《分數的基本性質》教學設計(精選13篇)
《分數的基本性質》教學設計 篇1
學習目標:
1.使學生初步理解并掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的規律之間的聯系。
2.會運用分數基本性質把不同分母的分數化成分母相同而大小不變的分數。
3.培養學生的遷移類推能力、抽象概括能力和觀察能力。讓學生體會到數學知識間的內在聯系,感受學習數學知識的價值。
學習重點:歸納分數的基本性質,并運用性質轉化分數。
學習難點:歸納分數的基本性質,并運用性質轉化分數。
學習準備:教學課件。
學習過程:
環節預設 教師活動 學生活動 設計意圖
一、復習導入 1.直接口答下面各題的商,說說是怎樣想的?根據什么知識?
120÷20=
。12O×3)÷(30×3)=
。120÷10)÷(30÷10)=
2、分數與除法有什么聯系? 學生思考并回答問題 通過復習導入,引導學生觀察思考,從而提出本節課課題。
二、合作探究 1.教學教材第57頁的例1。
讓學生拿3張同樣的長方形紙片,平均分成2份、4份、8份,并分別表示其中的1份、2份、4份,涂上顏色,分別用分數表示涂色部分
問:把3張紙條的左端對齊,平放在桌上。觀察比較,你發現了什么?
通過動手操作、觀察比較,我們知道、這三個分數的大小相等。這三個分數的分子、分母都不相同,但是它們的大小卻完全相同,它們的分子、分母各是按照什么規律變化的呢?學生以小組為單位討論,請代表發言。
隨著學生匯報,老師板書。
教材59頁第8題。
觀察以上例子,你得出什么結論?(學生討論,匯報。)
提問:這里“相同的數”是不是任何數都可以呢?為什么0要除外?(學生討論)師:分子和分母如果都乘上0,則分數成為,而分數的分母不能為O;又因為0不能作除數,所以分數的分子和分母也不能同時除以O。
提問:你能不能根據分數與除法的關系和商不變的性質來說明分數的基本性質?
2.教學例2
出示例2。問:誰能說一說,在審題過程中要注意什么。(分析要點:①分母是12;②大小不變。)
問:想一想,怎樣不改變分數大小,使分母變為12?應根據什么知識解決這個題的?
學生試著在課本上填寫,集體訂正。
問:在解答中應注意什么問題?
3.完成教材第59頁第8題。學生獨立完成,再集體訂正。
請學生根據分數的基本性質思考并說明思路。 學生討論交流并回答問題。 梳理整合學生零散的發現,讓學生的認知逐步深入清晰、完整。
三、鞏固應用 1.完成教材第58頁練習十四第1題。
學生先獨立涂色,然后比較大小并說明理由。
2.完成教材第58頁練習十四第3題。
學生兩人一組,由一人說一個分數,另一個人說出一個相等的分數。
3.完成教材第58頁練習十四第5題。
引導學生先應用分數的基本性質,判斷哪幾個分數是相等的,然后在直線上把這個點畫出來!±蠋焼l學生觀察,推算出每個分數中分子與分母可以同時除以幾,得到一個與原分數相等的分數。
4.完成教材第58頁練習十四第6題。 學生進行思考、解答。 通過習題的演練,讓學生將知識點進一步應用到實際解決問題當中。
四、課堂小結 通過今天的學習,你都有哪些收獲呢?說一說學會了什么,自己表現怎么樣。 學生思考并回答 讓學生體驗成功的喜悅,進一步拓展學生的思維和創造能力。
《分數的基本性質》教學設計 篇2
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
。2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
。3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
。4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!
3、引導觀察:
請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
5、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
《分數的基本性質》教學設計 篇3
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。
過程與方法:
經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發表見解。
二、自主合作探索規律
1、反饋引導:1/2=2/4=4/8!叭齻徒弟分得的餅一樣多———等式———仔細瞧瞧這組分數等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
。1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
。2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”,F在開始
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,
作業:余下來的時間請完成課本97頁練習十八的1—3題,做在書上。
《分數的基本性質》教學設計 篇4
一、教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
二、教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
三、教學難點:
理解和掌握分數的基本性質,初步建立數學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
(一)遷移舊知。提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張,誰能猜出另一張是什么?出示:2÷3
你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數÷除數=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密。除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
A、看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
B、討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8
C、研究規律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者除以一個相同的數得到的分數
研究對象與得到的分數相等嗎?
相等不相等
猜想是否成立?
成立不成立
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=/18、6/21=2/、3/5=21/、27/39=/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
D、質疑完善
3/4=3×/4×
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4=3/4(X≠0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
(三)練習升華
1、5/7=/35、3/4=9/、3/=12/20、16/24=/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和哪一個分數大,你能講出判斷的依據嗎?
(四)總結延伸
師:這節課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=A/B(X≠0)或A/B=A÷X/B÷X(X≠0)(板書)
六、作業p87—1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
A/B=A/B(X≠0)或A/B=A÷X/B÷X(X≠0)
6÷8
3÷4
12÷16
《分數的基本性質》教學設計 篇5
各位老師,同學:
大家上午好!我說課的內容是:人教版小學數學課標教材五年級下冊75頁—76頁《分數基本性質》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
一、說教材
本節內容屬于概念教學。《分數基本性質》在小學數學的學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
二、說學情
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
三、說教學目標
綜合分析課程標準要求及學生實際,我確定本節的教學目標如下:
1、理解和掌握分數的基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2、初步養成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3、受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
四、教法學法
根據本節課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合教材內容,本課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
五、說教學過程
本節課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”可以細化為三個環節:
環節一:動手操作,進行比較
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較能力。
環節二:呈現問題,引導觀察
這一環節主要呈現給學生這樣一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察能力。
環節三:交流匯報,得出規律
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結和確認是必不可缺的。
以上是我對《分數基本性質》一節的教學設計意圖,有不當之處,請各位批評指導。
《分數的基本性質》教學設計 篇6
分數的基本性質 教學內容:六年制小學數學第十冊69頁——70頁 教學目標 :1、理解分數的基本性質。 2、初步掌握分數的基本性質。 3、培養學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。 教學重點:理解與掌握分數的基本性質。 教材分析:分數的基本性質是在學習了商不變性質及分數與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據,是分數四則運算的重要基礎知識,是學生準確進行分數加減法計算的依據。 設計意圖:通過復習商不變的性質和分數與出發的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數基本性質與商不變性質打下了基礎。 在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數學事實,來引導學生觀察、思考,激發學生的求知欲,調動學生學習的積極性。 通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數學概念轉變為學生易于理解概念,激發學生的學習興趣,結合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數變化的規律,即分于分母都乘以或除以相同的數,分數和大小不變。 通過電腦出示的畫象的逐步引入,使學生加深對分數基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發展學生的邏輯思維。 在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發展學生的智能。在聯系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。 教學過程 : 復習舊知,導入 新課 被除數 除數= 根據120 30=3 填數 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (復習商不變性質) 驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 =) 教師再演示,引導學生發現 、 、 、三個分數的大小相等。觀察什么在變,什么不變!褑挝弧1”平均分的分數和取的分數,也就是分數的分子和分母發生了變化,而分數的大小不便,為什么分數的分子、分母在變,而分數的大小不變?它們的變化規律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發引導,揭示規律 (1) ==== 從左往右觀察,探索分數的分子、分母的變化規律,引導學生去思考。討論得出:分數的分子墳墓都乘以相同的數,分數的大小不變。 ,分數的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規律:分子、分母都除以相同的數,分數的大小不變。 歸納性質 誰能把上面的“分數的分子分母都乘以或除以相同的數。”兩句話合成一句話來說。——分數的分子分母都乘以或除以相同的數,分數的大小不變。 這里指的“相同的數”是指什么數? 指出:分母是0的分數是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數可以是自然數,也可以是小數,也可以是分數。 請全班同學將結語說完整,全班讀。 小結:就是我們今天學習的內容:分數的基本性質?磿|疑。 勾出關鍵詞語,幫助理解掌握。 (在新課的教學過程 中,利用計算機,將各種圖形(也就是單位“1”)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標 得以順利地實施。) 鞏固練習 在括號里填上適當的數使等式成立 幾組相等分數的天空練習 (用計算機將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師) 3、“請找我的好朋友”練習。(以游戲的形式來進行) 要求:(1)將幾張寫有分數的卡片發給幾位同學,請 他們看清楚上面的分數。 ( 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數用大屏幕顯示出來,便于全班同學練習。) 4、判斷對錯 (1) ==( ) (2) ==( ) (3) ==( ) (4) ==( ) (這道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。) 5、思考練習題 = 課堂總結 總結本課內容,復述分數的基本性質。 作業
《分數的基本性質》教學設計 篇7
一、說教學理念
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
二、說教材
1、教學內容
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。在講解這一知識點時,應注意加強整數商不變性質的回顧,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
。3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:理解和掌握分數的基本性質;教學難點:學習自主探索,發現和歸納分數基本性質,以及應用它解決相應的問題。教具學具:課件,三張同樣大小的長方形紙條、彩筆。
三、說教法
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
四、說學法
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,達到檢驗自學的目的。
五、說教學過程
(一)新知鋪墊
(二)新知導入
。ㄈ┬轮骄
(四)新知探究
。ㄎ澹┬轮柧
(六)新知應用
(七)新知強化
。ò耍┬轮〗Y
1、新知鋪墊和導入
上課伊始我利用分餅的故事來激發學生的學習興趣,讓學生親自動手折一折、分一分、比一比,從直觀上讓學生感受到這幾個分數大小是相等的,而這幾個分數的分子和分母都不相等,這其中有什么規律呢?繼而揭示課題。
。ㄔO計意圖)好奇是學生的天性,通過分地故事能快抓住學生的好奇心,使他們在心理上產生懸念,帶著疑問迅速切入正題。
2、新知探究
(1)動手操作、形象感知
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/2,2/4,4/8。觀察涂色部分,說說發現了什么?在學生匯報時,說出:涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發現:通過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。
。ㄔO計意圖)主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
。2)觀察比較,探究規律
首先,在學生折紙的基礎上,通過小組討論交流總結出分數的基本性質,讓學生理解“同時乘上或者除以”的意義,以及為什么要強調“0除外”這個條件。其次,總結出分數的基本性質后,要和以前學過的商不變規律進行對比,找出二者間的聯系,使學生更好的理解、運用性質。
。ㄔO計意圖)這一環節重在培養了學生大膽交流、語言表達的能力,同時學生在匯報交流中使問題逐漸明朗化,最終驗證了自己的猜想。要充分放手,讓學生暢所欲言。
3、新知訓練
在鞏固階段,我安排了三個不同層次的習題。其中“新知訓練”是對“分數的基本性質”做進一步的詮釋!靶轮獞谩笔菍敕诛灂r的題,難度不大,首尾照應,最后還安排了“新知強化”環節,屬于開放性題。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣,培養了學生創新意識和解決問題的能力。
《分數的基本性質》教學設計 篇8
我說課的內容是:人教版小學數學課標教材五年級下冊75頁—76頁《分數基本性質》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
一、教材分析
本節的內容屬于概念教學!斗謹祷拘再|》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
二、學情分析
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
三、教學目標
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1.理解和掌握分數的基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2.初步養成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
四、教法學法
根據本節課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合了教材內容,本一課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過了觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
五、教學過程
本一節課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問
題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”可以細化成為三個環節:
環節一:動手操作,進行比較
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較能力。
環節二:呈現問題,引導觀察
這一環節主要是呈現給學生這樣的一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察能力。
環節三:交流匯報,得出規律
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數基本性質》一節的教學設計意圖,有不當之處,請各位批評指導。
《分數的基本性質》教學設計 篇9
尊敬的各位評委,各位老師:
大家好!我說課的內容是《分數的基本性質》。這課選自北師大版小學數學五年級上冊第三單元的學習內容,這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據本單元的教學要求和本課的特點,我設計本課的教學目標有三點:
1、(認知目標)理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、(認知目標)理解和掌握分數的基本性質。
3、(能力、情感目標)培養學生觀察、分析、推理的能力。
教學重點:理解和掌握分數的基本性質。
教學難點:讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
《數學課程標準》提出:把現代信息技術作為學生學習數學和解決問題的強有力工具,致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現實的、探索性的數學活動中去。如何充分發揮、凸顯現代信息技術的優越性和有效性而又省時省力呢?
本課依托網絡平臺,為學生創設一種大問題背景下的探索活動,以游戲這個學生感興趣的明線下,借助網絡實驗室,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會數學的科學性。創設“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生大膽猜想——驗證猜想——完善猜想等,從而一步步使分數的基本性質趨于完善。
我設計的具體教學過程如下:
第一環節:激趣引入,凸顯信息技術的趣味性。
“好的開始是成功的一半”,本課運用學生感興趣的電腦游戲和卡通人物導入新課,有效地開啟學生思維的閘門,激起猜測探究的興趣,通過比較三個分數的大小,凸顯矛盾沖突。(我在教學比較這三個分數大小時,學生們各抒己見,堅持著自己的觀點不放,使得不同觀點的矛盾激化,激發了學生的好奇心和爭強好勝的心理,為后面的發現規律埋下伏筆。)
第二環節:探索規律,凸顯信息技術的直觀性和時效性。
1、提出猜想。
學生進入國外網站,通過操作,直觀的觀察情境中三個分數的涂色部分,發現這三個分數的大小是相等的。
再引導學生觀察這組分數中“什么變了,什么沒變”,從變了的分母、分子入手去觀察它們是怎么變的,得到初步的猜想,“分數的分子、分母都乘或除以2,分數的大小不變”。
。ā皩W起于思,思起于疑”。這個環節中,當學生猜測三個分數誰大誰小,運用網絡實驗室用比平時更少的時間、更直觀的得出三個分數大小相等,為后面猜想的提出提供了更多觀察、交流的時間)
2、完善猜想。
在得到初步猜想后,在游戲的大背景下,再出示一組分數:三分之二和十五分之十。學生猜測大小、進入網絡實驗室驗證,發現這兩個分數也是相等的。
這一部分的主要目的則在于完善初步猜想,使學生感受到分子、分母不僅可以乘或除以2,分數大小不變,還可以乘或除以像5這樣更大的數,從而得到進一步的猜想:“分數的分子、分母都乘或除以同一個數,分數的大小不變”。
。ㄔ谶@一環節中,網絡實驗室再次起到了快速、直觀知道分數大小的作用,唯一不同的是,這次使用了紙條這個不同的表現形式,通過不同的表現形式來表達分數的意義)
3、驗證猜想,得出規律。
學生把符合猜想的三組分數記錄在學習卡上,(用圖片方式呈現)再到網絡實驗室里進行驗證,看看是否也都具有一定的規律。通過大量的例子顯示這不僅僅是學生的猜想,而是具有一定規律的。
最后運用分數與除法的關系和商不變的性質,從舊知遷移解釋、理解新知,得到“同一個數”不能為0,從而確定了最后規律,得到本課課題:分數的基本性質。(平時的教學中能驗證的分數少之又少,而學生通過猜想可以得到的分子、分母較大的相同大小的分數——如二分之一和百分之五十這樣的分數就很難驗證,通過我們的網絡實驗室就能很好地解決這個問題,充分體現了網絡實驗室的重要性和必要性。這樣,在平常教學中最花費時間的環節——驗證上節省了不少時間)
第三環節:游戲鞏固,思維提升,凸顯信息技術的交互性。
學生已經理解了分數的基本性質后,再次進入網絡實驗室,以玩游戲的形式鞏固所學的規律。(教師也從這個過程了解學生的掌握情況。有的學生在玩這個游戲的時候甚至發現了兩個分數之間的分子、分母分別不具備倍數關系,如十二分之六和十八分之九,還發現通過找中間數也能運用分數的基本性質解釋這個現象。)
接著再通過回到第一組分數,利用分數的基本性質寫出與第一組分數相等的分數來提升學生的思維,初步感知與第一組分數相等的'分數還有很多很多。讓學生感受到分數的基本性質應用非常廣泛,還需要他們進一步的學習和探索。
第四環節:提煉方法,積累基本的數學活動經驗。
師生共同回顧學習過程,總結并提煉出探索規律的方法:猜想→驗證→得出結論,為學生今后的學習提供科學的學習方法。
第五環節:網上交流,課內向課外延伸。
一節課的結束不僅僅是解決了幾個問題,更重要的引發學生新的思考和新的探究行為,但一節課的時間是非常有限的。所以在課的最后,教師在課件上給學生提供了課堂上所用網絡實驗室的網址和老師的博客,讓學生通過網絡實驗室這個平臺及博客這個載體,在網絡上回饋所學、發表言論。記得我公布博客地址不久就得到了學生的反饋,甚至聽課老師也參與其中,給我提出許多的意見和建議。這樣能讓學生感受了網絡資源豐富的同時,也使這節課不僅僅局限在課堂上,還拓寬到了網絡以及今后的生活、學習中,真真正正的利用、發揚網絡資源,把一些常規課堂無法實現的交流,都一一實現,體現了信息技術的人性化、學生主體性以及網絡的延遲性和廣泛性。
最后我以一句話結束我今天的說課“兒童是知識的創造者而不是被動接受者,他們主動地建構屬于他們自己的知識和對事物的理解。當孩子們在經歷數學、體驗數學時,課堂才是充滿活力的!”,謝謝大家!
《分數的基本性質》教學設計 篇10
大家好!今天,我很高興能站在這里,向大家展示我的說課。我的說課內容是《分數的基本性質》。我將從以下這些方面來進行說明。
一、教材分析(課件)
《分數的基本性質》是人教版九年義務教育小學數學第十冊中的內容。本節課內容是在分數的意義,以及分數與除法關系的基礎上進行教學的。是后面進一步學習約分、通分以及分數運算的重要依據,因此本節內容將起著舉足輕重的作用。
二、教學目標(課件)
根據教材內容及學生的認知水平,我制定了以下教學目標:
1、使學生理解與掌握分數的基本性質。
2、培養學生觀察、比較、分析、概括等方面的能力。
三、教法和學法(課件)
為了使學生成為課堂的主人,我巧妙的扮演著引導著、組織者的角色。設計了情景設疑、觀察發現、小組合作的教學方法。
新課程標準提倡:過程重于結果。有效的數學活動不能單純的依靠模仿與記憶。因此我引導學生去動手操作,自主探究,游戲比賽等形式來組織教學。
四、教學過程(課件)
結合五年級學生的理解能力和年齡特征,我將本課的教學,設計了四個環節。
(一)創設情境、引發猜想(課件)
首先、我為學生帶來了一個猴王分餅的故事:猴山上的猴子們都愛吃猴王做的餅。一天,猴王做了三張同樣大的餅。猴王把第一張餅平均切成了兩塊,給了猴1一塊。(課件)猴2看見了,眼饞的說:“猴王,猴王,我要兩塊!焙锿跣Σ[瞇的說:“別急,別急,給你兩塊!敝灰姾锿醢训诙䦶堬炂骄殖闪怂膲K,給了猴2兩塊。(課件)猴3更貪心:“我要六塊,我要六塊!焙锿跸肓讼耄训谌龔堬災贸鰜,平均切成了十二塊,果真給了猴3六塊。
“同學們,你們聽完故事后,覺得哪知猴子分得餅最多?”
一上課,先聽一段故事,學生們自然非常樂意,并會立即被吸引,積極的思考故事中的問題。通過這樣的故事設疑,馬上激起了學生探求新知的欲望。
。ǘ﹦邮植僮、初步感知(課件)
我讓學生把準備好的三張圓片,拿出來代替猴王做的餅,分別按照折,畫,涂的步驟,表示出每只猴子所得的餅,并用分數表示涂色部分。在這個過程中,學生必然會對那三個圖形進行觀察和比較,從中有所發現。(課件)通過多媒體的直觀演示,學生更加確定,三只猴子分的餅確實一樣多,有了實物的直觀對比,學生不難理解,三個分數大小相等。可是為何分數的分子、分母不同,大小卻相等?在此處,又設下懸疑,充分調動了學生的好奇心。這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,營造出良好的學習開端。接著,我因勢利導,安排下一環節:
。ㄈ┍容^歸納、揭示規律(課件)
(1)我板書這組分數后,請學生觀察:從左往右看,分子是怎么變的?分母是怎樣變的?此時我將主動權全都交給了學生,先獨立思考,然后在四人小組中交流討論,最后匯報結果。有的小組認為分子加了1,分母加了2等。我都笑而不答。而是鼓勵學生逐一去驗證各種猜想是否具有規律性。使學生在探索中發現,在發現中成長。直到有些學生發現分數的分子分母同時乘了2和3時,我及時給予了肯定和表揚。此時,為了突破本節課的重難點,我設計了一道填空題,可以很好的引導學生概括出這一發現,并讓多名學生說一說。這樣的設計,既培養了學生的概括能力,并為進一步學習增強了信心。在此基礎上,我再布置一個任務:你再從右往左看,又有什么規律?有了前面的經驗,這時學生很快得出:分數的分子、分母同時除以一個相同的數,分數的大小也不變。
。2)就在學生享受成功的喜悅時,我拋出了一個問題:分數的分子分母如果同時乘或除以0,會是什么結果?學生頓時領悟:要0除外。
(3)最后,我建議學生用一句話來歸納這兩個發現,師生共同完善規律。此時我才板書課題,并告訴學生這一規律就叫分數的基本性質,使學生明確了本節課的教學內容。
。4)現在,學生明白了聰明的猴王原來是利用分數的基本性質來分餅的。即滿足了猴子們的要求,又分的那么公平。(課件)如果猴4想要八塊怎么辦?如此設計,既首尾呼應,又培養了學生靈活解決實際問題的能力。
課堂的高潮之后,我啟發學生還可以用商不變的性質來說明分數的基本性質,溝通新舊知識的聯系。
(四)多層聯系、鞏固深化
練習的設計是鞏固新知最有效的方法。我盡量給枯燥的練習賦予豐富多彩的形式。因此我精心設計的整套練習都是以游戲加比賽的方式來進行。(課件)首先,我安排男、女生以搶答的形式,來填空,重點要讓學生說出解題依據。接著,我又設計了師生互動的游戲:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在兩個小組搶摘蘋果的游戲中結束本節課的教學活動。
五、板書設計
說說我的板書設計,它遵循了目的性原則、概括性原則、直觀性原則,能幫助學生把整堂課的學習內容融入大腦。
總結:我在整堂課的設計中努力體現“趣”“實”“活”三個字。以猴王分餅為主線,貫穿全文。由情景導入到動手操作,自主探究,最后歸納規律,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,領略成功的喜悅。新課程標準的要求得到了完美體現。
我的說課到此結束,謝謝大家。
《分數的基本性質》教學設計 篇11
一、說教材分析
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養學生觀察、分析和抽象概括能力。
過程與方法:
1、讓學生經歷分數基本性質的探究過程。
2、通過引導啟發,幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態度與價值觀:
1、體驗合作探究的樂趣,培養學生的團結協作精神。
2、滲透“事物間相互聯系”的辯證唯物主義觀點。
教學重點:理解分數基本性質。
教學難點:歸納分數的基本性質,并運用性質轉化分數。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片
三、說教學策略
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發生命活力”的指導思想,根據學生的認知規律,我采取以下教學策略:
1、采用了創設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節課學生學習的重要方式。
四、說教學流程
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環節。
(一)、創設情境,引發猜想
首先我為學生帶來一個《猴王分餅》的故事。
猴山上的小猴子最喜歡吃猴王做的餅了,有一天,猴王做了三塊大小一樣的餅分給小猴子吃。它先把第一塊餅平均切成4塊,分給猴1一塊;猴2見了說:“太少了,我要2塊!焙锿跤职训诙䦃K餅平均切成8塊,分給猴2兩塊;猴3更貪,它搶著說:“我要3塊,我要3塊……”猴王又把第三塊餅平均切成12塊,分給猴3兩。小朋友,你知道哪只猴子分得的餅多嗎?
“同學們,你們認為猴王分得公平嗎?”引發學生的猜想。
。ㄟ@樣就激發了學生的學習興趣,為后面的學習做好了鋪墊。)
。ǘ┳灾魈剿,尋找規律
。ㄏ旅孢@個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)
1、小組合作驗證猜想
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證---集體匯報交流----展示成果
2、既然三只小猴分得的餅同樣多,那么表示他們分得餅的三個分數是什么關系呢?這三個分數什么變了,什么沒變?
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
3、猴王把三張大小一樣的餅分給小猴一部分后,剩下的部分大小相等嗎?通過觀察演示得出3/4=6/8=9/12
4、我們班有64名同學,分成了四組,每組16人。那么,第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出1/2=2/4=32/64
。ㄈ┍容^歸納,揭示規律
1、出示思考題
1/4=2/8=3/12
比較每組分數的分子和分母:
從左往右看,是按照什么規律變化的?
從右往左看,又是按照什么規律變化的?
通過觀察,你發現了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
。ㄟ@樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間是相互聯系”的辨證唯物主義觀點)
五、說教學評價
1、教學過程中采用自我、小組、集體等多種評價方式,激發起學生交流的興趣。
2、多媒體課件的應用,創設生動的教學情境。
3、學生在發現、體驗、合作、交流、歸納、總結中,自主參與整個學習過程,營造獨立、自主的學習空間,學生成為課堂的主人。
《分數的基本性質》教學設計 篇12
教學目的:
1、理解分數的基本性質;
2、初步掌握分數性質的應用;
3、培養學生觀察——探索——抽象——概括的能力;
4、滲透事物是相互聯系、發展變化的辯證唯物主義觀點。
教學重點:
從相等的分數中看出變與不變,觀察、發現、概括其中的規律。
教學難點:
形成對分數的基本性質的統一認知。
教學準備:多媒體,自制演示教具。
教學過程:
一、激趣引新:
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節課我們就來解決這個問題。
2、在下面的中填上合適的數。
1÷2=(1×5)÷(2×)=(1÷)÷(2÷4)
同學們現在已經能用分數的知識來解決問題了。
二、啟發引導,探索新知。
1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?
通過圖形的平移、旋轉等方法看出三個班種植面積一樣大。
2.引導觀察得出結論。
。1)通過拼圖得到1/2=2/4=4/8
(2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?
(3)引導思考探索變化規律:
從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同討論,引導學生抽象概括出分數的基本性質:
。1)怎么做能使分數的分子和分母發生變化,而分數的大小都不變呢?
。2)變化時同時乘或除以小數可以嗎?
。3)0可以嗎?3/4=3×0/4×0=?(分數的分母不能為0,在除法里0不能作除數,分子和分母都乘或除以相同的數,這個數不能是0。)
歸納分數基本性質:分數的分子和分母都乘或除以相同的數(0除外)分數的大小不變。
4.學習分數的基本性質以后,感覺過去我們學過類似的性質是什么呢?(商不變的性質)
(1)練習在□中填上合適的數
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2這個除法算式改寫成分數形式?
你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)
5.組織練習
(1)判斷:
1/5=1/5×3=1/5
5/6=5×2/6×3=10/18
8/12=8×4/12÷4=32/3
2/5=2+2/5+2=4/7
3/4=3÷0.5/4÷0.5
分數的分子和分母都乘或除以相同的數,分數的大小不變。
(2)畫一畫、填一填
(3)填空
1/2=1×/2×=6/
10/24=10○/24○=/12
15/60=/203/=9/12
6/18=/=/(有多少種填法)
6.通過練習在此性質中哪些是關鍵詞?
7.鞏固練習(選擇你喜歡的一題來做)
(1)與1/2相等的分數有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?
。2)9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?
三、課堂總結
今天這節課同學們學了分數的基本性質,有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。
四、課堂作業:練習十四第1——3題。
板書設計:
分數的基本性質
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分數的分子和分母同時乘以一個不為0的數分數的大小不變
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分數的分子和分母同時除以一個不為0的數分數的大小不變
綜上所述分數的基本性質是:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
《分數的基本性質》教學設計 篇13
教學目的:
理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2.理解和掌握分數的基本性質。
3.較好實現知識教育與思想教育的有效結合。
教學難點:
理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的關系。
教學準備:
板書有關習題的幻燈片。
教學過程:
一、復習
1.出示
在括號里填上適當的數:
指名說一說結果,并說一說你是根據什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)
怎樣找出相等的分數?
讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的分數的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。
教師根據學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現的問題。
集體訂正。指名說一說自己的計算過程和結果。
教師根據學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。
5.自主練習第8題。
學生先獨立做。
集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大。磕姆N方法最好?