多邊形的內(nèi)角和教案2
(4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系.
(5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖4—1.
(6)在判定一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4-4,圖4-5.
2.四邊形內(nèi)角和定理
教師問:
(1)在圖4-3中對(duì)角線ac把四邊形abcd分成幾個(gè)三角形?
(2)在圖4-6中兩條對(duì)角線ac和bd把四邊形分成幾個(gè)三角形?
(3)若在四邊形abcd 如圖4-7內(nèi)任取一點(diǎn)o,從o向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形.
我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:
①2×180°=360°如圖4—6;
②4×180°-360°=360°如圖4-7.
例1 已知:如圖4—8,直線 于b、 于c.
求證:(1) ; (2) .
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證實(shí)了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),假如需要應(yīng)用,作兩三步推理就可以證出.
總結(jié)、擴(kuò)展
1.四邊形的有關(guān)概念.
2.四邊形對(duì)角線的作用.
3.四邊形內(nèi)角和定理.
八、布置作業(yè)
教材p128中1(1)、2、 3.
九、板書設(shè)計(jì)
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材p122中1、2、3.