排列、組合、二項式定理-基本原理
教學重點和難點
重點:加法原理和乘法原理.
難點:加法原理和乘法原理的準確應用.
教學用具
投影儀.
教學過程設計
(一)引入新課
從本節課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.
今天我們先學習兩個基本原理.
(二)講授新課
1.介紹兩個基本原理
先考慮下面的問題:
問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有 2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4 2 3=9種不同的走法.
這個問題可以總結為下面的一個基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有n=m1 m2 … mn種不同的方法.
請大家再來考慮下面的問題(打出片子——問題2):
問題2:由a村去b村的道路有3條,由b村去c村的道路有2條(見下圖),從a村經b村去c村,共有多少種不同的走法?
這里,從a村到b村,有3種不同的走法,按這3種走法中的每一種走法到達b村后,再從b村到c村又各有2種不同的走法,因此,從a村經b村去c村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有n=m1×m2×…×mn種不同的方法.
2.淺釋兩個基本原理
兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.
比較兩個基本原理,想一想,它們有什么區別?
兩個基本原理的區別在于:一個與分類有關,一個與分步有關.
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.
1~10中一共有n=4+2+1=7個合數.
題2:在前面的問題2中,步行從a村到b村的北路需要8時,中路需要4時,南路需要6時,b村到c村的北路需要5時,南路需要3時,要求步行從a村到c村的總時數不超過12時,共有多少種不同的走法?