《分數除法》教材分析
在練習十二里還安排了第三、四單元教學的分數應用題的對比練習,如第7、8題。“對比”既要比不同,準確地區分它們,也要比相同,在本質上把它們有機地聯系起來。相同都表現在數量關系式上,即都要抓住分數的意義分析數量關系,而且都可以表示成數量關系式。不同也表現在數量關系式上。第三單元教學的分數應用題,已知條件都在數量關系式的左邊,關系式右邊的數量是要求的問題,因此根據數量關系式就能列出算式;第四單元教學的分數應用題,已知條件不集中在數量關系式的一邊,而是分散在兩邊,要求的問題也不在數量關系式的右邊,所以列方程解答比較方便。以第7題為例。
我們的教學歷來十分重視區別不同的分數應用題,過去把兩類應用題對立起來,過分強調區別,往往收不到理想的效果。新教材在數量關系上求同存異,組織兩類應用題的知識結構,用對立統一的觀點處理兩類應用題的關系,已經在教學實踐中得到肯定和贊賞。
四、 計算兩步式題——鞏固分數除法法則。
例6是乘除兩步計算的實際問題,教學分數乘除混合或連除計算。例題可以列出不同的算式解答,兩種解法都先分步解,其中有一步是分數乘法,另一步是分數除法。分步解答能夠讓學生明白,在計算分數除法時,要“乘除數的倒數”,在計算分數乘法時,不應這樣做。這對計算綜合式是十分有用的。另外,先分步解答還能降低列出綜合算式的難度。
列出的兩道綜合算式,教材已經計算了一道。示范了計算分數乘除混合式題,一般先轉化成分數連乘,再約分、相乘。突出了只能把算式里的除法變成“乘除數的倒數”。教材把另一道綜合算式留給學生計算。計算前應該想一想,怎樣把這個分數乘除混合的算式變成分數連乘的算式。計算后應該比一比,兩道綜合算式在計算時有什么相同點,進一步突出計算的策略和轉化的方法。
在計算乘除混合式題時得到的體驗會遷移到分數連除里去。教材在“試一試”之后讓學生說說,分數連除或分數乘除混合運算可以怎樣計算,促進遷移,發展認知結構,并在“練一練”中得到鞏固。“練一練”的兩道題分別是乘除混合和分數連除計算,在計算之后可以組織學生辨辨左題里的除數與乘數,比比右題里的整數與分數,說說計算的體會,使計算的思路更清楚、牢固,計算的技能更扎實、靈活。