《圓柱的體積》教學設計第二課時(通用15篇)
《圓柱的體積》教學設計第二課時 篇1
4、教學例題
(1)出示例題:下面這個杯子能不能裝下這袋牛奶?
并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應先知道杯子的容積)
(2)學生嘗試完成例題。
5、比較一下例題有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進行計算;不同的是第一例題已給出底面積,可直接應用公式計算;第二例題只知道底面直徑,要先求底面積,再求體積.)
三、鞏固練習
1、做第21頁練習三的第1~2題.
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。
四、布置作業
練習三第3、4題。
《圓柱的體積》教學設計第二課時 篇2
各位領導、老師、同學們:大家好,今天我講課的題目是《圓柱的體積》
圓柱的體積是本單元的教學重點。在此之前,學生已經學過了圓面積公式的推導,對轉化的思想方法和“等積變形”已有所了解;長方體、正方體的體積公式是本節課的舊知停靠點;而這節課的順利學習將為以后圓錐體積的學習鋪平道路。從能力培養方面來看,本節課的內容有利于發展學生的空間觀念,培養學生的邏輯推理能力,在公式推導過程中,還可以培養學生猜想、類推、對應的數學思想和方法。另外,就情感的角度而言,通過學生體驗探索數學奧秘的過程,可以培養學生對數學學習的興趣和探索精神。
由此,預設以下教學目標:
1、使學生經歷用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式的過程,使學生能總結和理解圓柱的體積公式,能夠運用公式正確的計算圓柱的體積。
2、培養學生觀察、猜測、分析、比較、綜合的學習思考方法。
3、滲透轉化、等積變形、極限的數學思想。
4、通過學生體驗圓柱體積公式的推導過程,讓學生感受探索數學奧秘的樂趣,培養學生學習數學的積極情感;
圓柱的體積公式推導過程可以培養學生多方面的能力,這個過程對學生是否真正理解圓柱體積公式起著至關重要的作用,因此我把圓柱的體積公式推導過程做為本節課的教學重點;而學生的思維是以具體形象思維為主,逐步向抽象邏輯思維過渡,在圓柱體積公式的推導過程中,要用到等積變形、對應、以及邏輯推理的知識,學生理解起來可能會有點困難,所以我認為圓柱的體積公式推導過程也是本節課的教學難點。
本節課要采用的教學方法有:演示法、提問法等,在學習過程中要用到的方法有:觀察法、思考法等。
教學用具:圓柱模型,裝水的杯子等
這節課主要有五大環節
一、實驗引入
師:我們來觀察一個現象,把小圓柱放入水里,看看有什么變化
生:變了變了,水面上升了.
師:水面為什么上升
生: 小圓柱浸沒在水中,將水擠壓上升,求小圓柱的體積也就是求上升水面的體積,即圓柱體積.
師:你們想不想知道圓柱體積怎樣計算
生齊答:想.
師:今天我們就一起來研究圓柱體積的計算方法.(板書:圓柱的體積)
二、探究新知
師:出示課件,根據課件演示逐步推導出圓柱體的體積計算方法
長方體的體積=底面積高
| |
圓柱體的體積=底面積高
v = s h
三、,運用新知,解決問題
出示例1:一根圓柱形鋼材,底面積是50平方厘米,高是210厘米,它的體積是多少
師:咱們大家理解自己推導的圓柱體的體積公式了嗎 下面我們
50210=10500(cm3)
答:圓柱形鋼材體積為10500cm3
四、鞏固運用
1,填表:請同學看屏幕回答下面問題,誰想好了誰就站起來說.
底面積(m2) 15 6.4 0.05
高(m) 3 4 2
圓柱體積(m3)
五、總結評價
師:今天我們學習了圓柱體積的推導方法及計算公式.
板書設計:
圓柱的體積
v= s h
例4:一根圓柱形鋼材,底面積是50平方厘米,
高是210厘米,它的體積是多少
50210=10500(cm)
答:圓柱形鋼材體積為10500立方厘米。
《圓柱的體積》教學設計第二課時 篇3
學習目標
1.使學生理解和掌握圓柱的體積計算公式,并能根據題里的條件正確地求出圓柱的體積。
2. 培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。
學習重點 理解和掌握圓柱的體積計算公式
學習難點 圓柱體積計算公式的推導。
一、溫故知新
1、什么是體積?( )2.長方體的體積=( )字母公式:
或長方體的體積=( )字母公式:
3、圓的面積=( )字母公式:
4. 圓是把圓面積轉化成近似的長方形面積進行計算的。圓的面積是怎樣推倒得來的?
圓分割成若干等分,拼成近似的長方形,它的長等于圓的( ),長方形的等于圓的( ),長方形的面積等于( ),所以圓的面積等于( )。
二、自主學習
1.計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?( )
3、思考: 1)通過實驗你發現了什么?
*拼成的近似長方體( )沒變,( )變了。
*拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似( ),( )的大小沒有改變。
*近似長方形的高就是圓柱的( ).
2)推導圓柱體積公式。怎樣計算圓柱的體積?
長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的( ),高就是圓柱的( ),所以圓柱的體積也可以用( )乘( )來計算。
用字母表示:( )
4補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
①已知( )求( )
② 能不能根據公式直接計算?( )因為( )
③ 計算之前要注意什么?
計算時既要分析題目中的( ),還要注意先統一( )。
④解出此題,代公式計算。
3、完成第20頁的“做一做”。
4、思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?______________
5、自學p20例6,,
6、比較一下補充例題與例6有哪些相同的地方和不同的地方?
7、做書上21頁1題。
《圓柱的體積》教學設計第二課時 篇4
[教學過程]
一、創設情境 設疑導入
1、復習鋪墊。
(1)求各園的面積:
a、半徑3厘米 b、直徑為4厘米 c、周長為62.8厘米
(2)什么叫體積?長方體的體積怎樣計算?
2、導入新課。
1、出示(光盤資源)幾組圓柱體實物圖(同底等高、同底不等高、等高不等底),引導學生觀察比較它們體積的大小。
激趣后讓學生思考討論:怎樣計算圓柱的體積呢?能不能把圓柱也轉化成我們已經學過的圖形來求出它的體積?
2、指名說說自己想法。教師引入:這節課我們就來研究如何將圓柱轉化成我們已經學過的圖形來求出它的體積。(板書課題:圓柱的體積)
二、自主探究 學習新知
(一)探究推導圓柱的體積計算公式
1 、教師演示(遠程資源動畫演示“圓柱體的體積”):
(1)屏幕上呈現一個圓柱體變為一個長方體(圓柱與長方體等底等高)的動畫。提問:變化過程中,圓柱的什么變了(截面)?什么沒有變(高、體積)?
(2)將圓柱的底面、長方體的底面閃爍后移出來。提問:你學過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學生取出圓柱體學具拼成近似長方體。
2、學生利用學具獨立操作 (教師巡視、指導操作有困難的學生) ,思考并討論。
(1) 圓柱體切開后可以拼成一個什么圖形?(近似的長方體)
(2) 通過剛才的實驗你發現了什么?① 拼成的近似長方體的體積與原來的圓柱體積有什么關系?② 拼成的近似長方體的底面積與原來圓柱的底面積有何關系?③ 拼成的近似長方體的高與原來的圓柱的高有什么關系? (3)學生匯報交流。
3、讓學生根據圓的面積公式推導過程,進行猜想。
如果把圓柱的底面平均分成32份或更多,拼成的長方體形狀怎樣?平均分成的份數越多,拼成的長方體形狀會怎樣?
4、推導圓柱的體積公式(利用遠程資源動畫演示推導過程)
(1)學生分組討論、匯報:圓柱體的體積怎樣計算?
(2)用字母表示圓柱的體積公式。學生口述后,教師板書。
因為 長方體的體積=底面積高
↓ ↓ ↓
所以 圓柱的體積 =底面積高
↓ ↓ ↓
v = s h
5、引導學生進一步討論后交流。
(1)要求圓柱的體積必須知道哪些條件?
(2)如果分別知道圓柱的底面半徑、底面直徑、底面周長,又怎樣求圓柱的體積?
(二)、練一練
1、學生完成20頁的[做一做]。
2、讓學生想一想:如果已知圓柱底面的半徑r和高h,怎樣求圓柱的體積?(請學生自學并填寫第44頁第一自然段的空白部分)
(三)教學例6
1、引導學生默讀題目,看題目告訴了什么條件?要求什么?想一想你將如何計算?
2、指名說解題思路,討論并歸納解題方法。
3、學生獨立按討論的方法完成例6。
4、教師評講、總結方法。
三、練習鞏固 應用拓展
(一)鞏固練習
1、完成第21頁的“練習三”第1、2題。(指名板演,其余同學在作業本上練習,完成后及時反饋練習中出現的錯誤,及時加以評講。)
2、學生判斷。
(1)長方體、正方體、圓柱體的體積都可以用底面積乘高的方法來計算。( )
(2)圓柱體的底面積和體積成正比例。( )
(3)圓柱的體積和容積實際是一樣的。( )
(二)、拓展訓練(課件出示拓展延伸題,學生課外練習)
一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?
《圓柱的體積》教學設計第二課時 篇5
教學目標:讓學生在了解圓柱的基礎上,通過聯想遷移、觀察演示等活動推導出圓柱體積的計算公式,并能正確應用公式進行相關的計算;培養學生的觀察、比較、分析、綜合的能力,發散思維能力以及初步的空間想象能力;向學生滲透知識間“相互轉化”的辯證唯物主義思想。
教具準備:圓柱體積演示教具,多媒體課件等。
教學過程:
一、鋪墊復習。
同學們,我們已經認識了圓柱,也學習了圓柱側面積和表面積的計算,你能用簡潔的語言表述一下你對圓柱的了解嗎?(抽3—5人口述)
生:…………
師:剛才幾位同學已經把我們對圓柱的認識、了解作了介紹。那么你們還想不想對圓柱了解更多呢?你們還想了解圓柱的那些知識呢?
生:……我們還想了解圓柱的體積如何計算?……
師:那好,今天我們就來研究圓柱的體積。板書:圓柱的體積
在學習圓柱的體積以前,請你猜一猜:圓柱的體積可以怎樣計算?有沒有不同的計算方法?
生:圓柱的體積=底面積高……
師:你能說一說你為什么這樣想嗎?
生:因為長方體和正方體的體積都用底面積乘高來計算。
師:說得好,那么究竟圓柱的體積是不是用底面積乘高來計算呢?下面我們就來研究這個問題。
不過在研究之前,先請同學們回憶一下圓的面積計算公式是怎樣的?圓的面積計算公式是怎樣推導出來的?
生甲:圓的面積計算公式是s=πr2,這個公式是這樣推導出來的:將圓沿著直徑剪成若干個扇形,然后將這些扇形重新拼成一個近似長方形的圖形(分的份數越多,拼成的圖形越接近于長方形),這個近似長方形的長等于圓的周長的一半即πr,寬等于圓的半徑r。因為長方形的面積=長寬,所以圓的面積s=πrr=πr2。
生乙、丙:口敘圓面積推導過程。
師:好,現在我們就來研究圓柱的體積計算。
[簡評]由復習原學知識作鋪墊,自然引入本課時研究的內容,即融匯了新舊知識的聯系,又有助于學生更好地理解本課時新知。
二、教學新課。
1、推導圓柱體積計算公式。
師(出示圓柱體教具):我這兒有一個圓柱體,我想知道這個圓柱體的體積有多大,有什么辦法?
學生發表自己的意見。
師:剛才同學們發表了自己的意見,雖然各人說法不完全相同,但有一點是相同的,這就是:想辦法將圓柱體轉換成我們能求體積的形體(長方體)。那么怎樣轉換呢?
生:將圓柱體先切成若干塊,然后再重新拼成長方體。
師:怎樣切,怎樣拼?
生:沿底面直徑切開,然后再拼起來。
生:(學生多人發表意見)…………
生:沿圓柱的底面直徑切開,使切面與底面垂直。這樣切分成若干個底面是扇形的立體圖形,再將這些切分下來的每一塊重新拼在一起,就可以拼成一個近似長方體的立體圖形。(學生在說的同時用教具將切、拼的過程演示給全班同學看)
師:剛才這位同學演示得很好。現在讓老師再來給同學們演示一下(突出分的份數多與少對拼成的近似長方體形狀的影響)。你發現了什么?
生:分的份數越多,拼成的形體越接近于長方體。
師:如果我們分成成百上千份,甚至更多,再拼起來,你想象一下它的形狀會怎么樣?
生:就是長方體。
師:這個圓柱體的體積和拼成的長方體的體積有什么關系?
生:相等。
師:(再用教具演示切、拼的過程,讓學生注意觀察)你還發現了什么?
生:圓柱的底面積等于拼成的長方體的底面積。
生:圓柱的高等于拼成的長方體的高。
(多媒體演示)將圓柱切拼成一個長方體,突出強調圓柱的底面積與長方體底面積的關系,圓柱的高與長方體高的關系以及圓柱體體積與長方體體積的關系。
引導學生口敘圓柱轉化成長方體,以及其底面積、高和體積的關系。
師:誰來完整地敘述一下剛才多媒體演示的過程?
生:將圓柱體切拼成一個長方體,這個長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高,長方體的體積等于圓柱的體積。因為長方體的體積等于底面積乘高,所以圓柱的體積也等于底面積乘高。
師:如何用字母表示圓柱的體積計算公式呢?
生:用字母v表示體積,s底表示底面積,h表示高,則圓柱的體積計算公式表示為:v = s底 h = s底h
(學生分組,相互口述以上轉化及圓柱體積計算公式得出的過程)
(學生分組口述以后,再請學生說一說圓柱體積計算公式的推導過程)
教師板書:
圓柱體 (拼成的)長方體
底面積 = 底面積
高 = 高
體積 = 體積
因為 長方體的體積=底面積高
所以 圓柱的體積=底面積高
用字母表示為:v = s底 h = s底h
[簡評]強化了學生的參與,放手讓學生去感知、去體驗;重視學生的口頭表述,利于學生在知識的形成過程中掌握知識、形成技能,同時也強化了學生記憶。
2、指導學生閱讀教材,進一步理解圓柱體積的計算公式。
先由學生閱讀教材,教師巡視。
師:對于圓柱體的體積計算,同學們還有什么問題嗎?
生:沒有。
師:好,那圓柱的體積計算與那些條件有關?如果沒有直接告訴圓柱的底面積,而是告訴其底面的周長(或半徑、直徑)以及圓柱的高,你能計算它的體積嗎?如何計算?
生:根據圓柱的底面周長(或半徑、直徑),可以先算出圓柱的底面積,再根據圓柱的底面積和高求圓柱的體積。
生:根據圓柱的底面周長(或半徑、直徑),求圓柱底面積的方法是……
師:完全正確,那我們現在就來計算圓柱的體積。
[簡評]充分利用教材資源,利于學生能力的形成,并加深學生對知識的理解掌握。
3、應用體積計算公式計算。
求下列各圓柱體的體積:
(1)底面積是9平方分米,高是8分米; (2)底面半徑3厘米,高4厘米;
(3)底面直徑8米,高3米; (4)底面周長18.84厘米,高6厘米;
(5)底面積15平方米,高30分米; (6)側面積10平方米,底面半徑5米。
以上各題的練習,一方面檢查學生對圓柱體積公式的理解掌握情況,另一方面也考察學生的讀題審題能力,如第(5)題涉及的計量單位換算,同時也給學生提出新的問題,如第(6)題的計算。
待多數學生進入第(6)題的計算時,抽學生6人將自己的解答板書在黑板上。
師生一同訂正以上練習。
[簡評]及時練習,強化學生對新知的印象,利于學生掌握新知。
4、求異探討訓練。
師:看來前5個小題的計算情況還好,絕大多數的同學能正確列式并計算正確,這很好。看來同學們對圓柱的體積計算公式的確掌握得較好。但在計算第6題時,很多人都遇到了麻煩,為什么呢?
生:因為根據側面積和底面半徑計算高非常麻煩,結果要么只能用分數表示,要么只能取近似值。
生:其實如果不算出高的具體結果,而用一個式子表示高,倒也不麻煩,但寫出來的式子比較繁。
師:那么有沒有簡單可行的辦法呢?
生:……
師:同學們可以分小組討論一下。
(學生討論)
師:通過討論,你們想到了什么簡單可行的辦法?
生:我們從計算公式的轉換上找到了圓柱體積計算的另一個公式,這就是:v=s側r。
師:不錯,那你們能不能把公式轉換的過程給同學們介紹一下呢?
生:行。(該小組的同學相互補充完整)由于圓柱的體積v = s底h,而s底=πr2,所以v =πr2h=πr hr,又由于πr h=πdh=s側,于是得到v=s側r。
師:同學們認為剛才這個組的同學說得怎么樣?
《圓柱的體積》教學設計第二課時 篇6
1、在推導圓柱體積計算公式的過程中通過觀察,大膽猜想和驗證獲得新知識;
2、培養空間觀念和動手操作的技能,發展推理能力,滲透轉化思想。
3、積極參與數學學習活動,培養數學意識和合作意識。
學習重難點:圓柱體積的推導過程
學具準備: 圓柱
學習過程:
一、自主學習
1、自學課本8頁。完成下列各題。
(思考一分鐘,然后將你的想法與大家分享)
怎樣計算圓柱的體積呢?試一試能不能把圓柱轉化為我們學過的立體圖形,來計算它的體積?(溫馨提示:想一想,圓的面積公式是怎么推導出來的?)
2、教師點撥:
圓柱的底面是 形,可以分成許多相等的 形,然后再把圓柱按照這些扇形,沿 切開,拼起來,就近似一個 體。平均分的份數越多(所分的份數必須是偶數),拼起來的整個形體就越近似于一個 體。長方體的體積= ( ) 因此:圓柱體的體積=
如果用v表示圓柱的體積,用s表示圓柱的底面積,用h表示圓柱的高,圓柱的體積公式用字母表示為:
溫馨提示:在計算過程中,有的并不是直接給出圓柱的底面積,而是給出底面半徑或直徑,我們應先求出 ,再求圓柱的體積。計算公式是:v= 或 。
二、合作探究 填一填:
(小組合作完成下列各題,一組展示,其余補充、評價)
1、一個圓柱體,底面積是12平方分米,高6分米,它的體積是( )立方分米。
2、一個圓柱體積是84立方厘米,底面積21平方厘米,高是( )。
3、已知圓柱谷桶里底面半徑是3米,高4米,它的底面積是( ),容積是( ) 立方米。
4. 一個圓柱體底面半徑是4分米,當高是( )分米時,它的體積是62.8立方分米。
5. 一個圓柱的底面周長是18.84分米,高是5分米,它的側面積是( )平方分米,體積是( )立方分米。
三、學以致用 判斷:(先獨立完成,再在小組內交流)
1.正方體的表面積是6平方厘米,它的體積一定是6立方厘米.( )
2.所有圓的直徑都相等.( )
3.求一個水桶能裝多少水,是求水桶的體積。 ( )
4.求正方體、長方體、圓柱體的體積都可以用公式∶體積=底面積高。( )
四、自我挑戰臺 闖關隨我來,紅星等你摘
第一關 基礎知識面對面2顆紅星等你摘 ★★
1、一個圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?
2、一個蓄水池是圓柱形的,從里面量,底面面積為31.4平方分米,高為2.8分米,這個水池能容多少升水?
恭喜你輕松闖過第一關,請摘紅星★★( )顆。
第二關 基本技能現場演4顆紅星等你摘★★★★
1、一個圓柱形水桶的體積是24立方分米,底面積是6平方分米,桶內裝滿了水,求水面高是多少分米?(水桶鐵皮厚度忽略不計。)
2、有一個高為6.28分米的圓柱體的機件,它的側面積展開正好是一個正方形,求這個機件的體積.
恭喜你順利闖過第二關,請摘紅星( )顆。
第三關 綜合能力展示臺 6顆紅星等你摘★★★★★★
5、把一根長1.5米的圓柱形鋼材截成三段后,表面積比原來增加9.6平方分米,這根鋼材原來的體積是多少?
6、.一段圓柱形的鋼材。長60厘米。橫截面直徑10厘米。每立方厘米鋼重7.8克,這段鋼材重多少千克?(得數保留一位小數)
佩服你勇闖第三關,請摘紅星( )顆。
通過連闖三關,你共摘取紅星( )顆,把你的收獲寫下來吧。
《圓柱的體積》教學設計第二課時 篇7
本節課教學內容為圓柱體積計算公式的推導和應用(教材第19頁,例5),圓柱的體積是在學生已經學習了長方體的體積、圓的面積,認識了圓柱并會計算圓柱的表面積的基礎上教學的。圓柱的體積計算應用廣泛,又是圓錐體積計算的基礎,并且立體圖形的截拼是首次見面,把圓柱截拼成近似的長方體需要一定的空間想象力,因此本節教學內容既是這個單元的重點也是難點。
新課標強調:教材是一種重要的資源,對于教師來說如何更好的“用教材”而不是“教教材”,在實際教學中我結合:“圓柱的體積”一課的教學談談自己一點點的實踐體會。
【教學片斷】
一、創設情景、感知圓柱體積的概念。
教師拿出一個裝了半杯水的燒杯,拿出一個圓柱形的物體,準備投入燒杯中。
師:同學們想一想會發生什么情況?(教師將圓柱形的物體投入水中。)請仔細觀察后,說一說你有什么發現?
生:水面上升一些。圓柱形的物體擠掉了原來水占有的空間。
師:我們通常把這個空間叫體積。
生:我發現上升的水的體積和圓柱的體積是相等的。
師:同學們發現得都很精彩,誰來說一說什么叫圓柱的體積。
生:圓柱所占空間的大小就叫圓柱的體積。
二、比較大小、創設求圓柱體積的情景。
教師又拿出一個圓柱。(底面略小而高長一些,體積相差不多)
師:這兩個圓柱的體積,哪個比較大一些?
生:第一個比較大,因為它高一些。
生:第二個比較大,因為它粗一些。
生:他們都是猜的。第一個圓柱它雖然高一些,但底面積小一些;第二個圓柱雖然底面大一些,它是的高少了一些。無法準確地比較它們的大小。
師:有什么辦法能比較它們的大小呢?(小組討論)
生:準備半杯水,將第一具圓柱浸沒水中,作好標志,再把第二個圓柱浸沒水中,作個標志,哪個水面上升的高一些,哪個圓柱的體積就比較大。
生:要學會計算圓柱的體積后就好解決了。
三、大膽猜想,感知圓柱體積公式。
師:你覺得圓柱體積的大小和什么有關?
生:和圓柱的高有關,一個圓柱它的高增加,它的體積也會變大些。
生:和圓柱的底面大小有關,一個圓柱它的底面增加,它的體積也會變大些。
師:很好!大膽地推想一下圓柱的體積應如何計算?(小組討論)
生:我猜想用圓柱的底面積乘以它的高就可以求出體積。
師:你同意他的猜想嗎?說說你的理由。
三、小心求證,論證圓柱體積公式。
師:同學們都很會大膽猜想,但還要小心地論證猜想的科學性。
教師拿出一具圓柱體體積教具,把它藏在衣服里,只露出一具底面。
師:你看到了什么?
生:圓形。
師:你還記得圓面積轉化什么圖形的面積來求它的公式的嗎?
生:把圓的面積轉化成長方形的面積。
教師把整個圓柱拿出來,問:怎么求這個圓柱的體積呢?(小組討論)
生:可以把這個圓柱轉化成我們已經會求的長方體的體積來求體積。
師:說說你們小組是如何轉化的。
生上臺操作展示。生:我們把圓柱平均分成16分,可以拼成一個近似的長方體,這個長方體的高就是圓柱的高,這個長方體的底面積和圓柱的底面積相等。所以,圓柱的體積可以用底面積乘高來求。
師:你同意嗎?照這樣做一遍,然后說一說如何求圓柱的體積。
最后學生自主得出圓柱的體積公式。
【片段分析】
本節課的設計過程是:"創設情景----發現問題----提出問題----猜想假設----實踐操作----解決問題",這一教學過程,充分體現了以學生為主體的教學思想,教師充分地相信尊重學生,鼓勵其積極主動地探究問題,讓學生體驗解決問題的過程,體驗解決問題的成功。
1、注重了課程資源的開發。由于學生生活背景和思考角度的不同,所使用的方法必然是多樣化的,教師應尊重每位學生個性化的想法,并認真傾聽。本節課中多處合理地開發了學生的課程資源:一是在感知體積的概念時,教師通過做圓柱放入水的實驗,實實在在地讓學生用生活經驗感知體積的存在;二是在猜想體積公式時,學生一般的經驗是如果一個圓柱高(底面)不變,底面(高)越大體積越大,學生自然地就會利用自己的經驗想到圓柱的體積的大小與底面和高有密切的聯系;三是在體積公式猜想時。猜想方法的多樣化就體現了問題解決策略的多樣化。有的學生聯系實踐生活聯想,把圓柱看作是有很多個相等的圓疊加起來的;有的學生聯系舊知識來推想,因為長文體和正方體的體積公式都是底面積乘高。學生是學生真正的主人,只有調動學生的學習積極性和平時的各種知識積累,這種知識的積累可以是以前學過的知識和方法,也可以生活中的經驗或經歷,這些都是課程資源,教師只有充分利用了這些課程資源,學生的學習活動才有可能真正成為有意義的過程。
2、注重數學思想方法和學習能力的培養。能力的發展決不等同于知識與技能的獲得。能力的形成是一個緩慢的過程,有其自身的特點和規律,它不是學生“懂”了,也不是學生“會”了,而是學生自己“悟”出了道理、規律和思考方法等。本節課沿著“猜想-驗證”的學習流程進行,給學生提供較充分的探索交流的空間,組織、引導學生“經歷觀察、實驗、猜想、證明等數學活動過程”,并把數學推理能力有機地融合在這樣的“過程”之中,有力地促使了學習改善學習方式。本課中學生“以舊推新”-大膽地進行數學的猜想;“以新轉舊”-積極把新知識轉化為已能解決的舊問題;“新舊交融”-合理地把新知識納入到原有的認識結構中,教學活動成了學生自己建構數學知識的活動。
整個教學過程是在“猜想-驗證”的過程中進行的,是讓學生在和已有知識經驗中體驗和理解數學,學生學會了思考、學會了解決問題的策略,學出自信。
《圓柱的體積》教學設計第二課時 篇8
【學習目標】
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
【學習過程】
一、板書課題
師:同學們,今天我們來學習“圓柱的體積”(板書課題)。
二、出示目標
本節課我們的目標是:(出示)
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
了達到目標,下面請大家認真地看書。
三、出示自學指導
認真看課本第19頁到第20頁的例5和例6的內容,重點看圓柱體積公式的推導過程和例6解題過程,想:
1、圓柱的體積公式是如何推導出來的?
2、圓柱的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認真看書自學,比誰自學的最認真,自學效果最好。下面自學競賽開始。
四、先學
(一)看書
學生認真看書,教師巡視,督促人人都在認真地看書。
(二)檢測(找兩名學生板演,其余生寫在練習本上)
第20頁“做一做”和第21頁第5題。
要求:1、認真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學認真檢查。
五、后教
(一)更正
師:寫完的同學請舉手。下面,請大家一起看黑板上這些題,發現問題的同學請舉手。(由差-中-好)
(二)討論
1、看第1題:認為算式列對的請舉手?
【圓柱的體積=底面積高】
2、看第2題:認為算式列對的舉手?你是怎么思考的?
3、看計算過程和結果,認為對的舉手?
4、評正確率、板書,并讓學生同桌對改。
今天你們表現實在是太好了,老師真為你們感到高興。老師這里有幾道練習題,敢不敢來試一試?(出示)
六、補充練習:
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積。
3、把一個圓柱的側面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是厘米,體積是立方厘米。.
下面,我們就來運用今天所學的知識來做作業,比誰的課堂作業能做得又對又快,字體還又端正。
七、當堂訓練(課本練習三,第21頁)
作業:第3、4、7、8題寫作業本上
練習:第1題寫書上,第2、6、9、10題寫練習本上
八、板書設計
課題三:圓柱的體積
圓柱的體積=底面積高
課后反思:
本節課的教學內容是九年義務教育六年級下冊的《圓柱的體積》,我教此內容時,不按傳統的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發現,得到的知識是“活”的,這樣的知識對學生自身智力和創造力發展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發現并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養了學生的科學精神和方法。
新課程改革明確提出要“強調讓學生通過實踐增強探究和創新意識,學習科學研究的方法,培養科學態度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
三、促進了學生的思維發展。
傳統的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發展。而這里創設了豐富的教學情景,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。
本節課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
《圓柱的體積》教學設計第二課時 篇9
《圓柱的體積》教學反思
《圓柱的體積》要求讓學生經歷“類比猜想—驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。教學一開始,我就先讓學生回憶圓的面積公式我們是如何得到的,有的同學馬上想到用轉化的方法,接著我再提出:那么你認為圓柱的體積公式該如何推導呢?學生自然而然就想到也用轉化的方法,然后我再讓學生分成四人小組活動,充分利用學具盒的學具討論如何得到圓柱的體積公式。最后,學生通過積極的討論、交流后,很自然的想到把圓柱轉化成長方體,并根據長方體與圓柱的關系來推導出圓柱的體積公式。這樣運用原有的經驗讓學生去解答,充分激發了學生學習的潛能,大大調動了學生的學習積極性,學生學得愉快,我也教得輕松,真是事半功倍。
圓柱的體積教學反思
由于我課前認真研讀教材,把握教學的重點和難點,精心設制教學過程和教學活動,上課時我做到胸有成竹。通過這節課的教學我感到自身的教學水平和駕馭課堂的能力得到了提升,從同事評課反映,我認為這節課的教學是比較成功的。這節課教學方法主要體現在我采用新課程的教學理念,合理安排教學環節,激發學生的思維,組織學生參與操作,通過觀察、交流,感悟知識間的聯系,從而獲取新知。 我深知教學無止境,沒有最好只有更好,我要從成功中找不足。 綜上所述, 首先,交流預習作業。在預習作業里我在備課時就設制了兩個知識點,讓學生課前完成,一個知識點是對舊知的回顧,要求學生寫出長方體和正方體的體積計算公式,另一個知識點是要求學生預習教材回答兩個問題,兩個問題是與這節課教學密切相關的內容,在教材上都是能找到答案的。在對預習作業交流時我發現學生能比較順利和準確的回答,這為新課的教學活動不僅起了良好的開端,更重要的是為學生在課堂上再進一步地、更深入地探索新知削弱了阻力,減輕了負擔。
其次,交流猜想和探索如何驗證。我利用課件把等底等高的長方體、正方體和圓柱體圖形和問題呈現出來,讓學生觀察圖形思考問題并組織討論。在對如何驗證讓學生作為重點交流。意圖是先讓學生明確兩點。第一點圓可以轉化成長方形,圓柱可以轉化長方體;第二點把圓柱的底面經過圓心16等份 ,切開后可以拼成一個近似的長方體。由于學生課前做了充分的預習和課堂開始階段預習作業的交流,學生對如何驗證的思維已經初步形成。讓學生再次交流和匯報,我發現學生都了解和掌握。此時我指名學生到講臺前利用教具說出操作方法,并進行操作,讓全班同學觀察操作過程。通過學生的操作、觀察,學生得到體驗和感悟,發現圓柱可以轉化成一個近似的長方體。
再次,課件展示、構建新知。讓學生觀看課件:課件2是把剛才實際操作的過程再次演示和呈現,課件3和課件4是把圓柱的底面平均分成32份、64份切開后拼成的長方體。我抓住時機問學生:如果把圓柱的底面平均分的份數越多,切開后拼成的物體的形狀就有什么變化?學生明確回答拼成的物體越來越接近長方體。接著我把圓柱體和轉化后的長方體圖象同時顯示出來,要求學生說出長方體的底面積和高與圓柱的底面積和高有什么關系,學生能清楚地表達出來。為了拓展學生的知識面,我此時還提出了轉化后的長方體底面的長和寬分別與圓柱體的底面周長和半徑有什么關系,這在教材和參考教案都沒有的知識點。學生的思維得到激發,學生勇于回答,學生回答錯了,我既沒有批評學生,也沒有急不可耐給出答案,而是讓學生再想,后來還是有學生能正確回答出來了。我想如果不給學生思考的時機直接給出答案,這樣與學生發現問題的答案所產生的效果就截然不同了。
推導圓柱的體積計算公式的過程分為猜想、操作、發現、結論四個階段,學生經歷這些教學活動,體驗和感悟了轉化的作用和價值,弄懂得了圓柱的體積計算公式的來龍去脈。
最后,分層練習,發散思維。在獲得圓柱的體積計算公式的成果之后,為了培養學生解題的靈活性,拓展知識,培養學生發散思維的能力,注意分層練習,我安排了三道練習題。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積。在練習時我不斷巡視關注學生練習情況,對出現的錯誤解答方法我不回避,在展示學生練習時既展示成功的也展示錯誤的。學生練習出現錯誤是正常現象,在討論和評講練習時是很好的資源,要充分的利用。
不足之處:
整個課堂教學過程中,師生的有效、良性互動還達不到預期目標,有一部分學生沒有具備良好作業習慣,靈活運用知識解決問題的能力還欠缺。
通過這節課,我思量交流預習作業能不能與全課的教學活動整合在一起,在課堂上如何更好地關注中等偏下的學生,我時常為此感到糾結。建構高效的課堂教學范式在我校已經試驗一個月了,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學更高效、更優質。
圓柱體積教學反思
精心研究教材是用好教材的基礎 教材作為教學的憑借與依據,只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執行教材時不能把它作為一種“枷鎖”,而應作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創造性地利用教材。
1、挖掘訓練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。[片段一] 中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結果”的道理,從而學會多角度考慮問題,提高解決問題的能力。
2、找出知識聯系,大膽重組教材。數學知識具有一定的結構,知識間存在著密切的聯系,我們在教學時不能只著眼于本節課的教學,而應找出知識間的內在聯系,幫助學生建立一個較為完整知識系統。[片斷二]的表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現了編者的意圖,而且為“比例”的教學作了提前孕伏。走出了數學教學的“只見樹木,不見森林”的“點教學”的誤區。
學生獲得發展是用好教材的標準,有的教師在教學中常常脫離教材,片面追求新課程的形式,而忽略了實質——“一切為了每一位學生的發展”。每個學生在一節課的40分鐘里獲得最大發展應作為我們用好教材組織教學的追求。本節課緊扣教材,“以本為本”,著眼學生的發展,無論是知識技能、過程與方法、數學思考還是情感態度價值觀,學生都獲得了最大發展。
今天教學了圓柱的體積,教學時由于學生手頭上早有學具——圓柱體積的演示器,因而學生很容易想到把圓柱轉化成長方體的方法,困難之處是學生在語言敘述時有些困難,比如沿著什么剪,平分成無數個什么圖形……(在形成方法后,讓學生互相說了兩遍)。
在實際教學時還是按部就班,先復習了長方體的體積計算方法,再由例4圖介入——先出示前面的長方體和正方體,讓生知道統一的算法后,再出示圓柱讓生猜測之間的聯系,繼而讓學生設法驗證——
但是此處教材設計了引問“圓可以轉化成長方形計算面積,圓柱可以轉化成長方體計算體積嗎?”可是學生早以有了圓柱體的演示學具,顯得有些多余(此是教學的一大困惑)。實際教學時還是由圓過渡到圓柱與長方體的聯系上來,讓學生討論方法及之間的聯系。我又借助了flash課件,輔助認識平均分成更多的份數越來越接近長方體……
有一點,就是學生學具上其中的一塊又被平均分成了兩份,其中的一份移接到另一端,拼成一個更接近的長方體,而教材上的示意圖并沒有這樣的過程(以前的教材是和學具一樣的)。
我認為教材的方法是很可取的,符合極限思想,因為就是不再平均切分一塊后移接,如果我們均分的份數無限多時,拼成的圖形也一定是一個長方體,何必多此一舉呢?
另外,我在網上的教案中看到了這樣的一個統一公式:直柱體的體積=底面積高,覺得有些道理,教學時使用了,讓學生分別說出三種立體圖形的體積公式后,進行發現,得出此點(順水推舟),但是接下來還進行了一些提高性的應用練習,出示了三個直柱體(一個是直三棱柱,一個是直六棱柱,一個是底面是梯形的直柱體)告之底面積和高試它們的體積。不知這一教學環節是否可取?
《圓柱的體積》教學設計第二課時 篇10
一、目標導學,猜想推理
1.出示光盤,這是什么圖形?(圓形)
提問:這個圓,可以知道什么?(半徑、直徑、周長、面積)
2.在桌面上,在一張光盤上疊加一些光盤,發現,這些光盤形成了一個什么圖形?(圓柱)。
繼續疊加,提問:圓柱在變化嗎?(變高了,體積變大了)
追問:什么沒有變?(底面積)
猜想:圓柱的體積會和什么有關?(底面積和高)
3、出示和(內底相等)光盤的燒杯,倒入和圓柱光盤等高的水
(1)提問:它們之間有什么關系?(體積相等)
那么,燒杯里的水有多少呢?你有什么好辦法?
(生:把燒杯里的水分別倒入長方體、正方體玻璃器皿中,計算長方體、正方體的體積)
(2)你覺得圓柱的體積和什么有關系?(長方體和正方體體積有關)
(設計意圖:從生活情景入手,初略感知圓柱的體積與底面積和高有關。通過猜想,并在實驗、交流中建立初步的圓柱體積與長方體和正方體體積的計算方法有關的直觀感知。然后順勢提出“如何計算圓柱體的體積”這一全課的核心問題,從而引發學生的猜測、操作、交流等數學活動,為學生經歷了“做數學”的過程做鋪墊。)
二、圖柱轉化,自主探究,驗證猜想。
(材料:圓柱體積木、圓柱體插拼教學具、課件)
1、教師出示一個燒杯,燒杯里的水有多少呢?體積你們會算嗎?
2、提示:
(1)以前學過的長方體和正方體的體積,對我們研究圓柱體體積有幫助嗎?
(2)你覺得圓柱的體積和什么有關系?你能猜一猜圓柱的體積怎樣計算嗎?
3、小組合作交流:怎樣將圓柱體轉化成一個長方體呢?
4、小組代表匯報
(學生按照自己的方式來轉化,會有多種轉化方法,教師適時加以鼓勵)
5、演示操作
(1)請一名學生演示用切插拼的方法把圓柱體轉化成長方體。其他學生模仿操作。
(2)這是一個標準的長方體嗎?為什么?如果分割得份數越多,你會有什么發現?
(3)電腦演示圓柱體轉化成長方體的過程:
仔細觀察:圓柱體轉化成一個長方體后,長方體的長相當于圓柱的什么?長方體的寬和高又相當于圓柱的什么?
動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?
(拼成的物體越來越接近長方體)
6、組織討論
(1) 圓柱體轉化成一個長方體后,什么變了,什么沒有變?你有什么發現?
學生討論后交流。
指出:形狀變了,體積沒有變
強調:底面的形狀變了,底面積沒有變,高沒有變,所以體積沒有變
(2)根據學生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積高
圓柱的體積=底面積高
(3)你的猜想正確嗎?學生齊讀圓柱的體積計算公式。
追問:圓柱體的體積計算公式我們是怎樣推導出來的?
7、小結:
要想求出一個圓柱的體積,需要知道什么條件?
8、學生自學第19頁例5上面的一段話:用字母表示公式。
學生反饋自學情況:v=sh
(設計意圖:在本節課中,教師讓全班學生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時盡量延長小組交流的時間,試圖把學習的時間、空間還給學生,讓其進行自主探究、合作交流。數學的價值不在技能而在思想,在探究的過程中,教師不是安排了一整套指令讓學生進行程序操作,獲得一點基本技能,而是提供了相關知識背景、實驗素材,使用了“對我們有幫助嗎?”“你有什么發現?”“你是怎樣想的?”等這樣一些指向探索的話語鼓勵學生獨立思考、動手操作、合作探究,讓學生經歷了“做數學”的過程。)
三、運用公式,多重探究。
就用這些公式,來解決剛才的實際問題吧。
出示圖片及相應條件:
1:一起完成例題6,學生先分析,然后獨立完成!
2:一疊光盤。(底面積是100平方厘米,高是2.1分米,它是體積是多少?)
3:一個圓柱形狀的零件,底面半徑5厘米,高8厘米。這個零件的體積是多少立方厘米?(p21 第一題!)試) 4:圓柱形保溫瓶。(從里面量底面直徑是20厘米,高是25厘米,它的容積是多少立方分米?(得數保留一位小數)
四、巧用條件,解決問題。
如果更換條件,你還能用其他方法得到體積嗎?
1.一張光盤的面積是100平方厘米,每張厚0.1厘米,共40張,求一疊光盤的體積。(一張光盤的面積乘光盤高。)
3、古建筑中的一根紅色柱子,用繩子測量柱子的周長,計算圓柱的體積(測得周長是62.8分米,高3米)
(設計意圖:在鞏固發展階段,教師設計了兩道開放性的習題,其中計算圓柱體積木體積,可以從測量圓柱的底面半徑、直徑、周長等不同角度求解;計算旋轉直尺所形成的圓柱體積一題,旋轉軸不同得到的圓柱體是完全不一樣的,這體現了解題方法的多樣性。這樣安排從表面上看,似乎只是學生的空間觀念、基本技能得到了培養;但深層次地分析,可以發現學生的思維得到了發展,創新精神、實踐能力得到了提高。)
五、開放訓練,拓展提升。
這是一個土豆,利用今天學的知識,你有辦法算出它的體積嗎?
(設計意圖:教師選擇這樣具有多樣化解決策略的開放性的問題能盡可能地保證每個學生在掌握數學基本技能的前提下,不同的人在數學上得到不同的發展。)
板書設計:
圓柱的體積
長方體的體積=底面積高
圓柱的體積=底面積高
教學內容:人教版數學第12冊p19—20 例5、例6和相應的練習
教學目標:
1、知識技能
結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、過程方法
讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。
3、情感態度價值觀
通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。
教學重點:掌握和運用圓柱體積計算公式
教學難點:圓柱體積公式的推導過程
教學準備:課件 光盤 等底的燒杯、長方體、正方體玻璃容器
《圓柱的體積》教學設計第二課時 篇11
【教材簡析】:
本節內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。
【教學內容】:
p19-20頁的內容和例題,完成“做一做”及練習三第1~4題。
【教學目標】:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公 式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數學思想和方法,解決實際問題的能力
3、滲透轉化思想,培養學生的自主探索意識。
【教學重點】:掌握圓柱體積的計算公式。
【教學難點】:圓柱體積的計算公式的推導。
【教學過程】:
第一課時 本冊總課時:12課時
一、復習
1、長方體的體積公式是什么?(長方體的體積=長寬高,長方體和正方體體積的統一公式“底面積高”,即長方體的體積=底面積高)
2、什么叫做物體的體積?你會計算下面那些圖形的體積?
3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。
4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
二、新課
1、圓柱體積計算公式的推導。
(1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
(1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)
(2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)
(3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)
(3)通過觀察,使學生明確:
長方體的底面積等于圓柱的底面積,
長方體的高就是圓柱的高。
長方體的體積=底面積高,
所以圓柱的體積=底面積高,
v = s h
圓柱的體積計算公式是:
v=s h
2、課堂練習:
(1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?
(2)指名學生分別回答下面的問題:
① 這道題已知什么?求什么?
② 能不能根據公式直接計算?
③ 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統一計量單位)
(3)讓學生解答和板算,最后師生共同完成.
解:v=sh
=7590
=675(立方厘米)
答:它的體積是675立方厘米。
3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的(v=π r²h)
4.作業:
《圓柱的體積》教學設計第二課時 篇12
教學目標
1.了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。
2.經歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3.培養初步的空間觀念和思維能力;進一步認識“轉化”的思考方法。
教學重點:理解和掌握圓柱的體積計算公式,會求圓柱的體積
教學難點:理解圓柱體積計算公式的推導過程。
教學用具:圓柱體積演示教具。
教學過程:
一、復述回顧,導入新課:
以2人小組回顧下列內容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)
1、說一說:(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的體積怎樣計算?如何用字母表示?
長方體、正方體的體積=( )×( ) 用字母表示( )
2、求下面各圓的面積(只說出解題思路,不計算。)
(1)r=1厘米; (2)d=4分米; (3)c=6.28米。
(二)揭示課題:
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學習“圓柱的體積”。(板書課題)
二、設問導讀:
請仔細閱讀課本第8-9頁的內容,完成下面問題:
(一)以小組合作完成1、2題。
1、猜一猜 ,圓柱的體積可能等于( )×( )
2、我們在學習圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉化成一個近似的長方形,通過切、拼的方法,把圓柱轉化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關系:
(1)圓柱的底面積變成了長方體的( )。
(2)圓柱的高變成了長方體的( )。
(3)圓柱轉化成長方體后,體積沒變。因為長方體的體積=( )×( ),所以圓柱的體積=( )×( )。如果用字母v代表圓柱的體積,s代表底面積,h代表高,那么圓柱的體積公式可用字母表示為( )
[匯報交流,教師用教具演示講解2題]
(二)獨立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?
先求底面積,列式計算( )
再求體積,列式計算( )
綜合算式( )
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不計)
【要求:完成之后以小組互查,有爭議之處四人大組討論。】
教師根據學生做題情況挑選一些小組進行匯報、交流,并對小組學習情況進行評價。
三、自我檢測:
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計算)
【要求:完成后小組互查,教師評價】
四、鞏固練習:
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內共同完成】
教師進行錯例分析。
五、拓展練習
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內討論確定解題思路,再完成】
六、課堂總結,布置作業:
1、總結:這節我們利用轉化的方法,把圓柱轉化為長方體來推導其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業:課本練一練6題
《圓柱的體積》教學設計第二課時 篇13
教學內容:北師大版數學六年級下冊5——6頁。
教學目標:
1、使學生理解圓柱側面積和圓柱表面積的含義,掌握圓柱側面積和表面積的計算方法。
2、根據圓柱表面積和側面積的關系,使學生學會運用所學的知識解決簡單的實際問題。
教學重點:目標1。
教學難點:目標2。
教學過程:
活動一:復習舊知,鞏固學過的公式。
1、一個直徑是100毫米的圓,求周長。
2、一個半徑3厘米的圓,求周長和面積。
3、一個長為3米,寬為2米的長方形,它的面積是多少?
4、出示圓柱體的模型,說說它有什么特征?
活動二;探究新知。
1、做一個圓柱形紙盒,至少需要多大面積的紙板?(接口處不計)
要解決這個問題,就是求什么?
2、圓柱的表面積包括哪幾部分?
3、圓柱的表面積的計算關鍵在哪一部分?
4、探索圓柱側面積的計算方法。
1)圓柱的側面展開后是一個怎樣的圖形呢?用一張長方形的紙,可以卷成圓柱形。
2)圓柱側面展開圖的長和寬與這個圓柱有什么關系?怎樣求圓柱的側面積呢?
3)師;圓柱的側面積就是求長方形的面積。用長乘寬。
4)長就是圓柱的底面圓的周長,寬就是圓柱的高。
5)請你來總結一下圓柱側面積的計算方法。
6)圓柱的側面積用2∏rh,求圓柱的表面積要用側面積加兩個底面積。
活動三:新知識的運用。
1、求底面半徑是10厘米,高30厘米的圓柱的表面積。
2、教師板書:
側面積:2╳3.14╳10╳30=1884(平方厘米)
底面積:3.14╳10╳10=314(平方厘米)
表面積:1884+314╳2=2512(平方厘米)
要求按步驟進行書寫。
2、試一試。
做一個無蓋的圓柱形鐵皮水桶,底面直徑圍分米,高為5分米,至少需要多大面積的鐵皮?
求至少需要多少鐵皮,就是求水桶的表面積。
這道題要注意什么?無蓋就只算一個底面。這種題如果求整數,一般用進一法。
3、練一練。書第6頁第1題。
3個小題:已知底面直徑或底面周長和高,求圓柱的表面積。重點討論:已知底面周長,求表面積。
《圓柱的體積》教學設計第二課時 篇14
教學內容:圓柱的體積
一、 教學對象及學習內容特點分析:圓柱的體積是小學立體幾何圖形中的重要內容之一,是已學的長方體知識和將學的圓椎體知識的橋梁,其公式是長方體、正方體體積公式v=sh的延續。
二、 教學目的:
學生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。
學生能應用圓柱體積公式進行圓柱體積的計算。
學生能利用知識之間相互"轉化"的思想探索解決新的問題。
四、教學基本指導思想、教學策略和方法:整個過程,充分利用計算機的優點,以小組學習的形式,發揮學生的主體作用,教師是學生學習過程的組織者和輔導者。長方體的體積公式和平面圖形的面積公式已學過,因此引導學生用轉化的思想去學習,并創設情景,讓學生自己發現問題,利用電腦、課本、實物提供的資源協商解決問題,使全體學生都成為學習的主人。
五、教學運用的主要手段、技術、材料:電腦網絡、實物投影、圓柱體。
六、教學過程的設想和點評
教師的教學行為 學生的學習行為 點評
第一階段:創設情景,設疑引趣。
教師故事引入:圓柱形狀的"轉筆刀"和"漿糊筆"迎著朝陽高高興興上學了,走著走著,它們就為哪個體積大而爭論起來,"轉筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個結果。
提問:小組討論尋找解決這兩個圓柱體積大小的方法。
1、學生小組討論解決的方法。
2、小結歸納:解決圓柱的體積的方法:尋找一種方法,導出圓柱的體積公式,然后應用公式求圓柱的體積。
通過情景的創設,激發學生的學習熱情,讓他們發現問題,并通過討論找出解決的方法,使學生從被動學習變為主動學習,學生對這節課的學習也從宏觀上得到了解。學生解決問題的方法有出人意料的回答,老師根據情況,給予恰當的鼓勵性的評價,以激發學生的思維。
第二階段: 自主探究。概括規律
1、電腦提供學生探索資源:
(1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導出過程。
(2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。
2、學生反饋自學內容,師生共同導出圓柱的體積公式v=sh 1、學生打開電腦"自能學習"中的"尋方法",有選擇地看學過的平面圖形的面積公式和立體圖形體積公式的導出過程,從中找到推導圓柱體積公式的方法
2、學生通過觀察圓柱公式的推導過程。
3、小組討論填寫實驗報告。
4、師生導出圓柱的體積公式后,學生自學課本例題,并完成例4內容。 通過利用資源、自能學習,讓全體學生都能動腦、動口、動手參與到學習中去,使學生學會學習、學會協作,所學知識的理解更為深刻、透徹。在自學的過程中教師通過監控密切觀察著學生的學習情況,發現問題及時解決。
圓柱體積公式的推導過程,學生會有不同的方法,如用課本的方法或用類比的方法,教師應給予恰當的評價。
第三階段:拓展公式,自能訓練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結:無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據v=sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質疑
1、學生可根據已學的"圓的面積"公式導出。
(當已知圓柱底面的半徑時v=∏r2h、當已知直徑時v=∏(d÷2)2h、當已知周長時,先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
(1) 一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。
(2) 一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
(3) 一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14223
1、根據生活實際,當知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚愛動腦筋的同學
2、通過練習,學生對基本知識有一定的理解,教師也了解了學生對知識的掌握情況。
第四階段:反饋學習、應用提高。
1、 提出練習要求:先做"鞏固"練習,有余力的再做"提高"練習。
2、 小結練習情況,及時表揚對而快的同學及小組
3、 回應開頭,解決"漿糊筆"和"轉筆刀"爭論的問題。 學生在電腦上完成。
1、 賽車游戲:看誰跑得快。
(1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
(2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
(3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷( )立方米。
(4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習。考你智慧:看誰攀得高。
(1)一個圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
(2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。
在計算過程中,學生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現互幫、互學共同提高。
五、歸納總結、自我評價。
1、 提出要求,學生談收獲。
2、 總結本節情況。 談收獲,并作出自我評價。 通過談收獲,體現學習的自主性,體驗獲得成功的樂趣。
七、對教學過程的設想和點評:
新課程標準注重小學生對周圍世界與生俱來的探究興趣和需要,在小學階段,學生的知識積累與思維能力較為有限,強調用符合小學生年齡特點的方式學習,提倡課程貼近小學生的生活,這節課從學生身邊學習用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學過程中引起的爭論導出學習的內容,激發學生學習的積極性。這樣在教學進程中安排好相關的情景組織學生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學生既學會知識與技能,又培養智能、情感態度與價值觀,促進學生科學素養的形成。
新課標還積極倡導讓學生親身經歷以探究為主的學習活動,培養他們的好奇心和探究欲,使他們學會探究解決問題的策略,為他們終身的學習和生活打好基礎。這是一節在網絡環境下開展的探究型數學課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學生小組討論尋找比較圓柱大小的方法,引導學生通過自主、合作探究這種學習方式進行實踐活動,觀察由圓柱轉變成已學過長方體的過程,在觀察中相互啟發,共同提高,形成共識后并加以記錄。再將大家的記錄結果對比、討論、從而得出結論:圓柱的體積=轉變成的長方體的體積,從而導出圓柱的體積公式v=sh。在這一過程中,教師以學生的發展為本,關注每一位的發展,珍視每位學生的探究體驗及獨特見解,在學生探究結果的表述過程中,對同一個問題,不同的人可以得出不同的結論,他們通過互相交流互相討論,思維更是得到發展與創新。不僅激發了每一位學生主動參與探究實踐活動,更讓學生在探究中學會合作、懂得思考、大膽發表自己的獨特見解,更學會傾聽、尊重他人的意見,從而實現互幫、互學共同提高,并在探究中發現、學習,激發學生學習的興趣,培養了實踐的能力。
網絡環境下的教學方式不僅改變了以往教師滿堂灌的現象,在拓寬學生知識面的同時,更培養了學生搜集信息、處理信息并進行合理解釋的能力,大大地激發了學生自主學習的積極性,學生的創新意識日漸增強,真正實現了利用信息技術為教學內容服務。
《圓柱的體積》教學設計第二課時 篇15
教學內容:本內容是六年級下冊第8頁至第9頁。
教材分析:
本節內容是在學生了解了圓柱體的特征,掌握了圓柱表面積的計算方法基礎上進行教學的,是幾何知識的綜合運用,為后面學習圓錐的體積打下基礎,教材重視類比,轉化思想的滲透,引導學生經歷“類比猜想——驗證說明”的探索過程,掌握圓柱體積的計算方法。
學生分析:
學生已掌握了長方體和正方體體積的計算方法以及圓的面積計算公式的推導過程,在圓柱的體積這節課化的體現動手實踐,自主探索,合作交流,為突破重、難點。本節課在教法和學法上從以下幾方面著手:先利用教具通過直觀教學讓學生觀察,比較,動手操作,經歷知識產生的過程,發展學生思維能力;讓學生通過 “類比猜想——驗證說明”的探索過程,主動學習,掌握知識形成技能,合作探究學習成為課堂的主要學習方式。
學習目標:
1、使學生理解和掌握圓柱體積的計算方法,在推導圓柱體積計算公式的過程中培養學生初步的空間觀念和動手操作的技能。
2、使學生能夠通過觀察,大膽猜想和驗證獲得新知識在教學活動過程中發展學生的推理能力,滲透轉化思想。
3、引導學生積極參與數學學習活動,培養學生的數學意識和合作意識。
教學過程:
出示教學情境:一個杯子能裝多少水呢?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出相關數據,就能求出水的體積;倒入量筒里直接得到水的體積。
(設計意圖:讓學生根據自己已有的知識經驗,把圓柱形杯子里的水倒入長方體或正方體容器,使形狀轉化成自己熟悉的長方體或正方體,只要求出長方體或正方體的體積就知道水的體積。)
出示第二情境:圓柱形的木柱子的體積是多少?用這種方法還行嗎?怎么辦?
(設計意圖:創設問題情境,引起學生認知沖突,激起學生求知欲望,使學生帶著積極的思維參與到學習中去,從而產生認知的飛躍。)
探究新知:怎樣計算圓柱的體積?(板書課題:計算圓柱的體積)
大膽猜想:你覺得圓柱體積的大小和什么有關?圓柱的體積可能等于什么?(說說猜想依據)
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
(設計意圖:在新知識的探索中,合理的猜測能為探索問題,解決問題的思維方向起到導航和推進作用。)
驗證:能否將圓柱轉化為學過的立體圖形?
讓學生利用學具動手操作來推導圓柱體積公式(小組合作探究:給學生提供充分的時間和空間),引導學生把圓柱體底面平均分成多個小扇形,沿著高切開,拼成一個近似的長方體。
思考:圓柱體轉化成長方體為什么是近似的長方體?怎樣才能使轉化的立體圖形更接近長方體?
(設計意圖:讓學生明確圓柱體的底面平均分成的扇形越多拼成的立體圖形就越接近于長方體,滲透“極限”的思想。)
用課件展示切拼過程,讓學生觀察等分的份數越多越接近長方體,彌補直觀操作等分的份數太多不易操作的缺陷。
學生討論交流:
1、把圓柱拼成長方體后,什么變了,什么沒變?
2、拼成的長方體與圓柱之間有什么聯系?
3、通過觀察得到什么結論?
得到:圓柱的體積=底面積×高
V=Sh=πr2h
(設計意圖:在數學活動中通過觀察比較培養學生抽象概括能力,及邏輯思維能力。)
練習設計:
1、計算下面各圓柱的體積。
(1)S=60cm2 h=4cm (2)r=1cm h=5cm (3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半徑為0.4米,高為5米,你能算出它的體積嗎?
(設計意圖:使學生達到舉一反三的效果,從而訓練學生的技能,靈活掌握本課重點。)
2、試一試:
(1)一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,這個桶的容積是多少升?
(2)一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
(設計意圖:運用圓柱的體積計算公式解決生活實際問題,切實體驗到數學源于生活,身邊處處是數學。) 4、拓展練習:
(1)填表:
填表后觀察:你發現了什么?先獨立思考,再小組交流,最后匯報。
(設計意圖:在教學時應找出知識間存在著的密切聯系,幫助學生建立一個較為完整的知識系統,為以后“比例”的教學作了孕伏)
(2)一個柱形容器的底面直徑是10厘米,把一塊鐵塊放入這個容器后,水面上升2厘米,這塊鐵塊的體積是多少?
(設計意圖:體會測量不規則物體體積的方法,認識到數學的價值體驗,使學生的思維處于積極的狀態,培養學生思維靈活性,提高學生創造性解決問題的能力。)
課堂小結:談談這節課你有哪些收獲?
(設計意圖:采用提問式小結,讓學生暢談本節課的收獲,包括知識,能力,方法,情感等,通過對本節課所學知識的總結與回顧,培養學生的歸納概括能力,使學生學到的知識系統化,完整化。)
教學反思:
本節課采用新的教學理念,創設情境導入滲透轉化思想,讓學生在興趣盎然中徑歷自主探究,獨立思考、合作交流從而獲得新知。
情境導入滲透轉化思想激發學生的學習欲望,課的開始讓學生想方法測量出圓柱形水杯中水的體積,學生想出把水倒入長方體容器中轉化成長方體的體積來計算出水的體積,初步引導學生把圓柱體的體積轉化為長方體的體積。教會學生數學方法,注重讓學生在操作中探究,動手操作能展示學生個體的實踐活動,在動手過程中易于激發興趣,積累知識,發展思維,利于每一位學生自主,獨立,創造性的學習知識,發展他們的能力,課中讓學生經歷知識產生的過程,理解和掌握數學基礎知識,讓學生在體驗和探索過程中不斷積累知識,逐步發展其空間觀念,促進學生的思維發展。