中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁(yè) > 教案下載 > 數(shù)學(xué)教案 > 初中數(shù)學(xué)教案 > 七年級(jí)數(shù)學(xué)教案 > 不等式的解集 教學(xué)設(shè)計(jì)方案(精選4篇)

不等式的解集 教學(xué)設(shè)計(jì)方案

發(fā)布時(shí)間:2023-01-05

不等式的解集 教學(xué)設(shè)計(jì)方案(精選4篇)

不等式的解集 教學(xué)設(shè)計(jì)方案 篇1

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式等概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  3.當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,4,-2.5,3,0,2.9.

  (2、3兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問(wèn)題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫(huà)出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫(huà)出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.簡(jiǎn)稱(chēng)不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱(chēng)為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含X=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“°”還是用實(shí)心圓點(diǎn)“·”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.

  解:(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (6)在數(shù)軸上表示-2≤x<3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視,遇到問(wèn)題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生回答,教師板書(shū),最后,請(qǐng)學(xué)生在筆記本上畫(huà)數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.

  (本題從另一側(cè)面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  (3)*觀察不等式x-4<0的解集是什么?用不等式和數(shù)軸分別表示出來(lái).它的正數(shù)解是什么?自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“°”和實(shí)心圓點(diǎn)“·”.

  五、作業(yè) 

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≥0; (3)-1<x≤5;

  3.求不等式x+2<5的正整數(shù)解.

不等式的解集 教學(xué)設(shè)計(jì)方案 篇2

  教學(xué)目標(biāo) 

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式等概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程 中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程 設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  3.當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,4,-2.5,3,0,2.9.

  (2、3兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問(wèn)題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫(huà)出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫(huà)出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.簡(jiǎn)稱(chēng)不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱(chēng)為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含X=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“°”還是用實(shí)心圓點(diǎn)“·”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.

  解:(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (6)在數(shù)軸上表示-2≤x<3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視,遇到問(wèn)題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生回答,教師板書(shū),最后,請(qǐng)學(xué)生在筆記本上畫(huà)數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.

  (本題從另一側(cè)面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  (3)*觀察不等式x-4<0的解集是什么?用不等式和數(shù)軸分別表示出來(lái).它的正數(shù)解是什么?自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“°”和實(shí)心圓點(diǎn)“·”.

  五、作業(yè) 

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≥0; (3)-1<x≤5;

  3.求不等式x+2<5的正整數(shù)解.

不等式的解集 教學(xué)設(shè)計(jì)方案 篇3

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式等概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  3.當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,4,-2.5,3,0,2.9.

  (2、3兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問(wèn)題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫(huà)出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫(huà)出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.簡(jiǎn)稱(chēng)不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱(chēng)為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含X=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“°”還是用實(shí)心圓點(diǎn)“·”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.

  解:(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (6)在數(shù)軸上表示-2≤x<3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視,遇到問(wèn)題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生回答,教師板書(shū),最后,請(qǐng)學(xué)生在筆記本上畫(huà)數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.

  (本題從另一側(cè)面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  (3)*觀察不等式x-4<0的解集是什么?用不等式和數(shù)軸分別表示出來(lái).它的正數(shù)解是什么?自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“°”和實(shí)心圓點(diǎn)“·”.

  五、作業(yè) 

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≥0; (3)-1<x≤5;

  3.求不等式x+2<5的正整數(shù)解.

不等式的解集 教學(xué)設(shè)計(jì)方案 篇4

  教學(xué)目標(biāo) 

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式等概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程 中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程 設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  3.當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,4,-2.5,3,0,2.9.

  (2、3兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問(wèn)題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫(huà)出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫(huà)出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.簡(jiǎn)稱(chēng)不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱(chēng)為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含X=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“°”還是用實(shí)心圓點(diǎn)“·”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.

  解:(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (6)在數(shù)軸上表示-2≤x<3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視,遇到問(wèn)題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生回答,教師板書(shū),最后,請(qǐng)學(xué)生在筆記本上畫(huà)數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.

  (本題從另一側(cè)面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  (3)*觀察不等式x-4<0的解集是什么?用不等式和數(shù)軸分別表示出來(lái).它的正數(shù)解是什么?自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“°”和實(shí)心圓點(diǎn)“·”.

  五、作業(yè) 

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≥0; (3)-1<x≤5;

  3.求不等式x+2<5的正整數(shù)解.

不等式的解集 教學(xué)設(shè)計(jì)方案(精選4篇) 相關(guān)內(nèi)容:
  • 初中數(shù)學(xué)《不等式的解集》說(shuō)課稿范文

    一、教材分析本節(jié)課研究的是不等式的解集和不等式解集在數(shù)軸上的表示。這之前學(xué)生已經(jīng)初步學(xué)習(xí)了不等式和不等式解,這部分在本章中不但有承上啟下的作用,而且為今后學(xué)習(xí)函數(shù)的應(yīng)用奠定了數(shù)形結(jié)合的基礎(chǔ),因此它在教材中處于非常重要的位...

  • 不等式的解集

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是的概念及在數(shù)軸上表示的方法.難點(diǎn)為的概念. 1.不等式的解與方程的解的意義的異同點(diǎn) 相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同. 不同...

  • 數(shù)學(xué)教案-不等式的解集 教學(xué)設(shè)計(jì)方案(二)

    教學(xué)目標(biāo) 1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式等概念,掌握在數(shù)軸上表示不等式的解的集合的方法; 2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法; 3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生...

  • 數(shù)學(xué)教案-不等式的解集

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點(diǎn)為不等式的解集的概念. 1.不等式的解與方程的解的意義的異同點(diǎn) 相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做...

  • 不等式的解集

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是的概念及在數(shù)軸上表示的方法.難點(diǎn)為的概念. 1.不等式的解與方程的解的意義的異同點(diǎn) 相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同. 不同...

  • 不等式的解集

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是的概念及在數(shù)軸上表示的方法.難點(diǎn)為的概念. 1.不等式的解與方程的解的意義的異同點(diǎn) 相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同. 不同...

  • 不等式的解集

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是的概念及在數(shù)軸上表示的方法.難點(diǎn)為的概念. 1.不等式的解與方程的解的意義的異同點(diǎn) 相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同. 不同...

  • 《稱(chēng)象》教學(xué)設(shè)計(jì)方案(精選12篇)

    教學(xué)目標(biāo)分析知識(shí)與能力:理解課文內(nèi)容,懂得曹沖稱(chēng)象的辦法和過(guò)程,理解動(dòng)腦筋的真正含義;學(xué)會(huì)本課生字、新詞。過(guò)程與方法:培養(yǎng)學(xué)生注意觀察,善于思考的能力;激發(fā)學(xué)生說(shuō)話(huà)興趣,訓(xùn)練學(xué)生能夠正確、完整地回答問(wèn)題和復(fù)述一件事的能力...

  • 教學(xué)設(shè)計(jì)方案合集(通用2篇)

    教學(xué)目標(biāo)1、正確認(rèn)讀3個(gè)要求會(huì)認(rèn)的生字,掌握5個(gè)要求會(huì)寫(xiě)的生字。2、理解課文內(nèi)容,正確、流利、有感情的朗讀課文。3.培養(yǎng)學(xué)生搜集信息,以及預(yù)習(xí)課文的能力。...

  • 《小露珠》第二課時(shí)教學(xué)設(shè)計(jì)方案(通用13篇)

    教學(xué)目標(biāo):知識(shí)教學(xué)點(diǎn):1、正確、流利、有感情地朗讀課文。2、憑借對(duì)課文的朗讀感悟,知道小動(dòng)物和植物都喜歡小露珠,感受小露珠無(wú)私奉獻(xiàn)、無(wú)怨無(wú)悔的品質(zhì)。能力訓(xùn)練點(diǎn):1﹑培養(yǎng)獨(dú)立朗讀課文的能力。2﹑培養(yǎng)豐富的想象力。...

  • 《迷人的夏天》學(xué)習(xí)設(shè)計(jì)方案(通用13篇)

    學(xué)校:西山小學(xué) 姓名:江彩云課題名稱(chēng) 迷人的夏天 科目 語(yǔ)文 年級(jí) 二年級(jí) 教學(xué)時(shí)間 一課時(shí)(40分鐘) 學(xué)習(xí)者分析 1、二年級(jí)的學(xué)生已經(jīng)基本具備了獨(dú)立識(shí)字和閱讀能力,能獨(dú)立閱讀理解內(nèi)容淺顯的文章,能...

  • 《回聲》第二課時(shí)教學(xué)設(shè)計(jì)方案(精選13篇)

    教學(xué)目標(biāo):1.正確、流利有感情地朗讀課文,讀出歡快、奇怪、親切的語(yǔ)氣。2.讀懂課文,初步了解回聲形成的原因,激發(fā)探索科學(xué)的興趣。3.感受語(yǔ)言的美,體會(huì)文中展示的奧秘,展開(kāi)想象,培養(yǎng)熱愛(ài)大自然的思想感情。...

  • 《ai ei ui》教學(xué)設(shè)計(jì)方案(精選17篇)

    教材概述人教版小學(xué)語(yǔ)文第一冊(cè)第九課《ai ei ui》,是義務(wù)教材教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)語(yǔ)文一年級(jí)上冊(cè)拼音部分第9課,是復(fù)韻母教學(xué)的起始課。...

  • 古詩(shī)的幼兒教案設(shè)計(jì)方案(精選2篇)

    活動(dòng)目標(biāo):1、初步理解古詩(shī)內(nèi)容,想象詩(shī)中描繪的景象。2、激發(fā)幼兒對(duì)古詩(shī)吟誦的興趣,讓他們初步學(xué)習(xí)按古詩(shī)的節(jié)律吟誦。活動(dòng)準(zhǔn)備:掛圖、VCD教材。活動(dòng)過(guò)程:(一)出示圖片,引導(dǎo)觀察、講述。...

  • 《音樂(lè)之聲》(內(nèi)含A、B兩個(gè)設(shè)計(jì)方案)(精選15篇)

    廣東深圳學(xué)府中學(xué) 屠諼看到戲劇單元出現(xiàn)了《音樂(lè)之聲》這樣惹人喜愛(ài)的新面孔,實(shí)在是一件非常高興的事。它裹挾著山間的清風(fēng)而來(lái),它蹦跳著歡唱著而來(lái),它朝我們扮著鬼臉讓人忍俊不禁,它把甜美的泉水注入我們的心田。...

  • 七年級(jí)數(shù)學(xué)教案
主站蜘蛛池模板: av在线一区二区三区 | 一区二区三区四区免费看 | 午夜精品久久久久久中宇69 | 国产区日韩区欧美区 | 亚洲av无码一区二区三区四区 | 日本一二三区在线视频 | 欧美黄色一级片视频 | 日韩不卡在线视频 | 天堂一级片 | 婷婷在线观看网站 | 啊啊啊国产视频 | 无码AV岛国片在线观看免 | 国产乱人伦偷精精品视频 | 午夜影院免费视频 | 亚洲一区二区在线免费观看 | 人妻内射AV六九无码一零八零P | 国产日产精品久久久久 | 日韩免费无码视频一区二区三区 | 爱情岛论坛亚洲品质自拍hd | 国产精彩在线视频 | 精品国产肉丝袜久久 | 成年女性特黄午夜视频免费看 | 国产亚洲精品综合 | 最新中文字幕在线观看视频 | 欧美色xxx| 桃色视频在线播放 | 久久网站av | 久久777国产线看观看精品 | 亚洲AV成人片无码WWW | 在线免费观看h视频 | 国产精品国语自产拍在线观看 | 女人爽到高潮嗷嗷叫视频 | 97综合视频| 日韩在线观看网站 | 天天热天天干 | 在线观看v片 | 丝袜高跟麻麻浓精受孕人妻 | 天天舔夜夜 | 免费看无码午夜福利片 | 欧美成人手机在线 | 2021乱码精品1区2区3区 |