中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 八年級數學教案 > 直角三角形全等的判定(通用9篇)

直角三角形全等的判定

發布時間:2022-12-24

直角三角形全等的判定(通用9篇)

直角三角形全等的判定 篇1

  教學建議

  直角三角形全等的判定

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標:

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用hl公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:sss公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點:靈活應用五種方法(sas、asa、aas、sss、hl)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程:

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出hl公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△abc中,ad是它的角平分線,且bd=cd,de、df分別垂直于ab、ac,垂足為e、f.

  求證:be=cf

  分析: be和cf分別在△bde和△cdf中,由條件不能直接證其全等,但可先證明△aed≌△afd,由此得到de=df

  證明:(略)

  (3)講解例3(投影例3)

  例3:如圖3,已知△abc中,∠bac=,ab=ac,ae是過a的一條直線,且b、c在ae的異側,bd⊥ae于d,ce⊥ae于e,求證:

  (1)bd=de+ce

  (2)若直線ae繞a點旋轉到圖4位置時(bd<ce),其余條件不變,問bd與de、ce的關系如何,請證明;

  (3)若直線ae繞a點旋轉到圖5時(bd>ce),其余條件不變,bd與de、ce的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(sas、asa、aas、sss、hl)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業:

  a、書面作業p79#7、9

  b、上交作業p80#5、6

  板書設計:

  探究活動

  直角形全等的判定

  如圖(1)a、e、f、c在一條直線上,ae=cf,過e、f分別作de⊥ac,bf⊥ac,

  若ab=cd求證:bd平分ef。若將△dec的邊ec沿ac方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

  上一篇:直角三角形全等的判定(一)練習

  下一篇:正方形性質和判定定理

直角三角形全等的判定 篇2

  教學建議

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標 

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點 :靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程 

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

  (3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;

  (3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業 :

  a、書面作業 P79#7、9

  b、上交作業 P80#5、6

  板書設計 

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

直角三角形全等的判定 篇3

  教學建議

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標 

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點 :靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程 

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

  (3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;

  (3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業 :

  a、書面作業 P79#7、9

  b、上交作業 P80#5、6

  板書設計 

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

直角三角形全等的判定 篇4

  教學建議

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  第 1 2 頁  

直角三角形全等的判定 篇5

  教學建議

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標 

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點 :靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程 

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

  (3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;

  (3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業 :

  a、書面作業 P79#7、9

  b、上交作業 P80#5、6

  板書設計 

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

直角三角形全等的判定 篇6

  教學建議

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標:

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點:靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程:

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

  (3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;

  (3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業 :

  a、書面作業 P79#7、9

  b、上交作業 P80#5、6

  板書設計:

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

直角三角形全等的判定 篇7

  §13.2.3  三角形全等的條件---直角三角形全等的判定(四)

  教學目標

  1、經歷探索直角三角形全等條件的過程,體會利用操作、歸納獲得數學結論的過程;

  2、掌握直角三角形全等的條件,并能運用其解決一些實際問題。

  3、在探索直角三角形全等條件及其運用的過程中,能夠進行有條理的思考并進行簡單的推理。

  教學重點

  運用直角三角形全等的條件解決一些實際問題。

  教學難點

  熟練運用直角三角形全等的條件解決一些實際問題。

  教學過程

  ⅰ.提出問題,復習舊知

  1、判定兩個三角形全等的方法:       、      、      、        

  2、如圖,rt△abc中,直角邊是         、         ,

  斜邊是           

  3、如圖,ab⊥be于c,de⊥be于e,

  (1)若∠a=∠d,ab=de,

  則△abc與△def           (填“全等”或“不全等” )

  根據              (用簡寫法)

  (2)若∠a=∠d,bc=ef,

  則△abc與△def           (填“全等”或“不全等” )

  根據              (用簡寫法)

  (3)若ab=de,bc=ef,

  則△abc與△def           (填“全等”或“不全等” )

  根據              (用簡寫法)

  (4)若ab=de,bc=ef,ac=df

  則△abc與△def           (填“全等”或“不全等” )

  根據              (用簡寫法)

  ⅱ.導入新課

  (一)探索練習:(動手操作):

  已知線段a ,c  (a<c) 和一個直角  利用尺規作一個rt△abc,使∠c=∠ ,

  ab=c ,cb= a

  1、按步驟作圖:                        a            c

  ① 作∠mcn=∠ =90°,

  ② 在射線 cm上截取線段cb=a,

  ③以b 為圓心,c為半徑畫弧,交射線cn于點a,      

  ④連結ab

  2、與同桌重疊比較,是否重合?

  3、從中你發現了什么?

  斜邊與一直角邊對應相等的兩個直角三角形全等.(hl)

  (二)鞏固練習:

  1.   如圖,△abc中,ab=ac,ad是高,

  則△adb與△adc           (填“全等”或“不全等” )

  根據              (用簡寫法)

  2. 如圖,ce⊥ab,df⊥ab,垂足分別為e、f,

  (1)若ac//db,且ac=db,則△ace≌△bdf,

  根據             

  (2)若ac//db,且ae=bf,則△ace≌△bdf,

  根據             

  (3)若ae=bf,且ce=df,則△ace≌△bdf,

  根據             

  (4)若ac=bd,ae=bf,ce=df。則△ace≌△bdf,

  根據             

  (5) 若ac=bd,ce=df(或ae=bf),則△ace≌△bdf,

  根據             

  3、判斷兩個直角三角形全等的方法不正確的有(      )

  (a) 兩條直角邊對應相等      (b)斜邊和一銳角對應相等

  (c)斜邊和一條直角邊對應相等  (d)兩個銳角對應相等

  4、如圖,b、e、f、c在同一直線上,af⊥bc于f,de⊥bc于e,

  ab=dc,be=cf,你認為ab平行于cd嗎?說說你的理由

  答:                    

  理由:∵ af⊥bc,de⊥bc (已知)

  ∴ ∠afb=∠dec=            °(垂直的定義)

  在rt△          和rt△         中

  ∴           ≌              (         )

  ∴∠        = ∠           (                         )

  ∴                         (內錯角相等,兩直線平行)

  5、如圖,廣場上有兩根旗桿,已知太陽光線ab與de是平行的,經過測量這兩根旗桿在太陽光照射下的影子是一樣長的,那么這兩根旗桿高度相等嗎?說說你的理由。

  (三)提高練習:

  1、判斷題:

  (1)一個銳角和這個銳角的對邊對應相等的兩個直角三角形全等。(     )

  (2)一個銳角和銳角相鄰的一直角邊對應相等的兩個直角三角形全等(     )

  (3)一個銳角與一斜邊對應相等的兩個直角三角形全等(     )

  (4)兩直角邊對應相等的兩個直角三角形全等(     )

  (5)兩邊對應相等的兩個直角三角形全等(     )

  (6)兩銳角對應相等的兩個直角三角形全等(     )

  (7)一個銳角與一邊對應相等的兩個直角三角形全等(     )

  (8)一直角邊和斜邊上的高對應相等的兩個直角三角形全等(     )

  2、如圖,∠d=∠c=90°,請你再添加一個條件,使△abd≌△bac,并在

  添加的條件后的(    )內寫出判定全等的依據。

  (1)                 (         )

  (2)                 (         )

  (3)                 (         )

  (4)                 (         )

  課時小結

  至此,我們有六種判定三角形全等的方法:

  1.全等三角形的定義

  2.邊邊邊(sss)

  3.邊角邊(sas)

  4.角邊角(asa)

  5.角角邊(aas)

  6.hl(僅用在直角三角形中)

  作業

  1.課本習題13.2─10、12題.

  課后作業:<<課堂感悟與探究>>

直角三角形全等的判定 篇8

  〖教學目標〗

  ◆1、探索兩個直角三角形全等的條件.

  ◆2、掌握兩個直角三角形全等的條件(hl).

  ◆3、了解角平分線的性質:角的內部,到角兩邊距離相等的點,在角平分線上,及其簡單應用.

  〖教學重點與難點〗

  ◆教學重點:直角三角形全等的判定的方法“hl”.

  ◆教學難點:直角三角形判定方法的說理過程.

  〖教學過程〗

  一、          創設情境,引入新課:

  教師演示一等腰三角形,沿底邊上高裁剪,讓同學們觀察兩個三角形是否全等?

  二、          合作學習:

  (1)       回顧:判定兩個直角三角形全等已經有哪些方法?

  (2)       有斜邊和一條直角邊對應相等的兩個三角形全等嗎?如何會全等,教師可啟發引導學生一起利用畫圖,疊合方法探索說明兩個直角三角形全等的判定方法,可充分讓學生想象。不限定方法。

  教師歸納出方法后,要學生注意兩點:<1>“hl”是僅適用于rt△的特殊方法。

  <2> 應用“hl”時,雖只有兩個條件,但必須先有兩個rt△的條件

  (3) 教師引導、學生練習   p47

  三、          應用新知,鞏固概念

  例題講評

  例:已知:p是∠aob內一點,pd⊥oa,pe ⊥ob,d,e分別是垂足,且pd=pe,則點p在∠aob的平分線上,請說明理由。

  分析:引導猜想可能存在的rt△;構造兩個全等的rt△;要說明p在∠aob的平分線上,只要說明∠dop=∠eop

  小結:角平分線的又一個性質:(判定一個點是否在一個角的平分線上的方法)

  角的內部,到角的兩邊距離相等的點,在這個角的平分線上。

  四、學生練習,鞏固提高

  練一練:p48  1.  2.  p49   3

  五、小結回顧,反思提高

  (1)本節內容學的是什么?你認為學習本節內容應注意些什么?          

  (2)學習本節內容你有哪些體會?

  (3)你認為有沒有其他的方法可以證明直角三角形全等(勾股定理)

  (4)你現在知道的有關角平分線的知識有哪些?

  六、布置作業:

直角三角形全等的判定 篇9

  教學建議

  直角三角形全等的判定

  知識結構

  重點與難點分析:

  本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

  (1)由“先教后學”轉向“先學后教

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學”轉向“先學后教”

  本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

  (2)在層次教學中培養學生的思維能力

  本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

  公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

  綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

  教學目標 

  1、知識目標:

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

  (3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過知識的縱橫遷移感受數學的系統特征。

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點 :靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程 

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?

  這個問題讓學生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、判定兩個直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的應用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。

  分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

  (3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;

  (3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明

  學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。

  4、課堂小結:

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  5、布置作業 :

  a、書面作業 P79#7、9

  b、上交作業 P80#5、6

  板書設計 

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變為如圖(2)時,其余條件不變,上述結論是否成立,請說明理由。

直角三角形全等的判定(通用9篇) 相關內容:
  • 三角形全等的判定(通用16篇)

    課題:全等三角形的判定(二)教學目標:1、知識目標:(1)熟記角邊角公理、角角邊推論的內容;(2)能應用角邊角公理及其推論證明兩個三角形全等.2、能力目標:(1)通過“角邊角”公理及其推論的運用,提高學生的邏輯思維能力;(2)通...

  • 直角三角形全等的判定教學設計

    〖教學目標〗◆1、探索兩個直角三角形全等的條件.◆2、掌握兩個直角三角形全等的條件(hl).◆3、了解角平分線的性質:角的內部,到角兩邊距離相等的點,在角平分線上,及其簡單應用.〖教學重點與難點〗◆教學重點:直角三角形全等的判定...

  • §13.2.3  三角形全等的條件---直角三角形全等的判定(四)

    §13.2.3 三角形全等的條件---直角三角形全等的判定(四)教學目標1、經歷探索直角三角形全等條件的過程,體會利用操作、歸納獲得數學結論的過程;2、掌握直角三角形全等的條件,并能運用其解決一些實際問題。...

  • 三角形全等的判定

    教學目標:1.三角形全等的“邊角邊”的條件.2.經歷探索三角形全等條件的過程,體會利用操作、歸納獲得數學結論的過程.3.掌握三角形全等的“sas”條件,能運用“sas”證明簡單的三角形全等問題.能力訓練要求:1.經歷探索三角形全等條件的過...

  • 三角形全等的判定3

    課題:三角形全等的判定(三) 教學目標: 1、知識目標: (1)掌握已知三邊畫三角形的方法; (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等; (3)會添加較明顯的輔助線. 2、能力目標: (1)通過尺規作圖使學生得到技能的訓...

  • 數學教案-三角形全等的判定2

    課題:全等三角形的判定(二) 教學目標: 1、知識目標: (1)熟記角邊角公理、角角邊推論的內容; (2)能應用角邊角公理及其推論證明兩個三角形全等. 2、能力目標: (1)通過“角邊角”公理及其推論的運用,提高學生的邏輯思維能力;...

  • 數學教案-直角三角形全等的判定

    教學建議直角三角形全等的判定 知識結構 重點與難點分析: 本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。...

  • 數學教案-三角形全等的判定3

    課題:三角形全等的判定(三) 教學目標: 1、知識目標: (1)掌握已知三邊畫三角形的方法; (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等; (3)會添加較明顯的輔助線. 2、能力目標: (1)通過尺規作圖使學生得到技能的訓...

  • 數學教案-三角形全等的判定1

    課題:全等三角形的判定(一) 教學目標: 1、知識目標: (1)熟記邊角邊公理的內容; (2)能應用邊角邊公理證明兩個三角形全等. 2、能力目標: (1) 通過“邊角邊”公理的運用,提高學生的邏輯思維能力; (2) 通過觀察幾何圖形,培養學...

  • 三角形全等的判定2

    課題:全等三角形的判定(二) 教學目標: 1、知識目標: (1)熟記角邊角公理、角角邊推論的內容; (2)能應用角邊角公理及其推論證明兩個三角形全等. 2、能力目標: (1)通過“角邊角”公理及其推論的運用,提高學生的邏輯思維能力;...

  • 三角形全等的判定1

    課題:全等三角形的判定(一) 教學目標: 1、知識目標: (1)熟記邊角邊公理的內容; (2)能應用邊角邊公理證明兩個三角形全等. 2、能力目標: (1) 通過“邊角邊”公理的運用,提高學生的邏輯思維能力; (2) 通過觀察幾何圖形,培養學...

  • 三角形全等的判定3

    課題:三角形全等的判定(三) 教學目標: 1、知識目標: (1)掌握已知三邊畫三角形的方法; (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等; (3)會添加較明顯的輔助線. 2、能力目標: (1)通過尺規作圖使學生得到技能的訓...

  • 三角形全等的判定3

    課題:三角形全等的判定(三) 教學目標: 1、知識目標: (1)掌握已知三邊畫三角形的方法; (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等; (3)會添加較明顯的輔助線. 2、能力目標: (1)通過尺規作圖使學生得到技能的訓...

  • 三角形全等的判定2

    課題:全等三角形的判定(二) 教學目標: 1、知識目標: (1)熟記角邊角公理、角角邊推論的內容; (2)能應用角邊角公理及其推論證明兩個三角形全等. 2、能力目標: (1)通過“角邊角”公理及其推論的運用,提高學生的邏輯思維能力;...

  • 三角形全等的判定1

    課題:全等三角形的判定(一) 教學目標: 1、知識目標: (1)熟記邊角邊公理的內容; (2)能應用邊角邊公理證明兩個三角形全等. 2、能力目標: (1) 通過“邊角邊”公理的運用,提高學生的邏輯思維能力; (2) 通過觀察幾何圖形,培養學...

  • 八年級數學教案
主站蜘蛛池模板: 奇米色欧美一区二区三区 | 国产特色特黄的视频免费观看 | 亚洲第一黄网 | 妇女bbbb插插插视频 | 欧美乱码卡一卡二卡四卡免费 | 在线视频精品一 | 一本大道东京热无码视频 | 99无人区码一码二码三 | 午夜老司机福利 | 人妻在卧室被老板疯狂进入 | 天堂网在线WWW最新版资源 | av免费在线观看一区二区 | 一区二区午夜 | 国产无遮挡免费又爽又黄 | 在线成人超碰 | 搡老女人老91妇女老熟女o | 一级黄色大片 | 久在线观看视频 | 中国黄色毛片大片 | 亚洲精品天堂成人片AV在线播放 | 中文字幕一区二区三区视频 | 狠狠色噜噜狠狠狠狠97首创麻豆 | 久久人人艹 | 91秦大神琪琪第一部在线 | 日本高清在线免费 | 日韩性色 | 四虎影视精品永久在线观看 | 国产尤物小视频在线观看 | 99re8这里有精品热视频8在线 | 精品一久久 | 国产一区二区啪啪 | 新品亚洲高潮喷水精品视频 | 国产精品秘入口A级一区二区 | 国内最真实的xxxx人伦 | 国产人成一区二区三区影院 | 色婷婷日日躁夜夜躁 | 特一级黄色大片 | 国产精强码久久久久影片at | 日韩一二 | 国产精品28P | 欧美性猛交XXXXX按摩欧美 |