相反數
教學目標
1.了解的意義,會求有理數的;
2.進一步培養學生分類討論的思想和觀察、歸納與概括的能力.
3.初步認識對立統一的規律。
教學建議
一、重點、難點分析
本節的重點是了解的意義,理解的代數定義與幾何定義的一致性.難點是多重符號的化簡.“只有符號不同的兩個數”中的“只有”指的是除了符號不同以外完全相同(也就是下節課要學的絕對值相同)。不能理解為只要符號不同的兩個數就互為。另外,“0的是0”也是定義的一部分。關于“數a的是-a”,應該明確的是-a不一定是正數,a不一定是正數。關于多重符號的化簡,如果一個正數前面有偶數個“-”號,可以把“-”號一起去掉;一個正數前面有奇數個“-”號,則化簡符號后只剩一個“-”號。
二、知識結構
的定義 的性質及其判定 的應用
三、教法建議
這節課教學的主要內容是互為的概念。
由于教材先講,后講絕對值,所以的定義只是形式上的描述,主要通過的幾何意義理解的概念。教學中建議,直接給出的幾何定義,通過實例了解求一個數的的方法。按著數軸————絕對值的順序教學,可充分利用數軸使數與形更好地結合起來。
四、的相關知識
1.的意義
(1)只有符號不同的兩個數叫做互為,如-1999與1999互為。
(2)從數軸上看,位于原點兩旁,且與原點距離相等的兩點所表示的兩個數叫做互為。如5與-5是互為。
(3)0的是0。也只有0的是它的本身。
(4)是表示兩個數的相互關系,不能單獨存在。
2.的表示
在一個數的前面添上“-”號就成為原數的。若 表示一個有理數,則 的表示為- 。在一個數的前面添上“+”號仍與原數相聯系同。例如,+7=7,特別地,+0=0,-0=0。
3.的特性
若 互為,則 ,反之若 ,則 互為。
4.多重符號化簡
(1)的意義是簡化多重符號的依據。如 是-1的,而-1的為+1,所以 。
(2)多重符號化簡的結果是由“-”號的個數決定的。如果“-”號是奇數個,則
果為負;如果是偶然數個,則結果為正。可簡寫為“奇負偶正”。
例如, 。由此可見,化簡一個數就是把多重符號化成單一符號,若結果是“+”號,一般省略不寫。
第 1 2 3 4 頁