是錯誤的.,但③的做法是否一定正確呢?怎么驗證?

  活動目的:在很多學生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

  (a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

  第二環(huán)節(jié):驗證(a+2)2=a2

初中數(shù)學《完全平方公式》教學設計 篇17

  學習任務

  1、了解完全平方公式的特征,會用完全平方公式進行因式分解.

  2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學生逆向思維能力和推理能力.

  3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學生觀察能力,實踐能力和創(chuàng)新能力.

  學習建議教學重點:

  運用完全平方公式分解因式.

  教學難點

  掌握完全平方公式的特點.

  教學資源

  使用電腦、投影儀.

  學習過程學習要求

  自學準備與知識導學:

  1、計算下列各式:

  ⑴(a+4)2=__________________⑵(a-4)2=__________________

  ⑶(2x+1)2=__________________⑷(2x-1)2=__________________

  下面請你根據(jù)上面的等式填空:

  ⑴a2+8a+16=_____________⑵a2-8a+16=_____________

  ⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________

  問題:對比以上兩題,你有什么發(fā)現(xiàn)?

  2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來就得到__________________和__________________,這兩個等式就是因式分解中的.完全平方公式.它們有什么特征?

  若用△代表a,○代表b,兩式可表示為△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.

  3、a2-4a-4符合公式左邊的特征嗎?為什么?

  4、填空:a2+6a+9符合嗎?______相當于a,______相當于b.

  a2+6a+9=a2+2+2=2

  a2-6a+9=a2-2+2=2

  可以把形如a2+2ab+b2與a2-2ab+b2的多項式通過完全平方公式進行因式分解.

  學習交流與問題研討:

  1、例題一(準備好,跟著老師一起做!)

  把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2

  2、例題二(有困難,大家一起討論吧!)

  把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4

  3、變式訓練:若把16a4+8a2+1變形為16a4-8a2+1會怎么樣呢?

  4、運用平方差公式、完全平方公式,把一個多項式分解因式的方法叫做運用公式法.分析:重點是指出什么相當于公式中的a、b,并適當?shù)母膶憺楣降男问?

  分析:許多情況下,不一定能直接使用公式,需要經(jīng)過適當?shù)慕M合,變形成公式的形式.

  強調(diào):分解因式必須分解到每一個因式都不能再分為止.

  練習檢測與拓展延伸:

  1、鞏固練習

  ⑴下列能直接用完全平方公式分解的是

  A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2

  ⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.

  ⑶課本P75練一練1、2.

  2、提升訓練

  ⑴簡便計算:20042-4008×20xx+20052

  ⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值.

  ⑶若把a2+6a+9誤寫為a2+6a+9-1即a2+6a+8如何分解?

  3、當堂測試

  補充習題P42-431、2、3、4.

  分析:許多情況下,不一定能直接使用公式,需要經(jīng)過適當?shù)慕M合,變形成公式的形式.

  課后反思或經(jīng)驗總結:

  1、本節(jié)課是在學生已經(jīng)了解因式分解的意義,掌握了提公因式法、平方差公式的基礎上進行教學的,是運用類比的方法,引導學生借助上一節(jié)課學習平方差公式分解因式的經(jīng)驗,探索因式分解的完全平方公式法,即先觀察公式的特點,再直接根據(jù)公式因式分解.

初中數(shù)學《完全平方公式》教學設計(通用17篇) 相關內(nèi)容:
  • 1.8完全平方公式(通用13篇)

    教學目標:1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力. 2.會運用完全平方公式進行一些數(shù)的簡便運算. 3.綜合運用平方差和完全平方公式進行整式的簡便運算. 教學重點:1.運用完全平方公式進行一些數(shù)的簡便運算; 2.綜合運用...

  • 完全平方公式數(shù)學教案(通用3篇)

    一、內(nèi)容簡介本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。關鍵信息:1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。...

  • 《完全平方公式》北師大版七年級數(shù)學(通用12篇)

    一、教學目標: 經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初...

  • 完全平方公式(精選13篇)

    教學建議一、知識結構二、重點、難點分析本節(jié)教學的重點是的熟記及應用.難點是對公式特征的理解(如對公式中積的一次項系數(shù)的理解).是進行代數(shù)運算與變形的重要的知識基礎。...

  • 1.8 完全平方公式(通用14篇)

    教學目標:1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力. 2.會運用完全平方公式進行一些數(shù)的簡便運算. 3.綜合運用平方差和完全平方公式進行整式的簡便運算. 教學重點:1.運用完全平方公式進行一些數(shù)的簡便運算; 2.綜合運用...

  • 1.8完全平方公式(精選16篇)

    教學目標:1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力. 2.會運用完全平方公式進行一些數(shù)的簡便運算. 3.綜合運用平方差和完全平方公式進行整式的簡便運算. 教學重點:1.運用完全平方公式進行一些數(shù)的簡便運算; 2.綜合運用...

  • 《完全平方公式》北師大版七年級數(shù)學(精選6篇)

    一、教學目標: 經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初...

  • 《完全平方公式》說課稿

    說課稿是老師為了方便自己講課而寫的,有一定的步驟。下面是初中數(shù)學《完全平方公式》說課稿范文,歡迎借鑒!《完全平方公式》說課稿今天我說課的題目是《完全平方公式》,所選用的教材為北師大版義務教育課程標準實驗教科書。...

  • 1.8 完全平方公式(1)

    教學目標:1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感和推理能力; 2.會推導完全平方公式,并能運用公式進行簡單的計算; 3.了解完全平方公式的幾何背景. 教學重點:1.弄清完全平方公式的來源及其結構特點,能用自己的語言說...

  • 運用完全平方公式分解因式

    課 題9.5乘法公式的再認識—因式分解課時分配本課(章節(jié))需 3 課時本 節(jié) 課 為 第 2 課時為 本 學期總第 課時二、運用完全平方公式分解因式教學目標1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平...

  • 1.8完全平方公式(2)

    教學目標:1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力. 2.會運用完全平方公式進行一些數(shù)的簡便運算. 3.綜合運用平方差和完全平方公式進行整式的簡便運算. 教學重點:1.運用完全平方公式進行一些數(shù)的簡便運算; 2.綜合運用...

  • 《完全平方公式》教學反思

    學習了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意: (1)切勿把...

  • 《完全平方公式》北師大版七年級數(shù)學

    一、教學目標: 經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初...

  • §1.8完全平方公式(2)

    教學目標在具體情景中進一步理解完全平方公式,能正確運用完全平方公式和平方差公式進行計算.重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?教學過程 一、議一議 1.邊長為(a+b)的正方形面積是多少? 2.邊長分別為a、b拍的兩個正...

  • 數(shù)學教案-完全平方公式

    課題:完全平方公式一、教材分析:(一)教材的地位與作用本節(jié)內(nèi)容主要研究的是完全平方公式的推導和公式在整式乘法中的應用。它是在學生學習了代數(shù)式的概念、整式的加減法、冪的運算和整式的乘法后進行學習的,其地位和作用主要體現(xiàn)在以...

  • 教案模板
主站蜘蛛池模板: 日韩欧美第一页 | 91.久久| 日本xxxx丰满老妇 | 51久久精品国产 | 中文字幕中文字幕1区 | 182tv人之初午夜精品视频 | 国产农村妇女高潮大叫 | 91国拍精品国产粉嫩亚洲一区 | 国产精品国语刺激对白在线观看 | 日本在线免费 | 国产午夜视频 | 成人xxxx | 天堂а在线最新版在线 | 国产AV人人夜夜澡人人爽麻豆 | 狠狠色伊人亚洲综合第8页 日日干天夜夜 | 欧美老妇大p毛茸茸 | 国产精品禁忌A片特黄A片 | 日韩黄色一级视频 | 97久久超碰国产精品旧版 | 国产婷婷综合在线视频中文 | 又大又黄又爽又粗的视频在线观看 | 一片毛片 | 大战丰满人妻性色Av偷偷 | 日本特级淫片在线观看 | 福利片免费在线观看 | 欧美日韩综合一区二区三区 | 男人的天堂色 | 女人和拘做受全过程免费 | 97亚洲色欲色欲综合网 | 国产精品永久入口久久久 | 大地资源中文在线观看官网第二页 | 青青草免费网站 | 九九视频免费在线观看 | 日本草久| 97精华最好的产品在线 | 国产精品无码久久久久成人影院 | 综合久色 | 一级毛片免费高清视频 | 中国产一级a毛片四川女 | 超碰免费在 | 亚洲欧洲国产码专区在线观看 |