中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數(shù)學教案 > 初中數(shù)學教案 > 八年級數(shù)學教案 > 多邊形的內(nèi)角和(通用17篇)

多邊形的內(nèi)角和

發(fā)布時間:2022-12-24

多邊形的內(nèi)角和(通用17篇)

多邊形的內(nèi)角和 篇1

  四川射洪  邱銀

  2005-05-06

  教學任務分析

  教學目標 

  知識技能

  通過探究,歸納出   

  數(shù)學思考

  1、  通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。

  2、  通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時

  時讓學生體會從特殊到一般的認識問題的方法。

  3、  通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到

  論證幾何

  解決問題

  通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。

  情感態(tài)度

  通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。

  重點

  探索多邊形內(nèi)角和的公式的探究過程。

  難點

  在探索時,如何把多邊形轉(zhuǎn)化成三角形。

  知識聯(lián)系

  多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。

  知識背景

  對多邊形在生活中有所認識

  學習興趣

  通過探究過程更能激發(fā)學生學習的興趣。

  教學工具

  三角板和幾何畫板。

  教學流程設計

  活動流程圖

  活動內(nèi)容和目的

  活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和

  活動二、探索四邊形的內(nèi)角和

  活動三、探索五邊形、六邊形、七邊形的內(nèi)角和

  活動四、探索任意公式

  活動五、多邊形內(nèi)角和公式的運用

  活動六、小結(jié)和布置作業(yè) 

  通過分組測量,得出這幾個

  通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。

  通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學生的推理能力

  通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時讓學生體會從特殊到一般的思考問題方法

  通過畫正八邊形體會和應用

  梳理所學知識,達到鞏固發(fā)展和提高的目的

  教學過程 設計

  問題與情景

  師生行為

  設計意圖

  設計情景:什么是正多邊形?

  正八邊形有什么特點?

  你會畫邊長為3cm的正八邊形嗎?

  學生思考并回答問題

  學生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。

  活動1、

  在練習本畫出任意四邊形,五邊星,六邊形,七邊形

  分組讓學生量出每一個多邊形的內(nèi)角并求出他們的內(nèi)角和,教師在黑板上畫這四個四邊形

  通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想

  活動2(重點)(難點)

  探索四邊形的內(nèi)角和

  學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。

  通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結(jié)論的能力,同時也培養(yǎng)學生比較和歸納的能力。

  活動3、探索五邊形、六邊形,七邊形的內(nèi)角和

  學生根據(jù)活動二的分析,進一步用最優(yōu)方法來分割五邊形、六邊形,七邊形,從而通過推理得出他們的內(nèi)角和

  通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。

  活動4、探索任意

  把活動2和3中的結(jié)論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結(jié)性的結(jié)論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。

  通過猜想、歸納、推導讓學生體會從特殊到一般的思想,通過公式的歸納過程,體會數(shù)形之間的聯(lián)系

  活動5、畫一個邊長為3cm的八邊形

  讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示

  鞏固和應用多邊形內(nèi)角和,培養(yǎng)學生的應用意識

  活動6、小結(jié)和布置作業(yè) 

  師生共同回顧本節(jié)所學過的內(nèi)容

多邊形的內(nèi)角和 篇2

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu):

  (2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。

  2.教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  教學目標 :

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

  2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;

  3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;

  4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

  教學重點:

  四邊形的內(nèi)角和定理.

  教學難點 :

  四邊形的概念

  教學過程 :

  (一)復習

  在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.

  (二)提出問題,引入新課

  利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

  問題:你能類比三角形的概念,說出四邊形的概念嗎?

  (三)理解概念

  1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

  在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.

  2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.

  3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.

  練習:課本124頁1、2題.

  4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.

  5.四邊形的對角線:

  (四)四邊形的內(nèi)角和定理

  定理:四邊形的內(nèi)角和等于 .

  注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.

  (五)應用、反思

  例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.

  求證:(1) ;(2)

  證明:(1) (四邊形的內(nèi)角和等于 ),

  (2)  

  .

  練習:

  1.課本124頁3題.

  2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?

  小結(jié):

  知識:四邊形的有關(guān)概念及其內(nèi)角和定理.

  能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

  作業(yè) : 課本130頁 2、3、4題.

多邊形的內(nèi)角和 篇3

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu):

  (2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。

  2.教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  教學目標:

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

  2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;

  3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;

  4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

  教學重點:

  四邊形的內(nèi)角和定理.

  教學難點:

  四邊形的概念

  教學過程:

  (一)復習

  在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.

  (二)提出問題,引入新課

  利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

  問題:你能類比三角形的概念,說出四邊形的概念嗎?

  (三)理解概念

  1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

  在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.

  2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.

  3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.

  練習:課本124頁1、2題.

  4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.

  5.四邊形的對角線:

  (四)四邊形的內(nèi)角和定理

  定理:四邊形的內(nèi)角和等于 .

  注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.

  (五)應用、反思

  例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.

  求證:(1) ;(2)

  證明:(1) (四邊形的內(nèi)角和等于 ),

  (2)  

  .

  練習:

  1.課本124頁3題.

  2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?

  小結(jié):

  知識:四邊形的有關(guān)概念及其內(nèi)角和定理.

  能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

  作業(yè) : 課本130頁 2、3、4題.

多邊形的內(nèi)角和 篇4

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu):

  (2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。

  2.教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  教學目標 :

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

  2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;

  3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;

  4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

  教學重點:

  四邊形的內(nèi)角和定理.

  教學難點 :

  四邊形的概念

  教學過程 :

  (一)復習

  在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.

  (二)提出問題,引入新課

  利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

  問題:你能類比三角形的概念,說出四邊形的概念嗎?

  (三)理解概念

  1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

  在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.

  2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.

  3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.

  練習:課本124頁1、2題.

  4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.

  5.四邊形的對角線:

  (四)四邊形的內(nèi)角和定理

  定理:四邊形的內(nèi)角和等于 .

  注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.

  (五)應用、反思

  例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.

  求證:(1) ;(2)

  證明:(1) (四邊形的內(nèi)角和等于 ),

  (2)  

  .

  練習:

  1.課本124頁3題.

  2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?

  小結(jié):

  知識:四邊形的有關(guān)概念及其內(nèi)角和定理.

  能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

  作業(yè) : 課本130頁 2、3、4題.

多邊形的內(nèi)角和 篇5

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu):

  (2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。

  2.教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  教學目標:

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

  2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;

  3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;

  4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

  教學重點:

  四邊形的內(nèi)角和定理.

  教學難點:

  四邊形的概念

  教學過程:

  (一)復習

  在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.

  (二)提出問題,引入新課

  利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

  問題:你能類比三角形的概念,說出四邊形的概念嗎?

  (三)理解概念

  1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

  在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.

  2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.

  3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.

  練習:課本124頁1、2題.

  4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.

  5.四邊形的對角線:

  (四)四邊形的內(nèi)角和定理

  定理:四邊形的內(nèi)角和等于 .

  注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.

  (五)應用、反思

  例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.

  求證:(1) ;(2)

  證明:(1) (四邊形的內(nèi)角和等于 ),

  (2)  

  .

  練習:

  1.課本124頁3題.

  2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?

  小結(jié):

  知識:四邊形的有關(guān)概念及其內(nèi)角和定理.

  能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

  作業(yè) : 課本130頁 2、3、4題.

多邊形的內(nèi)角和 篇6

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu):

  (2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。

  2.教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  教學目標 :

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

  2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;

  3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;

  4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

  教學重點:

  四邊形的內(nèi)角和定理.

  教學難點 :

  四邊形的概念

  教學過程 :

  (一)復習

  在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.

  (二)提出問題,引入新課

  利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

  問題:你能類比三角形的概念,說出四邊形的概念嗎?

  (三)理解概念

  1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

  在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.

  2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.

  3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.

  練習:課本124頁1、2題.

  4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.

  5.四邊形的對角線:

  (四)四邊形的內(nèi)角和定理

  定理:四邊形的內(nèi)角和等于 .

  注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.

  (五)應用、反思

  例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.

  求證:(1) ;(2)

  證明:(1) (四邊形的內(nèi)角和等于 ),

  (2)  

  .

  練習:

  1.課本124頁3題.

  2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?

  小結(jié):

  知識:四邊形的有關(guān)概念及其內(nèi)角和定理.

  能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

  作業(yè) : 課本130頁 2、3、4題.

多邊形的內(nèi)角和 篇7

  一、素質(zhì)教育目標

  (一)知識教學點

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第2課時

  七、教學步驟 

  【復習提問】

  1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?

  2.如圖4-9, 求 的度數(shù)(打出投影).

  【引入新課】

  前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.

  【講解新課】

  1.四邊形的外角

  與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.

  2.外角和定理

  例1  已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .

  求 .

  (1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).

  (2)教給學生一組外角的畫法——同向法.

  即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和.

  (3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°.

  證得:

  360°

  外角和定理:四邊形的外角和等于360°

  3.四邊形的不穩(wěn)定性

  ①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?

  (學生回答)

  ②若以 為邊作四邊形ABCD.

  提示畫法:①畫任意小于平角的 .

  ②在 的兩邊上截取 .

  ③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.

  ④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.

  大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.

  ③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.

  教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確:

  ①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).

  (4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育.

  【總結(jié)、擴展】

  1.小結(jié):

  (1)四邊形外角概念、外角和定理.

  (2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).

  2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積

  八、布置作業(yè) 

  教材P128中4.

  九、板書設計 

  十、隨堂練習

  教材P124中1、2

  補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.

  (2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度

  (3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.

多邊形的內(nèi)角和 篇8

  一、素質(zhì)教育目標

  (一)知識教學

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第一課時

  七、教學步驟

  【復習引入】

  在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖.

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).

  【講解新課】

  1.四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:

  (1)要結(jié)合圖形.

  (2)要與三角形類比.

  (3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).

  (4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.

  (5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.

  (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.

  2.四邊形內(nèi)角和定理

  教師問:

  (1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?

  (2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?

  (3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.

  我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:

  ①2×180°=360°如圖4—6;

  ②4×180°-360°=360°如圖4-7.

  例1  已知:如圖4—8,直線 于B、 于C.

  求證:(1) ; (2) .

  本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.

  【總結(jié)、擴展】

  1.四邊形的有關(guān)概念.

  2.四邊形對角線的作用.

  3.四邊形內(nèi)角和定理.

  八、布置作業(yè) 

  教材P128中1(1)、2、 3.

  九、板書設計

  四邊形(一)

  四邊形有關(guān)概念

  四邊形內(nèi)角和

  例1

  十、隨堂練習

  教材P122中1、2、3.

多邊形的內(nèi)角和 篇9

  一、素質(zhì)教育目標

  (一)知識教學點

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第一課時

  七、教學步驟 

  【復習引入】

  在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖.

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).

  【講解新課】

  1.四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:

  (1)要結(jié)合圖形.

  (2)要與三角形類比.

  (3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).

  (4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.

  (5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.

  (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.

  2.四邊形內(nèi)角和定理

  教師問:

  (1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?

  (2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?

  (3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.

  我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:

  ①2×180°=360°如圖4—6;

  ②4×180°-360°=360°如圖4-7.

  例1  已知:如圖4—8,直線 于B、 于C.

  求證:(1) ; (2) .

  本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.

  【總結(jié)、擴展】

  1.四邊形的有關(guān)概念.

  2.四邊形對角線的作用.

  3.四邊形內(nèi)角和定理.

  八、布置作業(yè) 

  教材P128中1(1)、2、 3.

  九、板書設計 

  四邊形(一)

  四邊形有關(guān)概念

  四邊形內(nèi)角和

  例1

  十、隨堂練習

  教材P122中1、2、3.

多邊形的內(nèi)角和 篇10

  完成三角形內(nèi)外角和的教學之后,學生很自然地就會想到對于多邊形的情況如何。 為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:

  (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。

  (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。

  (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學生探索過程的展示。同時教師有些總結(jié)性的話,限制了學生的思維,不能最大限度的發(fā)揮學生自主探究的能力。

  (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。

多邊形的內(nèi)角和 篇11

  一、素質(zhì)教育目標

  (一)知識教學點

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第2課時

  七、教學步驟 

  【復習提問】

  1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?

  2.如圖4-9, 求 的度數(shù)(打出投影).

  【引入新課】

  前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.

  【講解新課】

  1.四邊形的外角

  與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.

  2.外角和定理

  例1  已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .

  求 .

  (1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).

  (2)教給學生一組外角的畫法——同向法.

  即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和.

  (3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°.

  證得:

  360°

  外角和定理:四邊形的外角和等于360°

  3.四邊形的不穩(wěn)定性

  ①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?

  (學生回答)

  ②若以 為邊作四邊形ABCD.

  提示畫法:①畫任意小于平角的 .

  ②在 的兩邊上截取 .

  ③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.

  ④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.

  大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.

  ③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.

  教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確:

  ①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).

  (4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育.

  【總結(jié)、擴展】

  1.小結(jié):

  (1)四邊形外角概念、外角和定理.

  (2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).

  2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積

  八、布置作業(yè) 

  教材P128中4.

  九、板書設計 

  十、隨堂練習

  教材P124中1、2

  補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.

  (2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度

  (3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.

多邊形的內(nèi)角和 篇12

  一、素質(zhì)教育目標

  (一)知識教學

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第一課時

  七、教學步驟

  【復習引入】

  在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖.

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).

  【講解新課】

  1.四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:

  (1)要結(jié)合圖形.

  (2)要與三角形類比.

  (3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).

  (4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.

  (5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.

  (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.

  2.四邊形內(nèi)角和定理

  教師問:

  (1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?

  (2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?

  (3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.

  我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:

  ①2×180°=360°如圖4—6;

  ②4×180°-360°=360°如圖4-7.

  例1  已知:如圖4—8,直線 于B、 于C.

  求證:(1) ; (2) .

  本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.

  【總結(jié)、擴展】

  1.四邊形的有關(guān)概念.

  2.四邊形對角線的作用.

  3.四邊形內(nèi)角和定理.

  八、布置作業(yè) 

  教材P128中1(1)、2、 3.

  九、板書設計

  四邊形(一)

  四邊形有關(guān)概念

  四邊形內(nèi)角和

  例1

  十、隨堂練習

  教材P122中1、2、3.

多邊形的內(nèi)角和 篇13

  教學目的:1、使學生了解多邊形,凸多邊形的概念;

  2、使學生認識多邊形的內(nèi)角和的表示方法及外角和為360 ;

  3、讓學生體會轉(zhuǎn)化(把未知化已知)等數(shù)學思想;

  4、培養(yǎng)學生合作、表達等能力情感。

  教學重點與難點:多邊形內(nèi)角和與外角和特點是重點

  利用化歸思想歸納多邊形內(nèi)角和與外角和特點是難點。

  教學過程:

  一、創(chuàng)設情境

  1、  多邊形定義

  師出示一個三角形,問:這是什么圖形?它是怎樣定義的?

  生:三條線段首尾順次連接而成的圖形。

  師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?

  這些圖形我們都叫做多邊形。

  2、  多邊形記法

  3、  凸多邊形概念

  師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:

  我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。

  二、探究新知

  1、  確立研究范圍

  師:請大家觀察這些多邊形,結(jié)合我們已學過的三角形,大家認為有哪些部分值得我們研究?

  生1:它的角。

  生2:多邊形的邊。

  師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)

  2、  自主探究多邊形的內(nèi)角和

  

多邊形的內(nèi)角和 篇14

  一、素質(zhì)教育目標

  (一)知識教學點

  1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.

  2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.

  第2課時

  七、教學步驟 

  【復習提問】

  1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?

  2.如圖4-9, 求 的度數(shù)(打出投影).

  【引入新課】

  前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.

  【講解新課】

  1.四邊形的外角

  與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.

  2.外角和定理

  例1  已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .

  求 .

  (1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).

  (2)教給學生一組外角的畫法——同向法.

  即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和.

  (3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°.

  證得:

  360°

  外角和定理:四邊形的外角和等于360°

  3.四邊形的不穩(wěn)定性

  ①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?

  (學生回答)

  ②若以 為邊作四邊形ABCD.

  提示畫法:①畫任意小于平角的 .

  ②在 的兩邊上截取 .

  ③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.

  ④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.

  大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.

  ③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.

  教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確:

  ①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).

  (4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育.

  【總結(jié)、擴展】

  1.小結(jié):

  (1)四邊形外角概念、外角和定理.

  (2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).

  2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積

  八、布置作業(yè) 

  教材P128中4.

  九、板書設計 

  十、隨堂練習

  教材P124中1、2

  補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.

  (2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度

  (3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.

多邊形的內(nèi)角和 篇15

  一、    教學目標:

  1.    讓學生經(jīng)歷探索多邊形外角和公式的過程,培養(yǎng)學生主動探究的習慣.

  2.    能靈活的運用多邊形內(nèi)角和與外角和公式解決有關(guān)問題.

  二、    教材分析

  本節(jié)的主要內(nèi)容是多邊形的外角定義和公式.多邊形的外角和是三角形的一個重要性質(zhì),與前面的內(nèi)角和公式綜合運用能解決一些較難的問題.為提供三角形的外角提供了一種方法.

  三、    教學重點、難點

  1.    多邊形的外角和公式及公式的探索過程.

  2.    能靈活運用多邊形的內(nèi)角和與外角和公式解決有關(guān)問題.

  四、    教學建議

  關(guān)于外角和公式關(guān)鍵要讓學生理解它是不隨多邊形邊數(shù)的增加而增大,因此在教學中應設置由特殊到一般的題目,讓學生親身體會這個外角和是360°.

  五、    教具、學具準備

  投影儀、題板、畫圖工具

  六、    教學過程

  1.復習提問:

  (1)      多邊形的內(nèi)角和是多少?

  (2)      正八邊形的每一個內(nèi)角為      度?

  2.創(chuàng)設問題情景,引入新課:

  教師投放課本51頁圖9-35時,并出示以下問題:

  小明沿一個五邊形廣場周圍的小路,按順時針方向跑步

  (1)      小明從一條街道轉(zhuǎn)到下一條街道時,身體轉(zhuǎn)過的角是哪個角?在圖中標出它們.

  (2)      觀察∠1、∠2、∠3、∠4、∠5的兩邊分別與它相鄰的五邊形的內(nèi)角的邊有何關(guān)系?

  (3)      問題:你能計算小明跑完一圈,身體轉(zhuǎn)過的角度和嗎?如何計算∠1+∠2+∠3+∠4+∠5呢?

  點撥:

  請?zhí)顚懴骂}:

  如圖,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,則∠α=   ,∠β=     ,∠γ=   ,∠δ=     ∠θ=    .

  因為∠α+∠β+∠γ+∠δ+∠θ=      .

  所以∠1+∠2+∠3+∠4+∠5=       .

  由此可得:五邊形的外角和是360°

  (4)      你能借助內(nèi)角和來推導五邊形的外角和嗎?

  點撥:

  因五邊形的每一個內(nèi)角與它相鄰的外角是鄰補角,

  所以五邊形的內(nèi)角和加外角和等于5180°

  所以外角和等于5180°-(5-2)180°=360°

  (5)      你用第二種方法推導下列多邊形的外角和

  三角形的外角和       四邊形的外角和      五邊形的外角和       n邊形的外角和是       .

  得出結(jié)論:多邊形的外角和都等于360°.

  4.應用舉例:

  例 一個多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形?

  點撥:

  設出未知數(shù),根據(jù)相等關(guān)系: 內(nèi)角和=3外角和列出方程

  5.練習:     

  見學案練習一和練習二

  6.達標檢測

  見學案達標檢測

  7.小結(jié)

  本節(jié)課你學到了什么?有什么收獲?

  8.作業(yè)

  學生口答,并計算出度數(shù)

  學生獨立觀察分析思考找出特征,試概括所得結(jié)論,從而引出多邊形的外角定義及外角和定義及引入新課從而板書課題.

  學生質(zhì)疑思考,一時找不到方法,可按點撥的引導繼續(xù)思考.

  生充分思考,認真分析,小組討論交流得出答案.

  學生找關(guān)系,小組積極討論、交流,小組匯報結(jié)果.

  學生獨立探究,很快得出答案.

  學生獨立解決

  讓學生先總結(jié)、交流談體會

多邊形的內(nèi)角和 篇16

  一、教材分析

  1、教材的地位和作用

  本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會從簡單到復雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

  2、教學重點和難點

  重點:多邊形的內(nèi)角和與外角和

  難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

  二、教學目標分析

  1、知識與技能:掌握多邊形的內(nèi)角和與外角和,進一步了解轉(zhuǎn)化的數(shù)學思想。

  2、數(shù)學思考:能感受數(shù)學思考過程的條理性,發(fā)展能力推理和語言表達能力,并體會從特殊到一般的認識問題的方法。

  3、解決問題:讓學生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。

  4、情感態(tài)度:讓學生體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿探索和創(chuàng)造。

  三、教法和學法分析

  本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:

  1、教學方法的設計

  我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  2、活動的開展

  利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應用

  我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。

  四、教學過程分析

  五、評價分析

  1、注意評價內(nèi)容的多元化

  通過課堂中學生展示自己對所學內(nèi)容的理解,交流對某一問題的看法,動手操作的表演,各種問題嘗試解答等活動,使教師從學生思維活動、有關(guān)內(nèi)容的理解和掌握,以及學生參與活動的程序等多層面地了解學生。

  2、注重對學生學習過程的評價

  在整個教學過程中,通過對學生參與數(shù)學活動的程度、自信心、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生中出現(xiàn)的獨特的想法或結(jié)論給予鼓勵性評價。

  六、設計說明

  1、指導思想

  根據(jù)義務教育階段數(shù)學課程的要求,結(jié)合教材的編寫意圖,在本節(jié)課設計時,我遵循以下原則:情境引入激發(fā)興趣,學習過程體現(xiàn)自主,知識建構(gòu)循序漸進,思想方法有機滲透。

  2、關(guān)于教材處理

  本教案設計時,我對教材作了如下改變:①將教材例1作為練習中的“想一想”,由學生自已嘗試解答;②將例2中的求“六邊形”的外角和,改為練習中的“算一算”,先讓學生求“四邊形”的外角和,再探索“五邊形、六邊形,以及n邊形的外角和”。這樣處理仍然是為了體現(xiàn)學生的自主探索,使學生學習變“被動”為“主動”。

  ③作業(yè)采取分組競賽的形式合作完成。這樣,在情感上,本節(jié)課學生由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師可稍加點撥,適可而止,把更多的思考空間留給學生。

  以上是我對本節(jié)課的設計說明,不足之處,請各位指正,謝謝!

多邊形的內(nèi)角和 篇17

  《多邊形的內(nèi)角和》公開課教案     北京市第五中學 曹自由      

  教學任務分析

  教學目標

  知識與技能

  掌握多邊形內(nèi)角和公式及外角和定理,并能應用.

  過程與方法

  1.經(jīng)歷把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題的過程,體會轉(zhuǎn)化思想在幾何中的應用,同時體會從特殊到一般的認識問題的方法;

  2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神.

  情感態(tài)度價值觀

  通過猜想、推理等數(shù)學活動,感受數(shù)學充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習數(shù)學的熱情.

  重點

  多種方法探索多邊形內(nèi)角和公式

  難點

  多邊形內(nèi)角和公式的推導

  教學流程安排

  活動流程

  活動內(nèi)容和目的

  活動1學生自主探索四邊形內(nèi)角和

  活動2教師引導學生探索總結(jié)把四邊形轉(zhuǎn)化為三角形添加輔助線的基本方法

  活動3探索n邊形內(nèi)角和公式

  活動4師生共同研究遞推法確定n邊形內(nèi)角和公式

  活動5多邊形內(nèi)角和公式的應用

  活動6小結(jié)

  作業(yè)

  從對三角形及特殊四邊形(正方形、長方形)內(nèi)角和的認識出發(fā),使學生積極參加到探索四邊形內(nèi)角和的活動中.

  加深對轉(zhuǎn)化思想方法的理解, 訓練發(fā)散思維、培養(yǎng)創(chuàng)新能力.

  通過把多邊形轉(zhuǎn)化為三角形體會轉(zhuǎn)化思想,感受從特殊到一般的數(shù)學思考方法.

  學生提高動手實操能力、突破“添”的思維局限

  綜合運用新舊知識解決問題.

  回顧本節(jié)內(nèi)容,培養(yǎng)學生的歸納概括能力.

  反思總結(jié),鞏固提高.

  課前準備

  教具

  學具

  補充材料

  教師用三角尺

  課件

  剪刀

  復印材料

  三角形紙片

  教學過程設計

  問題與情景

  師生行為

  設計意圖

  [活動1、2]

  問題1.三角形的內(nèi)角和是多少?

  與形狀有關(guān)嗎?

  問題2.正方形、長方形的內(nèi)角和是多少?

  由此你能猜想任意凸四邊形內(nèi)角和嗎?

  動腦筋、想辦法,說明你的猜想是正確的.

  問題3添加輔助線的目的是什么,方法有沒有什么規(guī)律呢?

  學生回答:

  三角形內(nèi)角和是180°,與形狀無關(guān);正方形、長方形內(nèi)角和是360°(4×90°),由此猜想任意凸四邊形內(nèi)角和是360°.

  學生先獨立探究,再小組交流討論.

  教師深入小組指導,傾聽學生交流.對于通過測量、拼圖說明的,可以引導學生利用添加輔助線的方法把四邊形轉(zhuǎn)化為三角形.

  學生匯報結(jié)果.

  ①過一個頂點畫對角線1條,得到2個三角

  形,內(nèi)角和為2×180°;

  ②畫2條對角線,在四邊形內(nèi)部交于一點,得到4個三角形,內(nèi)角和為4×180°-360°;

  ③若在四邊形內(nèi)部任取一點,如圖,也可以得到相應的結(jié)論;

  ④這個點還可以取在邊上(若與頂點重合,轉(zhuǎn)化為第一種情況——連接對角線;否則如圖4)

  內(nèi)角和為3×180°-180°;

  ⑤點還可以取在外部,如圖5、6.由圖5,內(nèi)角和為3×180°-180°;由圖6,內(nèi)角和為2×180°;

  教師重點關(guān)注:①學生能否借助輔助線把四邊形分割成幾個三角形;②能否借助輔助線找到不同的分割方法.

  教師總結(jié):利用輔助線把四邊形的內(nèi)角和轉(zhuǎn)化為三角形的內(nèi)角和,體現(xiàn)了化未知為已知的轉(zhuǎn)化思想. .以上這些方法同樣適用于探究任意凸多邊形的內(nèi)角和.為方便起見,下面我們可以選用最簡單的方法——過一點畫多邊形的對角線,來探究五邊形、六邊形,甚至任意n邊形的內(nèi)角和.

  通過回憶三角形的內(nèi)角和,有助于后續(xù)問題的解決.

  從四邊形入手,有利于學生探求它與三角形的關(guān)系,從而有利于發(fā)現(xiàn)轉(zhuǎn)化的思想方法.

  通過動手操作尋找結(jié)論,讓他們積極參加數(shù)學活動、主動思考、合作交流,體驗解決問題策略的多樣性.

  通過尋求多種方法解決問題,訓練學生發(fā)散思維能力、培養(yǎng)創(chuàng)新意識.

  [活動3]

  問題4怎樣求n邊形的內(nèi)角和?(n是大于等于3的整數(shù))

  學生歸納得出結(jié)論:從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,它們將n邊形分割成(n-2)個三角形,(凸)n邊形的內(nèi)角和等于(n-2)×180°.

  特點:內(nèi)角和都是180°的整數(shù)倍.

  通過歸納概括得出任意凸多邊形的內(nèi)角和與邊數(shù)關(guān)系的表達式,體會數(shù)形之間的聯(lián)系,感受從特殊到一般的數(shù)學推理過程和數(shù)學思想方法.   

  [活動4]

  每名同學發(fā)一張三角形紙片

  問題5一張三角形紙片只剪一刀,能不能得到一個四邊形,在這一過程中內(nèi)角發(fā)

  《多邊形的內(nèi)角和》公開課生了怎樣的變化

  問題6由四邊形得到五邊形呢?

  依此類推能否猜想n邊形內(nèi)角和公式

  將三角形去掉一個角可以得到四邊形,如圖7,四邊形內(nèi)角和為

  180°+2×180°-180°=2×180°.

  每個圖形都是前一個圖形剪去一個三角形,每次操作內(nèi)角和增加180°,n邊形是三角形經(jīng)過(n-3)次操作得到的,所以n邊形內(nèi)角和公式為(n-2)×180°

  (嚴謹?shù)淖C明應在學習數(shù)學歸納法后)

  學生突破常規(guī),學會逆向思維,變以往的“把多邊形轉(zhuǎn)化成三角形”為“把三角形轉(zhuǎn)化成多邊形”同樣使問題得到解決

  [活動5]

  知道了凸多邊形的內(nèi)角和,它可以解決哪些問題呢?

  問題6:六邊形的外角和等于多少?

  n邊形外角和是多少?

  學生自己畫圖、思考.敘述理由:六邊形的六個外角與六個內(nèi)角構(gòu)成6個平角,結(jié)合內(nèi)角和公式,因此得到

  6×180°-(6-2)×180°=360°

  學生思考,回答.

  n邊形中,每個頂點處的內(nèi)角與一個外角組成一個平角,它們的和,即n邊形內(nèi)角和與外角和的和為n×180°,而內(nèi)角和為(n-2)×180°,因此外角和為360°.

  利用內(nèi)角和求外角和,鞏固了內(nèi)角和公式.  

  如時間允許,此時還可補充利用“轉(zhuǎn)角”求多邊形外角和的方法,這樣就變成了可以利用外角和來推導內(nèi)角和,這又是一種逆向思維

  練習

  一個多邊形各內(nèi)角都相等,都等于150°,它的邊數(shù)是      ,內(nèi)角和是     .

  練習.解:(n-2)180=150n,n=12;

  或360÷(180-150)=12(利用外角和)

  150°×12=1800°.

  鞏固內(nèi)角和公式,外角和定理.

  [活動5]

  小結(jié)

  下面請同學們總結(jié)一下這節(jié)課你有哪些收獲.

  學生自己小結(jié),老師再總結(jié).

  1.       多邊形內(nèi)角和公式(n-2)180°,外角和是360°;

  2.       由特殊到一般的數(shù)學方法、轉(zhuǎn)化思想.

  學會總結(jié),培養(yǎng)歸納概括能力.

  作業(yè):

  課后思考題.

  一同學在進行多邊形的內(nèi)角和計算時,求得內(nèi)角和為1125°,可能嗎?

  當他發(fā)現(xiàn)錯了之后,重新檢查,發(fā)現(xiàn)少算了一個內(nèi)角,你能求出這個內(nèi)角是多少度?他求的是幾邊形的內(nèi)角和嗎?

  多邊形內(nèi)角和與不等式的綜合應用題,一題多解,提高學生的綜合應用能力.

  作業(yè):

  解法1.設這是n邊形,這個內(nèi)角為x°,依題意:(n-2)180=1125+x

  x=(n-2)180-1125

  ∵0<x<180

  ∴0<(n-2)180-1125<180

  解得:<n<

  ∵n是整數(shù),

  ∴n=9.

  x=(9-2)180-1125=135

  注:方程(n-2)180=1125+x中有兩個未知數(shù),解法1用n表示x,根據(jù)x的取值范圍解不等式組求出了n;如果用x表示n,你能解出來嗎?

  解法2.設這是n邊形,這個內(nèi)角為x°,依題意:(n-2)180=1125+x

  ∵n是整數(shù),

  ∴45+x是180的倍數(shù).

  又∵0<x<180

  ∴45+x=180,x=135,n=9

  還可以根據(jù)內(nèi)角和的特點,先求出內(nèi)角和.

  解法3.設此多邊形的內(nèi)角和為x°,依題意:1125<x<1125+180

  即:180×6+45<x<180×7+45

  ∵x是多邊形內(nèi)角和的度數(shù)

  ∴x是180的倍數(shù)

  ∴x=180×7=1260     邊數(shù)=7+2=9,

  這個內(nèi)角=1260°-1125°=135°

  解法4(極值法).設這是n邊形,這個內(nèi)角為x°,則0<x<180,依題意:(n-2)180=1125+x

  令x=0,得:n=,令x=180,得:n=

  ∴<n<   其余同解法1.    

  此作品為天津市人教版初中數(shù)學課標實驗教材研討會公開課教學設計

多邊形的內(nèi)角和(通用17篇) 相關(guān)內(nèi)容:
  • 多邊形的內(nèi)角和

    教學建議 1.教材分析 (1)知識結(jié)構(gòu): (2)重點和難點分析: 重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。...

  • 《多邊形的內(nèi)角和與外角和》教學反思(通用2篇)

    體會及反思: 1、在初一舊教材中完成三角形內(nèi)外角和的教學之后,學生很自然地就會想到對于多邊形的情況如何。結(jié)合新教材中這一部分內(nèi)容的編排,所以特意在教學過程中安排了這樣一堂活動課,希望對于新課程標準思想有所體現(xiàn)。...

  • 《多邊形的內(nèi)角和》的說課稿(精選9篇)

    一、教材分析1、教學內(nèi)容“多邊形的內(nèi)角和”一節(jié)包括的內(nèi)容主要有多邊形的有關(guān)概念以及多邊形內(nèi)角和公式的推導和運用。2、本章及本節(jié)的地位與作用本章《多邊形》,探索的是三角形和多邊形的有關(guān)概念和性質(zhì),是學生在上學期初步認識和感受...

  • 7.3.2 《多邊形的內(nèi)角和》教案(精選12篇)

    一、素質(zhì)教育目標(一)知識教學點1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.(二)能力練習點1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力...

  • 《多邊形的內(nèi)角和》公開課(精選12篇)

    《多邊形的內(nèi)角和》公開課教案 北京市第五中學 曹自由 教學任務分析教學目標知識與技能掌握多邊形內(nèi)角和公式及外角和定理,并能應用.過程與方法1.經(jīng)歷把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題的過程,體會轉(zhuǎn)化思想在幾何中的應用,同時體會...

  • 《多邊形的內(nèi)角和》教案(通用14篇)

    一、素質(zhì)教育目標(一)知識教學點1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.(二)能力練習點1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力...

  • 多邊形的內(nèi)角和 教學設計示例(通用10篇)

    一、素質(zhì)教育目標(一)知識教學點1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.(二)能力訓練點1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形...

  • 《多邊形的內(nèi)角和》公開課(通用5篇)

    《多邊形的內(nèi)角和》公開課教案 北京市第五中學 曹自由 教學任務分析教學目標知識與技能掌握多邊形內(nèi)角和公式及外角和定理,并能應用.過程與方法1.經(jīng)歷把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題的過程,體會轉(zhuǎn)化思想在幾何中的應用,同時體會...

  • 《多邊形的內(nèi)角和》教案(通用7篇)

    一、素質(zhì)教育目標(一)知識教學點1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.(二)能力練習點1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力...

  • 多邊形的內(nèi)角和教案(精選4篇)

    一、素質(zhì)教育目標(一)知識教學點1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.(二)能力練習點1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力...

  • 《多邊形的內(nèi)角和》說課稿

    下面是初一數(shù)學說課稿《多邊形的內(nèi)角和》,僅供參考!《多邊形的內(nèi)角和》說課稿各位評委老師大家好,我是來自,我今天說課的題目是《多邊形的內(nèi)角和》。...

  • 7.3.2  《多邊形的內(nèi)角和》教案

    7.3.2 《多邊形的內(nèi)角和》教案教 學 任 務 分 析教學目標 知識目標了解多邊形的內(nèi)角和與外角和公式,進一步了解轉(zhuǎn)化的數(shù)學思想 能力目標1、讓學生經(jīng)歷猜想、探索、推理、歸納等過程,發(fā)展學生的合情推理能力和語言表達能力,掌握復雜問題化...

  • 多邊形的內(nèi)角和教案2

    一、素質(zhì)教育目標 (一)知識教學點 1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理. 2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用. (二)能力練習點 1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的...

  • 多邊形的內(nèi)角和教案3

    一、素質(zhì)教育目標 (一)知識教學點 1.使學生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理. 2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用. (二)能力練習點 1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的...

  • 《探索多邊形的內(nèi)角和與外角和》

    一、教學目標: 1.讓學生經(jīng)歷探索多邊形外角和公式的過程,培養(yǎng)學生主動探究的習慣.2.能靈活的運用多邊形內(nèi)角和與外角和公式解決有關(guān)問題.二、教材分析本節(jié)的主要內(nèi)容是多邊形的外角定義和公式.多邊形的外角和是三角形的一個重要性質(zhì),與...

  • 八年級數(shù)學教案
主站蜘蛛池模板: 国产日韩一区二区在线观看 | 国产裸模视频免费区无码 | 在线一级成人 | 国产又爽又黄又舒服又刺激视频 | 午夜理论片最新午夜理论剧 | 国产边摸边吃奶叫床视频 | 五月天影院久久综合 | 狠狠色噜噜狠狠狠狠色综合久 | 靠比视频在线免费观看 | 久久久久久人妻精品一区二区三区 | 爆乳邻居肉欲中文字幕 | 国产精品成人av片免费看最爱 | 国产精品美女久久久浪潮软件 | 亚洲超碰无码色中文字幕97 | 国产在线视欧美亚综合 | 日产精品卡二卡三卡四卡区满十八 | 免费精品国产自产拍在线观看图片 | 浪货跪下给我好好含着羞辱调教 | 欧美日本久久久 | av色伊人久久?合一区二区 | 岛国色网| 18禁男女无遮挡啪啪网站 | www.干| 在线观看免费一级片 | 18禁裸男晨勃露J毛免费观看 | 玩弄人妻少妇500系列网址 | 日本熟妇高清一区二区三区 | 久久精品国产68国产精品亚洲 | baoyu133.con永久免费视频 | 热99在线| 欧美一区二区三区四 | 久久逼逼 | 欧洲熟妇色XXXX欧美老妇老头多毛 | 国产狂喷潮在线观看视频应用 | 久久人人草| 黄毛片视频 | 亚洲中文无码A∨在线观看 亚洲女v | www黄在线观看 | 最新久久| 精品视频久久久久久久 | 麻豆99|