多邊形的內(nèi)角和(通用17篇)
多邊形的內(nèi)角和 篇1
四川射洪 邱銀
2005-05-06
教學任務分析
教學目標
知識技能
通過探究,歸納出
數(shù)學思考
1、 通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、 通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時
時讓學生體會從特殊到一般的認識問題的方法。
3、 通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到
論證幾何
解決問題
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度
通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
重點
探索多邊形內(nèi)角和的公式的探究過程。
難點
在探索時,如何把多邊形轉(zhuǎn)化成三角形。
知識聯(lián)系
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
知識背景
對多邊形在生活中有所認識
學習興趣
通過探究過程更能激發(fā)學生學習的興趣。
教學工具
三角板和幾何畫板。
教學流程設計
活動流程圖
活動內(nèi)容和目的
活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和
活動二、探索四邊形的內(nèi)角和
活動三、探索五邊形、六邊形、七邊形的內(nèi)角和
活動四、探索任意公式
活動五、多邊形內(nèi)角和公式的運用
活動六、小結(jié)和布置作業(yè)
通過分組測量,得出這幾個
通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學生的推理能力
通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時讓學生體會從特殊到一般的思考問題方法
通過畫正八邊形體會和應用
梳理所學知識,達到鞏固發(fā)展和提高的目的
教學過程 設計
問題與情景
師生行為
設計意圖
設計情景:什么是正多邊形?
正八邊形有什么特點?
你會畫邊長為3cm的正八邊形嗎?
學生思考并回答問題
學生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。
活動1、
在練習本畫出任意四邊形,五邊星,六邊形,七邊形
分組讓學生量出每一個多邊形的內(nèi)角并求出他們的內(nèi)角和,教師在黑板上畫這四個四邊形
通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想
活動2(重點)(難點)
探索四邊形的內(nèi)角和
學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結(jié)論的能力,同時也培養(yǎng)學生比較和歸納的能力。
活動3、探索五邊形、六邊形,七邊形的內(nèi)角和
學生根據(jù)活動二的分析,進一步用最優(yōu)方法來分割五邊形、六邊形,七邊形,從而通過推理得出他們的內(nèi)角和
通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。
活動4、探索任意
把活動2和3中的結(jié)論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結(jié)性的結(jié)論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
通過猜想、歸納、推導讓學生體會從特殊到一般的思想,通過公式的歸納過程,體會數(shù)形之間的聯(lián)系
活動5、畫一個邊長為3cm的八邊形
讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示
鞏固和應用多邊形內(nèi)角和,培養(yǎng)學生的應用意識
活動6、小結(jié)和布置作業(yè)
師生共同回顧本節(jié)所學過的內(nèi)容
多邊形的內(nèi)角和 篇2
教學建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標 :
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點 :
四邊形的概念
教學過程 :
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
多邊形的內(nèi)角和 篇3
教學建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
多邊形的內(nèi)角和 篇4
教學建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標 :
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點 :
四邊形的概念
教學過程 :
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
多邊形的內(nèi)角和 篇5
教學建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
多邊形的內(nèi)角和 篇6
教學建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標 :
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點 :
四邊形的概念
教學過程 :
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
多邊形的內(nèi)角和 篇7
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.
(二)能力訓練點
1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.
2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.
二、學法引導
類比、觀察、引導、講解
三、重點·難點·疑點及解決辦法
1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.
第2課時
七、教學步驟
【復習提問】
1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?
2.如圖4-9, 求 的度數(shù)(打出投影).
【引入新課】
前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.
【講解新課】
1.四邊形的外角
與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.
2.外角和定理
例1 已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .
求 .
(1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).
(2)教給學生一組外角的畫法——同向法.
即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和.
(3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°.
證得:
360°
外角和定理:四邊形的外角和等于360°
3.四邊形的不穩(wěn)定性
①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?
(學生回答)
②若以 為邊作四邊形ABCD.
提示畫法:①畫任意小于平角的 .
②在 的兩邊上截取 .
③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.
④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.
大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.
③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.
教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確:
①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).
(4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育.
【總結(jié)、擴展】
1.小結(jié):
(1)四邊形外角概念、外角和定理.
(2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).
2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積
八、布置作業(yè)
教材P128中4.
九、板書設計
十、隨堂練習
教材P124中1、2
補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.
(2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度
(3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.
多邊形的內(nèi)角和 篇8
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.
(二)能力訓練點
1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.
2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.
二、學法引導
類比、觀察、引導、講解
三、重點·難點·疑點及解決辦法
1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.
第一課時
七、教學步驟
【復習引入】
在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.
【引入新課】
用投影儀打出課前畫好的教材中P119的圖.
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).
【講解新課】
1.四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結(jié)合圖形.
(2)要與三角形類比.
(3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).
(4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.
(5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.
2.四邊形內(nèi)角和定理
教師問:
(1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?
(3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.
我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:
①2×180°=360°如圖4—6;
②4×180°-360°=360°如圖4-7.
例1 已知:如圖4—8,直線 于B、 于C.
求證:(1) ; (2) .
本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.
【總結(jié)、擴展】
1.四邊形的有關(guān)概念.
2.四邊形對角線的作用.
3.四邊形內(nèi)角和定理.
八、布置作業(yè)
教材P128中1(1)、2、 3.
九、板書設計
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習
教材P122中1、2、3.
多邊形的內(nèi)角和 篇9
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.
(二)能力訓練點
1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.
2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.
二、學法引導
類比、觀察、引導、講解
三、重點·難點·疑點及解決辦法
1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.
第一課時
七、教學步驟
【復習引入】
在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.
【引入新課】
用投影儀打出課前畫好的教材中P119的圖.
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).
【講解新課】
1.四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結(jié)合圖形.
(2)要與三角形類比.
(3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).
(4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.
(5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.
2.四邊形內(nèi)角和定理
教師問:
(1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?
(3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.
我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:
①2×180°=360°如圖4—6;
②4×180°-360°=360°如圖4-7.
例1 已知:如圖4—8,直線 于B、 于C.
求證:(1) ; (2) .
本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.
【總結(jié)、擴展】
1.四邊形的有關(guān)概念.
2.四邊形對角線的作用.
3.四邊形內(nèi)角和定理.
八、布置作業(yè)
教材P128中1(1)、2、 3.
九、板書設計
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習
教材P122中1、2、3.
多邊形的內(nèi)角和 篇10
完成三角形內(nèi)外角和的教學之后,學生很自然地就會想到對于多邊形的情況如何。 為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
(1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
(2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
(3)在小組交流過程中學生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學生探索過程的展示。同時教師有些總結(jié)性的話,限制了學生的思維,不能最大限度的發(fā)揮學生自主探究的能力。
(4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
多邊形的內(nèi)角和 篇11
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.
(二)能力訓練點
1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.
2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.
二、學法引導
類比、觀察、引導、講解
三、重點·難點·疑點及解決辦法
1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.
第2課時
七、教學步驟
【復習提問】
1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?
2.如圖4-9, 求 的度數(shù)(打出投影).
【引入新課】
前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.
【講解新課】
1.四邊形的外角
與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.
2.外角和定理
例1 已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .
求 .
(1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).
(2)教給學生一組外角的畫法——同向法.
即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和.
(3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°.
證得:
360°
外角和定理:四邊形的外角和等于360°
3.四邊形的不穩(wěn)定性
①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?
(學生回答)
②若以 為邊作四邊形ABCD.
提示畫法:①畫任意小于平角的 .
②在 的兩邊上截取 .
③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.
④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.
大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.
③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.
教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確:
①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).
(4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育.
【總結(jié)、擴展】
1.小結(jié):
(1)四邊形外角概念、外角和定理.
(2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).
2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積
八、布置作業(yè)
教材P128中4.
九、板書設計
十、隨堂練習
教材P124中1、2
補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.
(2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度
(3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.
多邊形的內(nèi)角和 篇12
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.
(二)能力訓練點
1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.
2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想.
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.
二、學法引導
類比、觀察、引導、講解
三、重點·難點·疑點及解決辦法
1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料.
第一課時
七、教學步驟
【復習引入】
在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題.
【引入新課】
用投影儀打出課前畫好的教材中P119的圖.
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形).
【講解新課】
1.四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結(jié)合圖形.
(2)要與三角形類比.
(3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖4—2中的點 .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).
(4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.
(5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖4—1.
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.
2.四邊形內(nèi)角和定理
教師問:
(1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?
(3)若在四邊形ABCD 如圖4-7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形.
我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:
①2×180°=360°如圖4—6;
②4×180°-360°=360°如圖4-7.
例1 已知:如圖4—8,直線 于B、 于C.
求證:(1) ; (2) .
本例題是四邊形內(nèi)角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出.
【總結(jié)、擴展】
1.四邊形的有關(guān)概念.
2.四邊形對角線的作用.
3.四邊形內(nèi)角和定理.
八、布置作業(yè)
教材P128中1(1)、2、 3.
九、板書設計
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習
教材P122中1、2、3.
多邊形的內(nèi)角和 篇13
教學目的:1、使學生了解多邊形,凸多邊形的概念;
2、使學生認識多邊形的內(nèi)角和的表示方法及外角和為360 ;
3、讓學生體會轉(zhuǎn)化(把未知化已知)等數(shù)學思想;
4、培養(yǎng)學生合作、表達等能力情感。
教學重點與難點:多邊形內(nèi)角和與外角和特點是重點
利用化歸思想歸納多邊形內(nèi)角和與外角和特點是難點。
教學過程:
一、創(chuàng)設情境
1、 多邊形定義
師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
生:三條線段首尾順次連接而成的圖形。
師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
這些圖形我們都叫做多邊形。
2、 多邊形記法
3、 凸多邊形概念
師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。
二、探究新知
1、 確立研究范圍
師:請大家觀察這些多邊形,結(jié)合我們已學過的三角形,大家認為有哪些部分值得我們研究?
生1:它的角。
生2:多邊形的邊。
師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)
2、 自主探究多邊形的內(nèi)角和
一、素質(zhì)教育目標 (一)知識教學點 1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理. 2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用. (二)能力訓練點 1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力. 2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想. 3.會根據(jù)比較簡單的條件畫出指定的四邊形. 4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想. (三)德育滲透點 使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣. (四)美育滲透點 通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美. 二、學法引導 類比、觀察、引導、講解 三、重點·難點·疑點及解決辦法 1.教學重點:四邊形及其有關(guān)概念;熟練推導四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題. 2.教學難點 :理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用. 3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角. 四、課時安排 2課時 五、教具學具準備 投影儀、膠片、四邊形模型、常用畫圖工具 六、師生互動活動設計 教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關(guān)概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關(guān)材料. 第2課時 七、教學步驟 【復習提問】 1.什么叫四邊形?四邊形的內(nèi)角和定理是什么? 2.如圖4-9, 求 的度數(shù)(打出投影). 【引入新課】 前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題. 【講解新課】 1.四邊形的外角 與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10. 2.外角和定理 例1 已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 . 求 . (1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和). (2)教給學生一組外角的畫法——同向法. 即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的外角和. (3)利用每一個外角與其鄰補角的關(guān)系及四邊形內(nèi)角和為360°. 證得: 360° 外角和定理:四邊形的外角和等于360° 3.四邊形的不穩(wěn)定性 ①我們知道三角形具有穩(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎? (學生回答) ②若以 為邊作四邊形ABCD. 提示畫法:①畫任意小于平角的 . ②在 的兩邊上截取 . ③分別以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點. ④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13. 大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定. ③(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性. 教師指出,“不穩(wěn)定”是四邊形的一個重要性質(zhì),還應使學生明確: ①四邊形改變形狀時只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù). (4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向?qū)W生進行理論聯(lián)系實際的教育. 【總結(jié)、擴展】 1.小結(jié): (1)四邊形外角概念、外角和定理. (2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù). 2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積 八、布置作業(yè) 教材P128中4. 九、板書設計 十、隨堂練習 教材P124中1、2 補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度. (2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度 (3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角. 一、 教學目標: 1. 讓學生經(jīng)歷探索多邊形外角和公式的過程,培養(yǎng)學生主動探究的習慣. 2. 能靈活的運用多邊形內(nèi)角和與外角和公式解決有關(guān)問題. 二、 教材分析 本節(jié)的主要內(nèi)容是多邊形的外角定義和公式.多邊形的外角和是三角形的一個重要性質(zhì),與前面的內(nèi)角和公式綜合運用能解決一些較難的問題.為提供三角形的外角提供了一種方法. 三、 教學重點、難點 1. 多邊形的外角和公式及公式的探索過程. 2. 能靈活運用多邊形的內(nèi)角和與外角和公式解決有關(guān)問題. 四、 教學建議 關(guān)于外角和公式關(guān)鍵要讓學生理解它是不隨多邊形邊數(shù)的增加而增大,因此在教學中應設置由特殊到一般的題目,讓學生親身體會這個外角和是360°. 五、 教具、學具準備 投影儀、題板、畫圖工具 六、 教學過程 1.復習提問: (1) 多邊形的內(nèi)角和是多少? (2) 正八邊形的每一個內(nèi)角為 度? 2.創(chuàng)設問題情景,引入新課: 教師投放課本51頁圖9-35時,并出示以下問題: 小明沿一個五邊形廣場周圍的小路,按順時針方向跑步 (1) 小明從一條街道轉(zhuǎn)到下一條街道時,身體轉(zhuǎn)過的角是哪個角?在圖中標出它們. (2) 觀察∠1、∠2、∠3、∠4、∠5的兩邊分別與它相鄰的五邊形的內(nèi)角的邊有何關(guān)系? (3) 問題:你能計算小明跑完一圈,身體轉(zhuǎn)過的角度和嗎?如何計算∠1+∠2+∠3+∠4+∠5呢? 點撥: 請?zhí)顚懴骂}: 如圖,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,則∠α= ,∠β= ,∠γ= ,∠δ= ∠θ= . 因為∠α+∠β+∠γ+∠δ+∠θ= . 所以∠1+∠2+∠3+∠4+∠5= . 由此可得:五邊形的外角和是360° (4) 你能借助內(nèi)角和來推導五邊形的外角和嗎? 點撥: 因五邊形的每一個內(nèi)角與它相鄰的外角是鄰補角, 所以五邊形的內(nèi)角和加外角和等于5180° 所以外角和等于5180°-(5-2)180°=360° (5) 你用第二種方法推導下列多邊形的外角和 三角形的外角和 四邊形的外角和 五邊形的外角和 n邊形的外角和是 . 得出結(jié)論:多邊形的外角和都等于360°. 4.應用舉例: 例 一個多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形? 點撥: 設出未知數(shù),根據(jù)相等關(guān)系: 內(nèi)角和=3外角和列出方程 5.練習: 見學案練習一和練習二 6.達標檢測 見學案達標檢測 7.小結(jié) 本節(jié)課你學到了什么?有什么收獲? 8.作業(yè) 學生口答,并計算出度數(shù) 學生獨立觀察分析思考找出特征,試概括所得結(jié)論,從而引出多邊形的外角定義及外角和定義及引入新課從而板書課題. 學生質(zhì)疑思考,一時找不到方法,可按點撥的引導繼續(xù)思考. 生充分思考,認真分析,小組討論交流得出答案. 學生找關(guān)系,小組積極討論、交流,小組匯報結(jié)果. 學生獨立探究,很快得出答案. 學生獨立解決 讓學生先總結(jié)、交流談體會 一、教材分析 1、教材的地位和作用 本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會從簡單到復雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。 2、教學重點和難點 重點:多邊形的內(nèi)角和與外角和 難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。 二、教學目標分析 1、知識與技能:掌握多邊形的內(nèi)角和與外角和,進一步了解轉(zhuǎn)化的數(shù)學思想。 2、數(shù)學思考:能感受數(shù)學思考過程的條理性,發(fā)展能力推理和語言表達能力,并體會從特殊到一般的認識問題的方法。 3、解決問題:讓學生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。 4、情感態(tài)度:讓學生體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿探索和創(chuàng)造。 三、教法和學法分析 本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法: 1、教學方法的設計 我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。 2、活動的開展 利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。 3、現(xiàn)代教育技術(shù)的應用 我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。 四、教學過程分析 五、評價分析 1、注意評價內(nèi)容的多元化 通過課堂中學生展示自己對所學內(nèi)容的理解,交流對某一問題的看法,動手操作的表演,各種問題嘗試解答等活動,使教師從學生思維活動、有關(guān)內(nèi)容的理解和掌握,以及學生參與活動的程序等多層面地了解學生。 2、注重對學生學習過程的評價 在整個教學過程中,通過對學生參與數(shù)學活動的程度、自信心、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生中出現(xiàn)的獨特的想法或結(jié)論給予鼓勵性評價。 六、設計說明 1、指導思想 根據(jù)義務教育階段數(shù)學課程的要求,結(jié)合教材的編寫意圖,在本節(jié)課設計時,我遵循以下原則:情境引入激發(fā)興趣,學習過程體現(xiàn)自主,知識建構(gòu)循序漸進,思想方法有機滲透。 2、關(guān)于教材處理 本教案設計時,我對教材作了如下改變:①將教材例1作為練習中的“想一想”,由學生自已嘗試解答;②將例2中的求“六邊形”的外角和,改為練習中的“算一算”,先讓學生求“四邊形”的外角和,再探索“五邊形、六邊形,以及n邊形的外角和”。這樣處理仍然是為了體現(xiàn)學生的自主探索,使學生學習變“被動”為“主動”。 ③作業(yè)采取分組競賽的形式合作完成。這樣,在情感上,本節(jié)課學生由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師可稍加點撥,適可而止,把更多的思考空間留給學生。 以上是我對本節(jié)課的設計說明,不足之處,請各位指正,謝謝! 《多邊形的內(nèi)角和》公開課教案 北京市第五中學 曹自由 教學任務分析 教學目標 知識與技能 掌握多邊形內(nèi)角和公式及外角和定理,并能應用. 過程與方法 1.經(jīng)歷把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題的過程,體會轉(zhuǎn)化思想在幾何中的應用,同時體會從特殊到一般的認識問題的方法; 2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神. 情感態(tài)度價值觀 通過猜想、推理等數(shù)學活動,感受數(shù)學充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習數(shù)學的熱情. 重點 多種方法探索多邊形內(nèi)角和公式 難點 多邊形內(nèi)角和公式的推導 教學流程安排 活動流程 活動內(nèi)容和目的 活動1學生自主探索四邊形內(nèi)角和 活動2教師引導學生探索總結(jié)把四邊形轉(zhuǎn)化為三角形添加輔助線的基本方法 活動3探索n邊形內(nèi)角和公式 活動4師生共同研究遞推法確定n邊形內(nèi)角和公式 活動5多邊形內(nèi)角和公式的應用 活動6小結(jié) 作業(yè) 從對三角形及特殊四邊形(正方形、長方形)內(nèi)角和的認識出發(fā),使學生積極參加到探索四邊形內(nèi)角和的活動中. 加深對轉(zhuǎn)化思想方法的理解, 訓練發(fā)散思維、培養(yǎng)創(chuàng)新能力. 通過把多邊形轉(zhuǎn)化為三角形體會轉(zhuǎn)化思想,感受從特殊到一般的數(shù)學思考方法. 學生提高動手實操能力、突破“添”的思維局限 綜合運用新舊知識解決問題. 回顧本節(jié)內(nèi)容,培養(yǎng)學生的歸納概括能力. 反思總結(jié),鞏固提高. 課前準備 教具 學具 補充材料 教師用三角尺 課件 剪刀 復印材料 三角形紙片 教學過程設計 問題與情景 師生行為 設計意圖 [活動1、2] 問題1.三角形的內(nèi)角和是多少? 與形狀有關(guān)嗎? 問題2.正方形、長方形的內(nèi)角和是多少? 由此你能猜想任意凸四邊形內(nèi)角和嗎? 動腦筋、想辦法,說明你的猜想是正確的. 問題3添加輔助線的目的是什么,方法有沒有什么規(guī)律呢? 學生回答: 三角形內(nèi)角和是180°,與形狀無關(guān);正方形、長方形內(nèi)角和是360°(4×90°),由此猜想任意凸四邊形內(nèi)角和是360°. 學生先獨立探究,再小組交流討論. 教師深入小組指導,傾聽學生交流.對于通過測量、拼圖說明的,可以引導學生利用添加輔助線的方法把四邊形轉(zhuǎn)化為三角形. 學生匯報結(jié)果. ①過一個頂點畫對角線1條,得到2個三角 形,內(nèi)角和為2×180°; ②畫2條對角線,在四邊形內(nèi)部交于一點,得到4個三角形,內(nèi)角和為4×180°-360°; ③若在四邊形內(nèi)部任取一點,如圖,也可以得到相應的結(jié)論; ④這個點還可以取在邊上(若與頂點重合,轉(zhuǎn)化為第一種情況——連接對角線;否則如圖4) 內(nèi)角和為3×180°-180°; ⑤點還可以取在外部,如圖5、6.由圖5,內(nèi)角和為3×180°-180°;由圖6,內(nèi)角和為2×180°; 教師重點關(guān)注:①學生能否借助輔助線把四邊形分割成幾個三角形;②能否借助輔助線找到不同的分割方法. 教師總結(jié):利用輔助線把四邊形的內(nèi)角和轉(zhuǎn)化為三角形的內(nèi)角和,體現(xiàn)了化未知為已知的轉(zhuǎn)化思想. .以上這些方法同樣適用于探究任意凸多邊形的內(nèi)角和.為方便起見,下面我們可以選用最簡單的方法——過一點畫多邊形的對角線,來探究五邊形、六邊形,甚至任意n邊形的內(nèi)角和. 通過回憶三角形的內(nèi)角和,有助于后續(xù)問題的解決. 從四邊形入手,有利于學生探求它與三角形的關(guān)系,從而有利于發(fā)現(xiàn)轉(zhuǎn)化的思想方法. 通過動手操作尋找結(jié)論,讓他們積極參加數(shù)學活動、主動思考、合作交流,體驗解決問題策略的多樣性. 通過尋求多種方法解決問題,訓練學生發(fā)散思維能力、培養(yǎng)創(chuàng)新意識. [活動3] 問題4怎樣求n邊形的內(nèi)角和?(n是大于等于3的整數(shù)) 學生歸納得出結(jié)論:從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,它們將n邊形分割成(n-2)個三角形,(凸)n邊形的內(nèi)角和等于(n-2)×180°. 特點:內(nèi)角和都是180°的整數(shù)倍. 通過歸納概括得出任意凸多邊形的內(nèi)角和與邊數(shù)關(guān)系的表達式,體會數(shù)形之間的聯(lián)系,感受從特殊到一般的數(shù)學推理過程和數(shù)學思想方法. [活動4] 每名同學發(fā)一張三角形紙片 問題5一張三角形紙片只剪一刀,能不能得到一個四邊形,在這一過程中內(nèi)角發(fā) 《多邊形的內(nèi)角和》公開課生了怎樣的變化 問題6由四邊形得到五邊形呢? 依此類推能否猜想n邊形內(nèi)角和公式 將三角形去掉一個角可以得到四邊形,如圖7,四邊形內(nèi)角和為 180°+2×180°-180°=2×180°. 每個圖形都是前一個圖形剪去一個三角形,每次操作內(nèi)角和增加180°,n邊形是三角形經(jīng)過(n-3)次操作得到的,所以n邊形內(nèi)角和公式為(n-2)×180° (嚴謹?shù)淖C明應在學習數(shù)學歸納法后) 學生突破常規(guī),學會逆向思維,變以往的“把多邊形轉(zhuǎn)化成三角形”為“把三角形轉(zhuǎn)化成多邊形”同樣使問題得到解決 [活動5] 知道了凸多邊形的內(nèi)角和,它可以解決哪些問題呢? 問題6:六邊形的外角和等于多少? n邊形外角和是多少? 學生自己畫圖、思考.敘述理由:六邊形的六個外角與六個內(nèi)角構(gòu)成6個平角,結(jié)合內(nèi)角和公式,因此得到 6×180°-(6-2)×180°=360° 學生思考,回答. n邊形中,每個頂點處的內(nèi)角與一個外角組成一個平角,它們的和,即n邊形內(nèi)角和與外角和的和為n×180°,而內(nèi)角和為(n-2)×180°,因此外角和為360°. 利用內(nèi)角和求外角和,鞏固了內(nèi)角和公式. 如時間允許,此時還可補充利用“轉(zhuǎn)角”求多邊形外角和的方法,這樣就變成了可以利用外角和來推導內(nèi)角和,這又是一種逆向思維 練習 一個多邊形各內(nèi)角都相等,都等于150°,它的邊數(shù)是 ,內(nèi)角和是 . 練習.解:(n-2)180=150n,n=12; 或360÷(180-150)=12(利用外角和) 150°×12=1800°. 鞏固內(nèi)角和公式,外角和定理. [活動5] 小結(jié) 下面請同學們總結(jié)一下這節(jié)課你有哪些收獲. 學生自己小結(jié),老師再總結(jié). 1. 多邊形內(nèi)角和公式(n-2)180°,外角和是360°; 2. 由特殊到一般的數(shù)學方法、轉(zhuǎn)化思想. 學會總結(jié),培養(yǎng)歸納概括能力. 作業(yè): 課后思考題. 一同學在進行多邊形的內(nèi)角和計算時,求得內(nèi)角和為1125°,可能嗎? 當他發(fā)現(xiàn)錯了之后,重新檢查,發(fā)現(xiàn)少算了一個內(nèi)角,你能求出這個內(nèi)角是多少度?他求的是幾邊形的內(nèi)角和嗎? 多邊形內(nèi)角和與不等式的綜合應用題,一題多解,提高學生的綜合應用能力. 作業(yè): 解法1.設這是n邊形,這個內(nèi)角為x°,依題意:(n-2)180=1125+x x=(n-2)180-1125 ∵0<x<180 ∴0<(n-2)180-1125<180 解得:<n< ∵n是整數(shù), ∴n=9. x=(9-2)180-1125=135 注:方程(n-2)180=1125+x中有兩個未知數(shù),解法1用n表示x,根據(jù)x的取值范圍解不等式組求出了n;如果用x表示n,你能解出來嗎? 解法2.設這是n邊形,這個內(nèi)角為x°,依題意:(n-2)180=1125+x ∵n是整數(shù), ∴45+x是180的倍數(shù). 又∵0<x<180 ∴45+x=180,x=135,n=9 還可以根據(jù)內(nèi)角和的特點,先求出內(nèi)角和. 解法3.設此多邊形的內(nèi)角和為x°,依題意:1125<x<1125+180 即:180×6+45<x<180×7+45 ∵x是多邊形內(nèi)角和的度數(shù) ∴x是180的倍數(shù) ∴x=180×7=1260 邊數(shù)=7+2=9, 這個內(nèi)角=1260°-1125°=135° 解法4(極值法).設這是n邊形,這個內(nèi)角為x°,則0<x<180,依題意:(n-2)180=1125+x 令x=0,得:n=,令x=180,得:n= ∴<n< 其余同解法1. 此作品為天津市人教版初中數(shù)學課標實驗教材研討會公開課教學設計多邊形的內(nèi)角和 篇14
多邊形的內(nèi)角和 篇15
多邊形的內(nèi)角和 篇16
多邊形的內(nèi)角和 篇17