多邊形的內(nèi)角和教案3
一、素質(zhì)教育目標(biāo)(一)知識教學(xué)點
1.使學(xué)生把握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用.
(二)能力練習(xí)點
1.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力.
2.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想.
(三)德育滲透點
使學(xué)生熟悉到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的愛好.
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美.
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題.
2.教學(xué)難點:理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用.
3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學(xué)具預(yù)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料.
第2課時
七、教學(xué)步驟
復(fù)習(xí)提問
1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?
2.如圖4-9, 求 的度數(shù)(打出投影).
引入新課
前面我們學(xué)習(xí)過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學(xué)習(xí)了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來研究這些問題.
講解新課
1.四邊形的外角
與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的.四邊形的外角與它有公共頂點的內(nèi)角互為鄰補(bǔ)角,即它們的和等于180°,如圖4-10.
2.外角和定理
例1 已知:如圖4-11,四邊形abcd的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設(shè)它們分別為 .
求 .
(1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補(bǔ)角相加的和).