中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教學反思 > 數學教學反思 > 《三角形內角和》教學談(精選13篇)

《三角形內角和》教學談

發布時間:2023-07-20

《三角形內角和》教學談(精選13篇)

《三角形內角和》教學談 篇1

  學習興趣是學生學習的內部動機,是推動學生探求內部真理與獲取能力的一種強烈欲望,它在學習活動中起著十分重要的作用。教學實踐表明,學生如果對數學知識充滿好奇心,對學會知識有自信心,那么他們總是主動積極、心情愉快的進行學習。因此,在數學課堂教學中,我們要時刻注意發掘教材孕伏的智力因素,審時度勢,把握時機,因勢利導地為學生創造良好的教學情境 ,激發學生的興趣,讓學生在學習數學中愉快地探索。下面本人結合蘇教版第七冊《三角形內角和》一課,談幾點體會。

  一、開講生趣

  俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學內容和學生實際,精心設計每一節課的開頭導語,用別出心裁的導語來激發學生的學習興趣,讓學生主動地投入學習。如“三角形內角和”的引入部分,我先要求學生拿出自己預先準備的三個不同的三角形(直角、銳角和鈍角三角形),各自用量角器量出每個三角形中三個角的度數,然后分別請幾個學生報出不同三角形的兩個角的度數,我當即說出第三個角的度數。一開始,有幾位同學還不服氣,認為可能是巧合,又舉例說了幾個,都被我一一猜對了,這時學生都感到驚奇,教師的答案怎么和他們量出的答案會一致的。“探個究竟”的興趣因此油然而生。

  二、授中激趣

  開講生趣僅作為導入新課的“引子”,那成功之路,至多只行了一半。還需要在講授新課中適時地激發學生的興趣,恰到好處地誘導,充分挖掘知識的內在魅力,以好奇心為先導,引發學生強烈的求知欲。比如上例新授部分,在板書課題后,接著又讓全班學生動手做一個實驗:分別把各自手里的三個三角形(銳角、鈍角、直角三角形)的三個角剪下,再分別把每個三角形的三個角拼在一起,并言之有趣地激勵學生:看誰最先發現其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。這時,學生心中激起了層層思考的漣漪,課堂氣氛既緊張又活躍,發言爭先恐后。還有的學生通過把正方形的紙沿對角線對折,變成兩個完全一樣的三角形,因為正方形有4個直角,是360 °,所以每個三角形的內角和是180°好方法。顯然,此時不但學生對三角形內角和是180°的性質有了感性的基礎,而且教師對這一性質的講解也已到了“心有靈犀一點通”的最佳時刻。

  三、設疑引趣

  學起于思,思源于疑。“疑”是學生學習數學知識中啟動思維的起點。在數學教學中,作為教師要善于提出具有引發學生思考的問題,使學生見疑生趣,產生有趣解疑的求知欲和求成心。

  比如“三角形內角和”在新授結束后

  師:(出示一個大三角形)它的內角和是多少度?

  生:180 °。

  師:(出示一個很小的三角形 )它的內角和是多少度?

  生:180  °。

  師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內角和是多少度?(生有的答90 °,有的180 °。)

  師:哪個對?為什么?

  生:180°,因為它還是一個三角形。

  師:每個小三角形的度數是180°,那么這樣的兩個小三角形拼成一個大三角形,內角和是多少度?

  這時學生的答案又出現了180°和360°兩種。

  師:究竟誰對呢?

  學生個個臉上露出疑問,經過一翻激烈的討論探究后,學生開始舉手回答。

  生1:180 °,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180 °。

  生2 :我發現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內角和還是180°,不是360°。

  師:表揚:你真聰明。演示  :    

  這里教師通過提出兩個具有思考性的問題,層層設疑,使學生探究知識的興趣波瀾起伏,時刻處在緊張而又興奮的學習狀態中。

  四、練中有趣

  練習是鞏固所學知識,形成技能技巧的必要途徑,是教學的一個重要環境。但也往往被呆板的練習形式、乏味的練習內容,把在學習新知識中激發出來的學習興趣,而無情淹沒,使學生愉快的心情、振奮的精神受到嚴重的扼殺和抑制。因此課堂練習要設計得精彩有趣,教學中教師根據所學內容,設計不同形式的練習。

  1、練習形式要注意層次性。

  設計不同類型、不同層次的練習題,從模仿性的基礎練習到提示的變式練習再到拓展性的思考練習,降低習題的坡度,照顧不同層次的學生,使學生始終保持高昂的學習熱情。比如“三角形內角和”中在運用規律解題時, 先已知兩角求第三角;再已知直角三角形的一銳角求另一角,感知直角三角形的兩銳角之和是90°;最后已知三角形的一角,且另兩角相等,求另兩角的度數,或已知三角形三個角的度數均相等,求三角形的三個角的度數。以上設計,通過有層次的練習,不斷掀起學生認知活動的高潮,學生學起來饒有興趣,沒有枯燥乏味之感。 

  2、練習形式要注意科學性和趣味性。

  布魯納說過:“學習的最好刺激,是對所學材料的興趣。”教學時可適當選編一些學生喜聞樂見的、有點情節又貼進學生生活經驗以及日常生活中應用較廣泛的題目,通過少量的趣題和多種形式的題目,使學生變知之為樂知。比如,本課在完成基本題后,讓學生在自己的本子上畫出一個三角形,要求其中兩個內角都是直角。在學生畫來畫去都無從下手時,個個手抓腦袋,冥思苦想。這時教師說出“畫不出來”的理由,學生們恍然大悟。

  五、課尾留趣

  一節課的前半節,是學生接受知識的最佳時刻,但一到后半節,學生注意力容易分散,這時設計一些有趣的數學活動、游戲,不僅可以使大腦得到適當休息,又能吸引學生的注意力,達到“課業結束趣猶在”的效果。

  在本課結束時,我設計了一道搶答題。

  揭示:把左圖截去一部分,(每次只截一次)要使剩下圖形的內角和是180°,有幾種截法?”

  學生原以為截法只有幾種,到后來知道截法可以有無數種,感到是“一大發現”。但更使他們感到“一大發現”的是盡管截法有無數種,但剩下的圖形的種類只有一種,因為內角和是180°的圖形只能是三角形。這樣練習,使學生在探索中不斷體驗到成功的樂趣和喜悅。

  六、“評”中增趣

  這里的“評”是指教師對學生答問或作業的口頭或書面評價。數學材料本身因其感情色彩較少,難以引起學生的直接興趣。如果數學教師能在教學語言、語速、語調和語氣上風趣一些,幽默一些,對學生的答問、作業的評價上恰當地賦予一點情感味,那么,學生在學習數學過程中可增添妙趣,樂學而不疲。

  例如在本課教學中,在學生發現了三角形內角和特征時,我立即表揚,“你真能干,你是咱班第一個發現真理的數學家”;又如學生發現了另外一種證明三角形的方法時,我對他說,“你真聰明。”;在學生解題終于成功時,我又說:“祝賀你,成功了”等等,用以激發學生的求成心。另外在對待學生作業中有困難的同學,我總是用一些深情地惋惜語。如“真遺憾”、“差一點就對了”、“想得不錯,但說……”、“沒關系再說一次”、“下次肯定會更好”。……這些尊重、企盼、惋惜的用語對中差生來說,其作用不僅是情感上的補償而且是心理上的調整,可以使他們在學習數學的探索中,變無趣為有趣,變有趣為興趣,變興趣為樂趣。

  科學家愛因斯坦說過:“熱愛是最好的老師。”作為一名數學教師,我們要在教學中根據不同的教學內容,不同的學生實際,靈活多變地采用多種做法,進一步激發學生學習興趣,使學生的思維活躍起來,使學生的腦子積極轉動起來,從而活躍課堂氣氛,提高課堂教學效果。

《三角形內角和》教學談 篇2

  我在講“認識三角形”時,“三角形內角和等于180度”這一結論學生早知曉,為什么三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態的學生注意力特別集中,學習興趣異常高漲,到了一觸即發的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪、之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……其中有一組同學竟然用稚嫩的聲音說:可以用數學方法來證明。于是他們闡述自己借助與三角形底邊平行的線與三角形所形成的內錯角進行證明的方法。至此學生完成了感性認識到理性認識的轉化過程,充分展示了數學地思維方式和思想方法。

《三角形內角和》教學談 篇3

  我在講“認識三角形”時,“三角形內角和等于180度”這一結論學生早知曉,為什么三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態的學生注意力特別集中,學習興趣異常高漲,到了一觸即發的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪、之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……其中有一組同學竟然用稚嫩的聲音說:可以用數學方法來證明。于是他們闡述自己借助與三角形底邊平行的線與三角形所形成的內錯角進行證明的方法。至此學生完成了感性認識到理性認識的轉化過程,充分展示了數學地思維方式和思想方法。

《三角形內角和》教學談 篇4

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

  2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

  3、培養學生動手動腦及分析推理能力。

  教學重點

  三角形的內角和是180°的規律。

  教學難點

  使學生理解三角形的內角和是180°這一規律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

  2、三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發現?

  5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

  提示學生,可以把三個內角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什么?(直角三角形和鈍角三角形的內角和也是180°)

  10、那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)

  11、老師板書結論:三角形的內角和是180°。

  12、一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內角和,學生并不陌生,在平時的做題中已經涉及到了。可是學生并不知道如何去驗證,所以本節課,重點讓孩子們經歷體驗,感悟圖形。從而收獲了經驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

《三角形內角和》教學談 篇5

  一、說教材

  (一)教材的地位和作用

  《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規律具有重要意義。

  (二)教學目標

  基于以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

  1、通過量一量、算一算、拼一拼、折一折的小組活動的方法,探索發現驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。

  2、通過把三角形的內角和轉化為平角進行探究實驗,滲透轉化;的數學思想。

  3、通過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識,探索精神和實踐能力。

  (三)教學重,難點

  因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是內角的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。

  二、說教法,學法

  本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。

  因為《課程標準》明確指出要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。

  三、說教學過程

  我以引入,猜測,證實,深化和應用五個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。

  (一)引入

  呈現情境:出示多個已學的平面圖形,讓學生認識什么是內角;。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角(四個)它的內角有什么特點(都是直角)這四個內角的和是多少(360°)三角形有幾個內角呢從而引入課題。

  【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯系,有效地避免了新知識的橫空出現

  (二)猜測

  提出問題:長方形內角和是360°,那么三角形內角和是多少呢

  【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。

  (三)驗證

  (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度

  (2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

  (3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

  (4)畫:根據長方形的內角和來驗證三角形內角和是180°。

  一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

  【設計意圖】利用已經學過的知識構建新的數學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中學生積極思考并大膽發言,他們的創造性思維得到了充分發揮。

  (四)深化

  質疑:大小不同的三角形,它們的內角和會是一樣嗎?

  觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。

  結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。

  實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最后,當活動角的兩條邊與小棒重合時。

  結論:活動角就是一個平角180°,另外兩個角都是0°。

  【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。

  對于利用精巧的小教具的演示,讓學生通過觀察,交流,想象,充分感受三角形三個角之間的聯系和變化,感悟三角形內角和不變的原因。

  (五)應用

  1、基礎練習:書本練習十四的習題9,求出三角形各個角的度數。

  2、變式練習:一個三角形可能有兩個直角嗎一個三角形可能有兩個鈍角嗎你能用今天所學的知識說明嗎?

  3、(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內角和是多少?

  (2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?

  4、智力大挑戰:你能求出下面圖形的內角和嗎書本練習十四的習題

  【設計意圖】習題是溝通知識聯系的有效手段。在本節課的四個層次的練習中,能充分注意溝通知識之間的內在聯系,使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。

  第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。

  第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識之間的聯系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。

  第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律,以此促進學生對多邊形內角和知識的整體構建。能充分注意溝通知識之間的內在聯系,使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。

《三角形內角和》教學談 篇6

  今天我說課的內容是人教版義務教育課程標準實驗教材數學四年級下冊85頁內容《三角形的內角和》。

  一、教材分析

  新課標把三角形的內角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材所呈現的內容,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發現并形成結論。

  二、學情分析

  1、通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與技能基礎。

  2、學生的生活經驗是可利用的教學資源。我在課前了解到,已經有不少學生知道了三角形內角和是180度,但卻不知道怎樣才能得出這個結論,因此學生在這節課上的主要目標是驗證三角形的內角和是180度。

  三、教學目標

  基于以上對教材的分析以及對學生情況的思考,我從知識與技能,過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

  1、通過“量一量”,“算一算”,“拼一拼”,“折一折”的方法,讓學生推理歸納出三角形內角和是180°,并能應用這一知識解決一些簡單問題。

  2、通過把三角形的內角和轉化為平角進行探究實驗,滲透“轉化”的數學思想。

  3、通過數學活動使學生獲得成功的體驗,增強自信心,培養學生的創新意識,探索精神和實踐能力。

  教學重難點:理解并掌握三角形的內角和是180度這一結論。

  四、教學準備:

  教具:多媒體課件

  學具:各類三角形、長方形、量角器、活動記錄表等。

  五、教法和學法

  “三角形的內角和”一課,知識與技能目標并不難,但我認為本節課更重要的是通過自主探索與合作交流使學生經歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養學生實事求是、敢于質疑的科學態度,同時,在不同方法的交流中,開拓思維、提升能力。基于以上理念,本節課,我準備引導學生采用自主探究、動手操作、猜想驗證、合作交流的學習方法,并在教學過程中談話激疑,引導探究;組織討論,適時地啟發幫助。使教法和學法和諧統一在“以學生的發展為本”這一教育目標之中。

  六、教學過程

  本節課,我遵循“學生主動和教師指導相統一,問題主線和活動主軸相統一”的原則,制定了以下教學程序:

  (一)創設情境,激發興趣

  “興趣是最好的老師”。開課伊始我利用課件動態演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學生觀察在圍的過程中,什么變了?什么沒變?讓學生在變與不變的觀察與對比中,激發學生的學習興趣,引出本節課的學習內容(板書:三角形的內角和),為后面的探索奠定基礎。

  【設計意圖:以問題情境為出發點,既豐富了學生的感官認識,又激發了學生的學習熱情。】

  (二)動手操作,探索新知

  本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。

  1、揭示“內角”和“內角和”的概念

  明確“內角”和“內角和”的概念是學生進一步探究內角和度數的前提,本環節首先請學生都拿出一個三角形,指一指三個內角,然后讓學生談談自己對內角和的理解,在大家交流的基礎上得出:三角形的內角和就是三個內角的度數之和。

  2、猜測內角和

  牛頓曾說:“沒有大膽的猜想,就沒有偉大的發現!”所以我放手讓學生猜測三角形內角和的度數,由于絕大多數學生有課外知識的積累,不難說出三角形的內角和是180度,但猜想并不等于結論,三角形的內角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學生探究數學的有效途徑。

  3、動手驗證,匯報交流

  (1)介紹學具筐

  由教師介紹學具筐中都有什么學習材料。

  (2)生獨立思考、動手操作

  因為合作交流應建立在獨立思考的基礎上,所以先讓學生獨立思考:打算選用什么材料,怎樣來驗證三角形的內角和是不是180°。然后再讓學生把想法付諸實踐。此環節會留給學生充分的思考、操作、發現的時間,讓學生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學生的活動,與學生一起尋找驗證的方法,對有困難的學生提供幫助,不放棄任何一個學生。

  (3)組內交流

  經過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內交流各自的驗證方法。

  (4)全班匯報交流。

  在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學生可能會出現以下幾種方法:

  A、測量方法

  活動記錄表

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  這個驗證方法應是大多數學生都能想到的,在交流匯報結果時會發現答案不統一,可能會出現大于180度、等于180度或小于180度不同的結果。此時學生會在心中產生更大的疑惑,“三角形的內角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學生實事求是的態度和質疑的精神,把這一問題拋給學生,再次激起學生的探究熱情,強烈的求知欲和好勝心讓學生躍躍欲試,讓學生充分發表觀點,最終使學生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學生上臺匯報展示。

  B、撕拼法

  我認為數學課不僅是解決數學問題,更重要的是思維方式的點撥,使數學思想的種子播種在學生的頭腦中。本環節主要想實現向學生滲透“轉化”的數學思想的教學目標。四年級學生在以往的數學學習過程中都積累了不少“轉化”的體驗,但這種體驗基本上處于無意識的狀態,只有合理呈現學習素材,才能使學生對轉化策略形成清晰的認識。所以我請用撕拼法的同學上臺展示撕拼的過程,學生可能會撕拼不同類型的三角形,如:

  此時教師適時追問:你是怎么想到把三個內角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內角拼在一起正好形成了一個平角,所以三角形的內角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉化成一個平角來驗證,運用了轉化策略,真了不起。”從而使學生清晰的感受到數學學習就是把新知轉化成舊知的過程。

  C、其它方法

  除了以上兩種驗證方法外,學生可能還會出現不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內角拼成一個平角來驗證的方法。

  如果學生出現用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:

  教師可追問:“這種方法只能證明哪一類的三角形呢?”使學生明白,這種驗證方法有局限性,只能證明直角三角形的內角和是180°。然后教師引導學生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉化的策略,讓學生在不知不覺中進一步感悟轉化在數學學習中的重要作用。通過各種方法的展示交流,學生對三角形內角和是不是180度的疑問已經消除,所以可以把“?”改成“。”

  【設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”在教學設計中我注意體現這一理念,允許學生根據已有的知識經驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內角和是180°這個圖形性質。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養他們主動探索的精神,讓學生在活動中學習,在活動中發展。】

  4、科學驗證方法

  數學是一門嚴謹的學科,數學結論的得出必須經過嚴格的證明。那如何科學地驗證三角形內角和是不是180°呢?用課件動態演示科學家的驗證方法。

  【設計意圖:一方面使學生為自己猜想的結論能被證明而產生滿足感;另一方面使學生體會到數學是嚴謹的,從小就應該讓學生養成嚴謹、認真、實事求是的學習態度。】

  (三)課外拓展,積淀文化

  為了使學生在獲得數學知識的同時積淀數學文化,用課件介紹最早發現三角形內角和秘密的法國科學家帕斯卡(課件)讓學生交流:聽了這個故事,你想說什么?在學生交流的基礎上,教師抓住契機,及時鼓勵學生:這節課才10歲的我們利用自己的智慧發現了帕斯卡12歲時數學發現,我們同樣了不起,劉老師為大家感到驕傲!(板書:!)這個感嘆號不僅表示教師對學生的贊嘆,更是學生對自我的一種肯定,獲得成功的自豪感。

  【設計意圖:適當的引入課外知識,它既可以激發學生的學習興趣,又有機的滲透了向帕斯卡學習,做一個善于思考、善于發現的孩子,對學生的情感、態度、價值觀的形成與發展能起到了潛移默化的作用。】

  (四)應用新知,解決問題

  數學規律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,以達到練習的有效性。對此,我設計了三個層次的練習:

  1、把兩個小三角形拼成一起,大三形的內角和是多少度?為什么?

  【設計意圖:通過兩個三角形分與合的過程,讓學生進一步理解三角形內角和等于180度這個結論,認識到三角形的內角和不因三角形的大小而改變。】

  2、想一想,做一做

  在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數。

  在一個直角三角形中,已知∠с═52°,求∠A的度數。

  爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

  【設計意圖:將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形、等腰三角形等圖形特征求三角形內角的度數。】

  3、思考:

  你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?

  【設計意圖:將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯系。】

  (五)全課小結,完善新知

  你在這堂課中有什么收獲?

  【設計意圖:這樣用談話的方式進行總結,不僅總結了所學知識技能,還體現了學法的指導,增強了情感體驗。】

  板書設計:

  三角形的內角和180°

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  總之,本節課我力圖引導學生通過自主探究、合作交流,讓學生充分經歷一個知識的學習過程,讓學生學會數學、會學數學、愛學數學。在教學中,隨時會生成一些新教學資源,課堂的生成一定大于課前預設,我將及時調整我的預案,以達到最佳的教學效果。

  教學特色:

  本節課我努力體現以下2個教學特色:

  1、引導學生自主探索,激發學生的學習興趣,體現以學生的發展為本的教學理念。

  2、強化學生探究學習的心理體驗,把數學學習和情感態度的發展有機的結合起來。

《三角形內角和》教學談 篇7

  各位評委:

  我說課的主題是“角色扮演,引導學生猜想驗證”,說課的內容是《三角形的內角和》。

  一、說說我對教材與學情的分析

  《三角形的內角和》是北師大版四年級下冊第二單元的教學內容,是在學生學習了三角形的概念及特征、分類之后進行的,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎。教材的小標題為“探索與發現”,強調說明這一部分的內容要求學生通過自主探索來發現有關三角形的性質。學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。

  二、聊聊我對教學目標及重難點的確定

  以建構主義理論以及有效教學的理念為指導,結合對教材和學情的分析,我將本節課的教學目標定為下列幾點:

  1、通過量、剪、拼等活動發現、驗證三角形的內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、經歷親自動手實踐、探索三角形內角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數學思想方法。

  3、在探究中體驗成功的喜悅,激發主動學習數學的興趣。

  教學重點:經歷“三角形的內角和是180°”的形成、發展和應用的全過程。

  教學難點:驗證“三角形的內角和是180°”以及對這一規律的靈活運用。

  學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形。

  三、談談我的主要教學流程

  本節課我設計采用支架式教學方法,以猜想→驗證→應用→評價四個活動環節為主線,引導學生通過自主探究學習實現對“三角形內角和是180°”這一知識規律的數學理解。同時,每一個活動環節都讓學生嘗試扮演一種角色,激發他們投入課堂活動的興趣。

  1.大膽設疑,提出猜想(猜想家)

  在這節課之前,有不少學生通過各種渠道了解了三角形的內角和是180°。因此,第一個環節我就讓學生根據已有的知識經驗進行大膽設疑,提出猜想,做一個猜想家。

  首先,我向學生出示一個長方形,向學生講解長方形的四個內角,引導學生將這四個內角的度數相加算出長方形的內角和是360°。

  接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內角,設問:這個三角形的三個內角和是多少?讓學生說說各自的看法和理由,并引導提出“是不是所有的三角形的內角和是180°”的猜想。通過這一環節,學生首先獲得對“三角形內角和是什么”這一陳述性知識的數學理解。

  2.科學驗證,探索規律(科學家)

  有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索。

  第二個環節的活動步驟如下:

  (1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內角和,怎樣利用好這些工具?”

  (2)明確提出操作要求:先在自己準備的三角形上作好內角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

  (3)學生操作后在小組內交流,出示交流提綱:

  A、通過實驗操作,你發現三角形的內角和有什么特點?你是怎樣發現的?

  B、你認為三角形的內角和與三角形的大小、形狀有關嗎?為什么?

  (4)集體交流,小結規律:

  在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調控,尤其是要對一些通過量一量得出180度左右的結論進行“誤差解釋”。最后與學生一起小結歸納出:“三角形的內角和是180°,而且與它的大小、形狀無關”這一數學規律,從中感悟由特殊到一般的證明方法。

  3.聯系生活,實踐應用(實踐家)

  有效教學理論指出練習要考慮它的實效性。在這個環節,我設計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應用于生活問題之中。

  第一,基本運用。即書本中“試一試”的第3題和“練一練”的第1、第2題。通過這個3練習讓學生形成運用三角形內角和的知識求出未知角度數的基本技能。

  第二,綜合運用。即書本中“做一做”的第3題,這道題在讓學生知道其中一個角等于60度的情況下,綜合運用三角形內角和是180度和三角形分類知識來進行解決。

  第三,拓展延伸。我設計了讓學生求四邊形和五邊形等多邊形的內角和的問題,讓學生通過量、拼、分等辦法嘗試求多邊形內角和,并找出其中的規律。

  4.自我反思,評價延伸

  在這個環節,我會讓學生自己說說:“這節課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”

《三角形內角和》教學談 篇8

  學習目標:

  (1) 知識與技能 :

  掌握三角形內角和定理的證明過程,并能根據這個定理解決實際問題。

  (2) 過程與方法 :

  通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。

  通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發展。

  (3)情感態度與價值觀:

  通過猜想、推理等數學活動,感受數學活動充滿著探索以及數學結論的確定性,提高學生的學習數學的興趣。使學生主動探索,敢于實驗,勇于發現,合作交流。

  一.自主預習

  二.回顧課本

  1、三角形的內角和是多少度?你是怎樣知道的?

  2、那么如何證明此命題是真命題呢?你能用學過的知識說一說這一結論的證明思路嗎?你能用比較簡潔的語言寫出這一證明過程嗎?與同伴進行交流。

  3、回憶證明一個命題的步驟

  ①畫圖

  ②分析命題的題設和結論,寫出已知求證,把文字語言轉化為幾何語言。

  ③分析、探究證明方法。

  4、要證三角形三個內角和是180,觀察圖形,三個角間沒什么關系,能不能象前面那樣,把這三個角拼在一起呢?拼成什么樣的角呢?

  ①平角,②兩平行線間的同旁內角。

  5、要把三角形三個內角轉化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個角轉化為平角或兩平行線間的同旁內角呢?

  ① 如圖1,延長BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫A。

  ② 如圖1,延長BC,過C作CE∥AB

  ③ 如圖2,過A作DE∥AB

  ④ 如圖3,在BC邊上任取一點P,作PR∥AB,PQ∥AC。

  三、鞏固練習

  四、學習小結:

  (回顧一下這一節所學的,看看你學會了嗎?)

  五、達標檢測:

  略

  六、布置作業

《三角形內角和》教學談 篇9

  【教材內容】:

  北師大版四年級數學下冊

  【教學目標】:

  1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。

  3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣。

  【教學重點和難點】:

  重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。

  【教材分析】

  《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發現三角形的內角和是180°。擴充了學生認識圖形的一般規律從直觀感性的認識到具體的性質探索,更加深入的培養了學生的空間觀念。

  【教學過程】

  一、創設情境,激發興趣。

  出示課件,提出兩個兩個疑問:

  1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?

  2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發現它們爭論的焦點是三角形的`內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?

  二、初建模型,實際驗證自己的猜想

  在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。

  三角形的形狀

  三角形每個內角的度數

  內角和

  銳角三角形

  鈍角三角形

  直角三角形

  等腰三角形

  等邊三角形

  三、再建模型,徹底的得出正確的結論

  因為在上一環節學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。

  四、應用新知,鞏固練習

  1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)

  2、試一試,在直角三角形中已知其中的一個角求另一個角的度數

  3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。

  4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?

  五、拓展與延伸

  通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。

《三角形內角和》教學談 篇10

  尊敬的各位評委老師:

  大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:

  一、教材分析

  “三角形的內角和”是三角形的一個重要性質,它有助于學生理解三角形內角之間的關系,是進一步學習幾何的基礎。

  二、教學目標

  1、知識與技能:明確三角形的內角的概念,使學生自主探究發現三角形內角和等于180°,并運用這一規律解決問題。

  2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養學生發現問題、提出問題、分析問題和解決問題的能力。

  3、情感與態度:使學生感受數學圖形之美及轉化思想,體驗數學就在我們身邊。

  三、教學重難點

  教學重點:動手操作、自主探究發現三角形的內角和是180°,并能進行簡單的運用。

  教學難點:采用多種途徑驗證三角形的內角和是180°。

  四、學情分析

  通過前面的學習,學生已經掌握了三角形的一些基礎知識,會量角,部分學生已經知道三角形內角和是180°,但不知道怎樣得出這個結論。

  五、教學法分析

  本節課采用自主探索、合作交流的教學方法,學生自主參與知識的構建。領悟轉化思想在解決問題中的應用。

  六、課前準備

  1、教師準備:多媒體課件、三角形教具。

  2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

  七、教學過程

  (一)、創設情境,激趣導入

  導入:“同學們,有三位老朋友已經恭候我們多時了。“(出示三角形動畫課件),讓學生依次說出各是什么三角形。

  課件分別閃爍三角形三個內角,并介紹:“這三個角叫做三角形的內角,把三個角的度數加起來,就是三角形的內角和。請學生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節課我們就一起來探究三角形的內角和。板書課題。

  (二)、自主探究、合作交流

  1、探索特殊三角形內角和

  拿出自己的一副三角板,同桌之間互相說一說各個角的度數。

  三角形內角和是多少度呢?指名匯報。90°+30°+60°=180°

  90°+45°+45°=180°

  從剛才兩個三角形內角和的計算中,你發現了什么?

  2、探索一般三角形的內角和

  一般三角形的內角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

  3、匯報交流

  請小組代表匯報方法。

  1)量:你測量的三個內角分別是多少度?和呢?(有不同意見)

  沒有統一的結果,有沒有其他方法?

  2)剪―拼:把三角形的三個內角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結論。(學生嘗試驗證)

  3)折拼:學生邊演示邊匯報。把三角形的三個內角都向內折,把這三個內角拼組成一個平角。所以得出三角形的內角和是180°。(學生嘗試驗證)

  4)教師課件驗證結果。

  請看屏幕,老師也來驗證一下,是不是和你們的結果一樣?播放課件。我們可以得到一個怎樣的結論?

  學生回答后教師板書:三角形的內角和是180°

  為什么有的小組用測量的方法不能得到180°?(誤差)

  4、驗證深化

  質疑:大小不同的三角形,它們的內角和會是一樣嗎?(一樣)

  誰能說一說不能畫出有兩個直角的三角形的原因?

  (三)、應用規律,解決問題:

  揭示規律后,學生要掌握知識,就要通過解答實際問題。

  1、為了讓學生積極參與,我設計了闖關的活動來激勵學生的興趣。闖關成功會獲得小獎章。

  第一關:基礎練習,要求學生利用“三角形內角和是180°”這一規律在三角形內已知兩個角,求第三個角(課件出示)

  第二關,提高練習,

  ①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數是多少。直角三角形已知一個銳角,求另一個。

  讓學生靈活應用隱含條件來解決問題,進一步提高能力。

  2、小組合作練習,完成相應做一做。

  (四)、課堂總結,效果檢測。

  一節成功的好課要有一個好的開頭,更要有一個完美的結尾,數學是使人變聰明的學科,通過這節課的學習,你收獲了什么?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

  (五)作業課下繼續探究三角形,看你有什么新發現。

  八、板書設計

  通過這樣的設計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發現,在發現中成長。以上便是我對《三角形的內角和》這一堂課的說課,謝謝大家!

《三角形內角和》教學談 篇11

  教學目標:

  1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內角和是180度,并運用所學知識解決簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透"轉化"數學思想。

  3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

  教學重點:

  讓學生經歷"三角形內角和是180°"這一知識的形成、發展和應用的全過程。

  教學難點:

  通過小組內量一量、折一折、撕一撕等活動,驗證"三角形的內角和是180°。"

  教師準備:

  4組學具、課件

  學生準備:

  量角器、練習本

  教學過程:

  一、興趣導入,揭示課題

  1、導入:"同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"

  (生出示三角形并匯報各類三角形及特點)

  2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們為什么吵起來了?""哦,它們為了三個內角和的大小而吵起來。"(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

  3、我們來幫幫它們好嗎?

  4、那么什么叫內角啊?你們明白嗎?誰來說說?來指指。

  你能標出三角形的三個角嗎?(生快速標好)

  數學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節課我們就來研究一下"三角形的內角和"(課件片頭1)

  "同學們,用什么方法能知道三角形的內角和?"

  二、猜想驗證,探究規律 (動手操作,探究新知)

  1.量角求和法證明:

  先聽合作要求:拿出準備的一大一小的兩個三角形,現在我們以小組為單位來量一量它們的內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?

  (1)學生聽合作要求后分組合作,將各種三角形的內角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。

  (2)指名匯報各組度量和計算內角和的結果。

  (3)觀察:從大家量、算的結果中,你發現什么?

  歸納:大家算出的三角形內角和都等于或接近180°。

  (5)思考、討論:

  通過測量計算,我們發現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

  大家討論討論。

  現在各小組就行動起來吧,看哪些小組的方法巧妙。看看能得出什么結論?

  看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。

  看老師最終把三個角拼成了一個什么角?平角。是多少角?

  "180°是一個什么角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?"(課件3)

  現在,我們可驗證三角形的內角和是(180度)?

  2.那么對任意三角形都是這個結論?請看大屏幕。

  演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)

  你們想不想去試一試。

  3.小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學生)

  4."你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)

  a、驗證直角三角形的內角和

  折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結論?

  引導生歸納出:直角三角形的內角和是180°

  折法2 我們還可以得出什么結論?

  引導生歸納出:直角三角形中兩個銳角的和是90°。

  (即:不必三個角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)

  b、驗證銳角、鈍角三角形的內角和。

  歸納:銳角、鈍角三角形的內角和也是180°。

  放手發動學生獨立完成 ,逐一種類匯報 師給予鼓勵

  三、總結規律

  剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大小!我們可以得出一個怎樣的結論?

  (三角形的內角和是180°。)

  (教師板書:三角形的內角和是180°學生齊讀一遍。)

  為什么用測量計算的方法不能得到統一的結果呢?

  (量的不準。有的量角器有誤差。)

  老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

  四、應用新知,知識升華。

  (讓學生體驗成功的喜悅)

  現在,我們已經知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?

  (課件5……)

  在一個三角形中,有沒有可能有兩個鈍角呢?

  (不可能。)

  追問:為什么?

  (因為兩個銳角和已經超過了180°。)

  有兩個直角的一個三角形

  (因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

  問:那有沒有可能有兩個銳角呢?

  (有,在一個三角形中最少有兩個內角是銳角。)

  1、 看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

  2、做一做:

  在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數、

  3、27頁第3題(數學信息較為隱藏和生活中的實際問題)

  4、思考題

  五、總結

  今天,我們在研究三角形的內角和時經歷了猜想、驗證、得出結論的過程,并且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經歷這樣的過程,同時,它也是一種科學的研究方法。

  板書設計:

  三角形內角和

  量一量 拼一拼 折一折

  三角形內角和是180°

《三角形內角和》教學談 篇12

  一,說教材

  (一)教材的地位和作用

  《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規律具有重要意義。

  (二)教學目標

  基于以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

  1、通過量一量;算一算;拼一拼折一折的小組活動的方法,探索發現驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。

  2、通過把三角形的內角和轉化為平角進行探究實驗,滲透轉化;的數學思想。

  3、通過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識,探索精神和實踐能力。

  (三)教學重,難點

  因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是內角的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。

  二,說教法,學法

  本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。

  因為《課程標準》明確指出要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。

  三,說教學過程

  我以引入,猜測,證實,深化和應用五個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。

  引入

  呈現情境:出示多個已學的平面圖形,讓學生認識什么是內角;。( 把圖形中相鄰兩邊的夾角稱為內角) 長方形有幾個內角 (四個)它的內角有什么特點 (都是直角)這四個內角的和是多少 (360°)三角形有幾個內角呢 從而引入課題。

  【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學, 將三角形內角和置于平面圖形內角和的大背景中, 拓展了三角形內角和的數學知識背景, 滲透數學知識之間的聯系, 有效地避免了新知識的橫空出現

  猜測

  提出問題:長方形內角和是360°,那么三角形內角和是多少呢

  【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。

  (三)驗證

  (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內角的度數加起來算一算,看看得出的三角形的`內角和是多少度

  (2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

  (3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

  (4)畫:根據長方形的內角和來驗證三角形內角和是180°。

  一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

  【設計意圖】利用已經學過的知識構建新的數學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系

  起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中學生積極思考并大膽發言, 他們的創造性思維得到了充分發揮。

  深化

  質疑: 大小不同的三角形, 它們的內角和會是一樣嗎

  觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

  結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

  實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

  結論:活動角就是一個平角180°, 另外兩個角都是0°。

  【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。

  對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯系和變化, 感悟三角形內角和不變的原因。

  (五)應用

  1、基礎練習:書本練習十四的習題9,求出三角形各個角的度數。

  2、變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎?

  3、(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內角和是多少

  (2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內角和分別是多少

  4、智力大挑戰: 你能求出下面圖形的內角和嗎 書本練習十四的習題

  【設計意圖】習題是溝通知識聯系的有效手段。在本節課的四個層次的練習中, 能充分注意溝通知識之間的內在聯系, 使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。

  第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。

  第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律, 以此促進學生對多邊形內角和知識的整體構建。能充分注意溝通知識之間的內在聯系, 使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。

  第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。

  第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律, 以此促進學生對多邊形內角和知識的整體構建。

《三角形內角和》教學談 篇13

  教學目標:

  1、通過“算一算,拼一拼,折一折”等操作活動探索發現和驗證“三角形的內角和是180度”的規律。

  2、在操作活動中,培養學生的合作能力、動手實踐能力,發展學生的空間觀念。并運用新知識解決問題。

  3、使學生有科學實驗態度,激發學生主動學習數學的興趣,體驗數學學習成功的喜悅。

  教學重點:

  探究發現和驗證“三角形的內角和180度”這一規律的過程,并歸納總結出規律。

  教學難點:

  對不同探究方法的指導和學生對規律的靈活應用。

  教具學具準備:

  課件、學生準備不同類型的三角形各一個,量角器。

  教學過程:

  一、創設情景,引出問題

  1、課件出示三角形的爭吵畫面

  銳角三角形:我的內角和度數最大。

  直角三角形:不對,是我們直角三角形的內角和最大。

  鈍角三角形:你們別吵了,還是鈍角三角形的內角和最大。

  師:此時,你想對它們說點什么呢?

  2、引出課題。

  師:看來三角形里角一定藏有一些奧秘,這節課我們就來研究有關三角形角的知識“三角形內角和”。(板書課題)

  二、探究新知

  1、三角形的內角、內角和

  (1)什么是三角形內角(課件)

  三角形里面的三個角都是三角形的內角。為了方便研究,我們把每個三角形的3個內角分別標上∠1、∠2、∠3。

  (2)三角形內角和(課件)

  師:內角和指的是什么?

  生:三角形的三個內角的度數的和,就是三角形的內角和。

  2、看一看,算一算。

  師:算一算兩個三角尺的內角和是多少度?(課件)

  學生計算

  師:是不是所有的三角形的內角和都是180°呢?你能肯定嗎?

  (預設)師:大家意見不統一,我們得想個辦法驗證三角形的內角和是多少?可以用什么方法驗證呢?

  3、操作驗證:小組合作。

  選1個自己喜歡的三角形,選喜歡的方法進行驗證。

  (老師首先為學生提供充分的研究材料,如三種類型的三角形若干個(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

  4、學生匯報。

  (1)教師:匯報的測量結果,有的是180°,有的不是180°,為什么會出現這種情況?

  師:有沒有別的方法驗證。

  (2)剪拼

  a、學生上臺演示。

  B、請大家四人小組合作,用他的方法驗證其它三角形。

  C、展示學生作品。

  D、師展示。

  (3)折拼

  師:有沒有別的驗證方法?

  師:我在電腦里收索到拼和折的方法,請同學們看一看他是怎么拼,怎么折的(課件演示)。

  (鼓勵學生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學生足夠的時間和空間,不斷讓每個學生自己參與,而且注重讓學生在經歷觀察、操作、分析、推理和想像活動過程中解決問題,發展空間觀念和論證推理能力。)

  師:此時,你想對爭論的三個三角形說些什么呢?

  5、小結。

  三角形的內角和是180度。

  三、解決相關問題

  1、在能組成三角形的三個角后面畫“√”(課件)

  2、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。(課件)

  3、一個等腰三角形的風箏,它的一個底角是70°,他的頂角是多少度?(課件)

  四、練習鞏固

  1、看圖,求三角形中未知角的度數。(課件)

  2、求三角形各個角的度數。(課件)

  五、總結。

  師:這節課你有什么收獲?

  六、板書設計:

  三角形的內角和是180°

《三角形內角和》教學談(精選13篇) 相關內容:
  • 《三角形內角和》教學設計(精選13篇)

    【教材內容】:北師大版四年級數學下冊【教學目標】:1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。...

  • “三角形內角和”教學設計(精選10篇)

    一、教學目標1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發現三角形三個內角的度數和等于180°這一規律,并能實際應用。2.能力目標:培養學生主動探索、動手操作的能力。使學生養成良好的合作習慣。...

  • 《三角形內角和》教學反思(通用2篇)

    二學期幾何里一個重要的知識點——三角形內角和,是在學生認識了三角形的特點和分類的基礎上這一節課進一步對三角形內角之間的關系的學習和探究。本課設計的出發點在于運用先進的多媒體手段讓學生直觀感知三角形內角和的特點。...

  • 《三角形內角和》說課稿范文(精選14篇)

    我說課的主題是“角色扮演,引導學生猜想驗證”,說課的內容是《三角形的內角和》。一、說說我對教材與學情的分析《三角形的內角和》是北師大版四年級下冊第二單元的教學內容,是在學生學習了三角形的概念及特征、分類之后進行的,它是三...

  • 三角形內角和教案范文(通用9篇)

    【設計理念】遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對于學生的數學學習有著重要作用。...

  • 《三角形內角和》數學教案(通用16篇)

    大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:一、教材分析“三角形的內角和”是三角形的一個重要性質,它有助于學生理解三角形內角之間的關系,是進...

  • 三 角 形 內 角 和(通用13篇)

    一、教學內容:全日制六年制小學課本《數學》第九冊(四省市編)三角形內角和。 二、教學要求:知道三角形的內角和是180°,會求三角形中的一個未知角的度數;發展學生的空間觀念和初步的邏輯思維能力。三、教學過程:(一)引入。...

  • 《三角形內角和》教學設計(通用6篇)

    設計思路遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導...

  • 三角形內角和(通用12篇)

    課時:1教學準備: 三角形、量角器教學目標:1、通過測量撕拼、折疊等方法,探索和發現三角形三個內角的度數和等于180°。2、已知三角形兩個角的度數,會求出第三個角的度數。3、經歷三角形內角和的研究方法,感受數學研究方法。...

  • 《三角形內角和》課體會(精選5篇)

    我在講“認識三角形”時,“三角形內角和等于180度”這一結論學生早知曉,為什么三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。...

  • 三角形內角和導學案

    三角形內角和(動手實踐課)學習目標: 通過用量角器量一量,動手折一折,得出三角形的內角和是180度。培養學生實踐探索的能力。學習重難點:操作時出現誤差,影響正確結論得出。...

  • 《三角形內角和》教學設計

    【教材內容】北京市義務教育課程改革實驗教材(北京版)第九冊數學【教材分析】《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩定性和三角形的三...

  • 三角形內角和

    人教版課標四年級下冊《三角形的內角和》說課稿(第2稿)一、 說教材“三角形的內角和”是人教版課標教材四年級下冊第五單元第3節的內容。“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一...

  • 三角形內角和

    課時:1 教學準備: 三角形、量角器 教學目標:1、通過測量撕拼、折疊等方法,探索和發現三角形三個內角的度數和等于180°。 2、已知三角形兩個角的度數,會求出第三個角的度數。 3、經歷三角形內角和的研究方法,感受數學研究方法。...

  • “三角形內角和”教學設計

    設計思路遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導...

  • 數學教學反思
主站蜘蛛池模板: 啊灬啊灬啊灬快灬深高潮了 | 日韩av免费一区 | 插一插射一射视频 | 久久久久二区 | 欧美色综合天天久久综合精品 | 性插一区| 精品在线视频一区二区 | 成人国产一区 | 国产福利一区二区三区在线播放 | 国产成人精品亚洲日本在线 | 久久香蕉视频网站 | 欧美精品一区二区三区免费视频 | 国产成人综合在线观看 | 亚洲狠狠干 | 午夜a毛片免费全部播放完整 | 国产免费又爽又刺激在线观看 | 97在线视频免费播放 | 大尺度吃奶摸下激烈视频 | 飘雪影院手机免费观看免费动漫 | 1024最新合集 | 久久精品视频一 | 99久久久免费精品国产一区二区 | 久久激情视频 | 56精品视频在线播放免费观看 | 国产美女被遭强高潮免费网站 | 女人毛片免费观看 | 欧美槡BBBBB槡BBBBB | 99热热| 少妇久久精品一区二区夜夜嗨 | 自拍偷拍第9页 | 久久精品国产国产精品四凭 | 国产7777| 被男人吃奶很爽的毛片 | 国产美女被遭强高潮免费网站 | 美女夜夜爽 | 日本国产片在线免费观看 | 91成人精品网站 | 国产高清国产精品国产专区 | 亚洲人成色77777在线观看大战 | 久久97视频| 欧美性生活久久 |