中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高二數學教案 > 圓的標準方程(通用13篇)

圓的標準方程

發布時間:2023-08-11

圓的標準方程(通用13篇)

圓的標準方程 篇1

  1、教學目標

  (1)知識目標:

  1、在平面直角坐標系中,探索并掌握圓的標準方程;

  2、會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程;

  3、利用圓的方程解決與圓有關的實際問題.

  (2)能力目標:

  1、進一步培養學生用解析法研究幾何問題的能力;

  2、使學生加深對數形結合思想和待定系數法的理解;

  3、增強學生用數學的意識.

  (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

  2、教學重點、難點

  1)教學重點: 圓的標準方程的求法及其應用.

  2)教學難點:①會根據不同的已知條件,利用待定系數法求圓的標準方程

  ②選擇恰當的坐標系解決與圓有關的實際問題.

  3、教學過程

  (一)創設情境(啟迪思維)

  問題一:

  已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  [引導]:畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2+y2=16(y≥0)

  將x=2.7代入,得 

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:

  1根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  答:x2+y2=r2

  2如果圓心在,半徑為時又如何呢?

  [學生活動]:探究圓的方程。

  [教師預設]:方法一:坐標法

  如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為      ①

  把①式兩邊平方,得(x―a)2+(y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問題三:1寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在,半徑為

  (3)經過點,圓心在點

  2根據圓的方程寫出圓心和半徑

  (1)  (2)

  ii.靈活應用(提升能力)

  問題四:1求以為圓心,并且和直線相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2求過點,圓心在直線上且與軸相切的圓的方程.

  [教師引導]應用待定系數法尋找圓心和半徑.

  3已知圓的方程為,求過圓上一點的切線方程.

  [學生活動]探究方法

  [教師預設] [多媒體課件演示]

  方法一:待定系數法(利用幾何關系求斜率—垂直)

  方法二:待定系數法(利用代數關系求斜率—聯立方程)          

  方法三:軌跡法(利用勾股定理列關系式)             

  方法四:軌跡法(利用向量垂直列關系式)

  4你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經過圓上一點的切線的方程是:

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m)。

  [多媒體課件演示創設實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3、求過點,且圓心在直線上的圓的標準方程.

  4求圓x2+y2=13過點p(-2,3)的切線方程.

  5已知圓的方程為,求過點的切線方程.

  (五)小結反思(拓展引申)

  1、課堂小結:

  1)知識性小結:

  ①圓心為c(a,b),半徑為r 的圓的標準方程為:

  當圓心在原點時,圓的標準方程為:

  ②已知圓的方程是,經過圓上一點的切線的方程是:

  2)方法性小結:

  ①求圓的方程的方法:i.找出圓心和半徑;ii.待定系數法

  ②求解應用問題的一般方法

  2、分層作業:(a)鞏固型作業:課本p81-82:(習題7.6)1、2、4

  (b)思維拓展型作業:

  試推導過圓上一點的切線方程.

  3、激發新疑:

  問題七:1、把圓的標準方程展開后是什么形式?

  2方程:的曲線是什么圖形?

  設計說明

  圓是學生比較熟悉的曲線.初中平面幾何對圓的基本性質作了比較系統的研究,因此這節課的重點就放在了用解析法研究它的方程和圓的標準方程的一些應用上.首先,在已有圓的定義和求曲線方程的一般步驟的基礎上,用實際問題引導學生探究獲得圓的標準方程,然后,利用圓的標準方程由潛入深的解決問題,并通過最終在實際問題中的應用,增強學生用數學的意識.另外,為了培養學生的理性思維,我分別在引例和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,能力與知識的形成相伴而行,這樣的設計不但突出了重點,更使難點的突破水到渠成.

  本節課的設計了五個環節,以問題為紐帶,以探究活動為載體,使學生在問題的指引下、我的指導下把探究活動層層展開、步步深入,充分體現以教師為主導,以學生為主體的指導思想,應用啟發式的教學方法把學生學習知識的過程轉變為學生觀察問題、發現問題、分析問題、解決問題的過程,在解決問題的同時提鍛煉了思維、提高了能力、培養了興趣、增強了信心。

圓的標準方程 篇2

  教學目標

  (一)知識目標

  1.掌握圓的標準方程:根據圓心坐標、半徑熟練地寫出圓的標準方程,能從圓的標準方程中熟練地求出圓心坐標和半徑;

  2.理解并掌握切線方程的探求過程和方法。

  (二)能力目標

  1.進一步培養學生用坐標法研究幾何問題的能力;

  2. 通過教學,使學生學習運用觀察、類比、聯想、猜測、證明等合情推理方法,提高學生運算能力、邏輯思維能力;

  3. 通過運用圓的標準方程解決實際問題的學習,培養學生觀察問題、發現問題及分析、解決問題的能力。

  (三)情感目標

  通過運用圓的知識解決實際問題的學習,理解理論來源于實踐,充分調動學生學習數學的熱情,激發學生自主探究問題的興趣,同時培養學生勇于探索、堅忍不拔的意志品質。

  教學重、難點

  (一)教學重點

  圓的標準方程的理解、掌握。

  (二)教學難點

  圓的標準方程的應用。

  教學方法

  選用引導―探究式的教學方法。

  教學手段

  借助多媒體進行輔助教學。

  教學過程

  ⅰ.復習提問、引入課題

  師:前面我們學習了曲線和方程的關系及求曲線方程的方法。請同學們考慮:如何求適合某種條件的點的軌跡?

  生:①建立適當的直角坐標系,設曲線上任一點m的坐標為(x,y);②寫出適合某種條件p的點m的集合p={m ︳p(m)};③用坐標表示條件,列出方程f(x,y)=0;④化簡方程f(x,y)=0為最簡形式。⑤證明以化簡后方程的解為坐標的點都是曲線上的點(一般省略)。[多媒體演示]

  師:這就是建系、設點、列式、化簡四步曲。用這四步曲我們可以求適合某種條件的任何曲線方程,今天我們來看圓這種曲線的方程。[給出標題]

  師:前面我們曾證明過圓心在原點,半徑為5的圓的方程:x2+y2=52 即x2+y2=25.

  若半徑發生變化,圓的方程又是怎樣的?能否寫出圓心在原點,半徑為r的圓的方程?

  生:x2+y2=r2.

  師:你是怎樣得到的?(引導啟發)圓上的點滿足什么條件?

  生:圓上的任一點到圓心的距離等于半徑。即 ,亦即 x2+y2=r2.

  師:x2+y2=r2 表示的圓的位置比較特殊:圓心在原點,半徑為r.有時圓心不在原點,若此圓的圓心移至c(a,b)點(如圖),方程又是怎樣的?

  生:此圓是到點c(a,b)的距離等于半徑r的點的集合,

  由兩點間的距離公式得                           

  即:(x-a)2+(y-b)2= r2

  ⅱ.講授新課、嘗試練習

  師:方程(x-a)2+(y-b)2= r2 叫做圓的標準方程. 

  特別:當圓心在原點,半徑為r時,圓的標準方程為:x2+y2=r2.

  師:圓的標準方程由哪些量決定?

  生:由圓心坐標(a,b)及半徑r決定。

  師:很好!實際上圓心和半徑分別決定圓的位置和大小。由此可見,要確定圓的方程,只需確定a、b、r這三個獨立變量即可。

  1、     寫出下列各圓的標準方程:[多媒體演示]

  ① 圓心在原點,半徑是3   :________________________

  ② 圓心在點c(3,4),半徑是 :______________________

  ③ 經過點p(5,1),圓心在點c(8,-3):_______________________

  2、  變式題[多媒體演示]

  ①     求以c(1,3)為圓心,并且和直線3x-4y-7=0相切的圓的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圓的方程是 (x-a)2 +y2 = a2 ,寫出圓心坐標和半徑。  

  答案: c(a,0),  r=|a|

  ⅲ.例題分析、鞏固應用

  師:下面我們通過例題來看看圓的標準方程的應用.

  [例1]            已知圓的方程是 x2+y2=17,求經過圓上一點p(,)的切線的方程。

  師:你打算怎樣求過p點的切線方程?

  生:要求經過一點的直線方程,可利用直線的點斜式來求。

  師: 斜率怎樣求?

  生:。。。。。。

  師:已知條件有哪些?能利用嗎?不妨結合圖形來看看(如圖)

  生:切線與過切點的半徑垂直,故斜率互為負倒數

  半徑op的斜率 k1=, 所以切線的斜率 k=-=-

  所以所求切線方程:y-= -(x-)

  即:x+y=17   (教師板書)

  師:對照圓的方程x2+y2=17和經過點p(,)的切線方程x+y=17,你能作出怎樣的猜想?

  生:。。。。。。

  師:由x2+y2=17怎樣寫出切線方程x+y=17,與已知點p(,)有何關系?

  (若看不出來,再看一例)

  [例1/]  圓的方程是x2+y2=13,求過此圓上一點(2,3)的切線方程。

  答案:2x+3y=13  即:2x+3y-13=0

  師:發現規律了嗎?(學生紛紛舉手回答)

  生:分別用切點的橫坐標和縱坐標代替圓方程中的一個x和一個y,便得到了切線方程。

  師:若將已知條件中圓半徑改為r,點改為圓上任一點(xo,yo),則結論將會發生怎樣的變化?大膽地猜一猜!

  生:xox+yoy=r2.

  師:這個猜想對不對?若對,可否給出證明?

  生:。。。。。。

  [例2]已知圓的方程是 x2+y2=r2,求經過圓上一點p(xo,yo)的切線的方程。

  解:如圖(上一頁),因為切線與過切點的半徑垂直,故半徑op的斜率與切線的斜率互為負倒數

  ∵半徑op的斜率 k1=,∴切線的斜率 k=-=-

  ∴所求切線方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2   亦即:xox+yoy=r2. (教師板書)

  當點p在坐標軸上時,可以驗證上面方程同樣適用。

  歸納總結:圓的方程可看成 x.x+y.y=r2,將其中一個x、y用切點的坐標xo、yo 替換,可得到切線方程

  [例3]右圖為某圓拱橋的一孔圓拱的示意圖.該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱a2p2的長度。(精確到0.01m)

  引導學生分析,共同完成解答。

  師生分析:①建系; ②設圓的標準方程(待定系數);③求系數(求出圓的標準方程);④利用方程求a2p2的長度。

  解:以ab所在直線為x軸,o為坐標原點,建立如圖所示的坐標系。則圓心在y軸上,設為

  (0,b),半徑為r,那么圓的方程是   x2+(y-b)2=r2.

  ∵p(0,4),b(10,0)都在圓上,于是得到方程組:

  解得:b=-10.5 ,r2=14.52

  ∴圓的方程為 x2+(y+10.5)2=14.52.

  將p2的橫坐標x=-2代入圓的標準方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (m)

  答:支柱a2p2的長度約為3.86m。

  ⅳ.課堂練習、課時小結

  課本p77練習2,3

  師:通過本節學習,要求大家掌握圓的標準方程,理解并掌握切線方程的探求過程和方法,能運用圓的方程解決實際問題.

  ⅴ.問題延伸、課后作業

  (一)若p(xo,yo)在圓(x-a)2+(y-b)2= r2上時,試求過p點的圓的切線方程。

  課本p81習題7.7 : 1,2,3,4

  (二)預習課本p77~p79

  教學設計說明

  設計思想:

  在教學過程中,教師遵循數學發展規律,并依據建構主義教育理論,創設一系列數學實驗環境,在情境中讓學生觀察、類比、猜想、嘗試、探索、歸納并引導加以證明,強調主動建構,從深層次加強學生對知識的感知度,使學生能更好地理解和掌握圓的標準方程。

  設計理念:

  設計的根本出發點是促進學生的發展。教師以合作者的身份參與,課堂上建立平等、互助、融洽的關系,師生共同研究,共同提高。

  設計思路:

  本節課的設計與教材的呈現方式有所不同,教材只是教學的藍本,教師在理解教材編寫意圖的基礎上,應發揮主觀能動作用,對教材資源進行再加工、再創造,這樣教學有利于認知結構與知識結構的有機結合,也有利于學生從深層次理解和掌握圓的標準方程。鑒于此,本節在給出圓的標準方程的過程中,運用簡單、特殊的到復雜、一般的數學思想,使用了觀察、猜測、經驗歸納等方法進行合情地推理,同時引導學生對照圓的幾何形狀,觀察和欣賞圓的方程,體會數學中的美——對稱、簡潔。圓的標準方程的應用是本節的難點。為了突破難點,設計三個例題。第一、二個例題,從特殊到一般給出切線方程,培養學生探究問題的興趣,不斷完善自己的認知結構。第三個例題,充分利用多媒體的動感演示,刺激學生的感官,引起更強的注意,從而使學生理解理論來源于實踐,充分調動學生學習數學的熱情,激發學生自主探究問題的興趣,增強應用意識;同時培養學生勇于探索、堅忍不拔的意志品質。最后設計了“問題延伸”,讓學生帶著問題走進課堂,又帶著問題走出課堂,激發學生不斷求知、不斷探索的欲望。

  在整個教學過程中,主要著眼于“引”,啟發學生“探”,把“引”和“探”有機的結合起來,教師的每項措施都是為了力求給學生創造一種思維情境,一種動手、動腦、動口并且主動參與學習的機會,激發學生求知的欲望,促使學生掌握知識,解決問題。

  媒體設計:

  采用powerpoint媒體。本節知識容量大,同時又有圖形。為了在短時間內完成教學內容,故采用演示文稿的方式,增加信息量,節省時間。同時動態演示圖形,刺激學生的感官,引起更強的注意,提高課堂教學效率。

圓的標準方程 篇3

  一、教材分析本章將在上章學習了直線與方程的基礎上,學習在平面直角坐標系中建立圓的代數方程,運用代數方法研究直線與圓,圓與圓的位置關系,了解空間直角坐標系,在這個過程中進一步體會數形結合的思想,形成用代數方法解決幾何問題的能力。二、教學目標 1、  知識目標:使學生掌握并依據不同條件求得圓的方程。2、  能力目標:(1)使學生初步熟悉的用途和用法。(2)體會數形結合思想,形成代數方法處理幾何問題能力(3)培養學生觀察、比較、分析、概括的思維能力。三、重點、難點、疑點及解決辦法1、重點:的推導過程和特點的明確。2、難點:圓的方程的應用。3、解決辦法              充分利用課本提供的2個例題,通過例題的解決使學生初步熟悉的用途和用法。四、學法在課前必須先做好充分的預習,讓學生帶著疑問聽課,以提高聽課效率。采取學生共同探究問題的學習方法,五、教法先讓學生帶著問題預習課文,對圓的方程有個初步的認識,在教學過程 中,主要采用啟發性原則,發揮學生的思維能力、空間想象能力。在教學中,還不時補充練習題,以鞏固學生對新知識的理解,并緊緊與考試相結合。六、教學步驟 一、導入  新課                     首先讓學生回顧上一章的直線的方程是怎么樣求出的。              二、講授新課1、新知識學習在學生回顧確定直線的要素——兩點(或者一點和斜率)確定一條直線的基礎上,回顧確定圓的幾何要素——圓心位置與半徑大小,即圓是這樣的一個點的集合在平面直角坐標系中,圓心 可以用坐標 表示出來,半徑長 是圓上任意一點與圓心的距離,根據兩點間的距離公式,得到圓上任意一點 的坐標 滿足的關系式。經過化簡,得到                     2、知識鞏固                            學生口答下面問題                            1、求下列各。①     圓心坐標為(-4,-3)半徑長度為6;②     圓心坐標為(2,5)半徑長度為3;2、求下列各圓的圓心坐標和半徑。       ①        ② 3、知識的延伸根據“曲線與方程”的意義可知,坐標滿足方程的點在曲線上,坐標不滿足方程的點不在曲線上,為了使學生體驗曲線和方程的思想,加深對的理解,教科書配置了例1。例1要求首先根據坐標與半徑大小寫出,然后給一個點,判斷該點與圓的關系,這里體現了坐標法的思想,根據圓的坐標及半徑寫方程——從幾何到代數;根據坐標滿足方程來看在不在圓上——從代數到幾何。三、知識的運用       例2給出不在同一直線上的三點,可以畫出一個三角形,三角形有唯一的外接圓,因此可以求出他的標準方程。由于含有三個參數 , ,因此必須具備三個獨立條件才能確定一個圓。引導學生找出求三個參數的方法,讓學生初步體驗用“待定系數法”求曲線方程這一數學方法的使用過程 四、小結一、知識概括1、                     圓心為 ,半徑長度為 的為 2、                     判斷給出一個點,這個點與圓什么關系。3、                   怎樣建立一個坐標系,然后求出。二、思想方法(1)建立平面直角坐標系,將曲線用方程來表示,然后用方程來研究曲線的性質,這是解析幾何研究平面圖形的基本思路,本節課的學習對于研究其他圓錐曲線有示范作用。(2)曲線與方程之間對立與統一的關系正是“對立統一”的哲學觀點在教學中的體現。                     五、布置作業 (第127頁2、3、4題) 

  yxor七、板書設計 一、                     二、

圓的標準方程 篇4

  各位專家:

  您好!我叫陸威,來自江蘇省宿遷中學,今天我說課的課題是“橢圓的標準方程”,下面我從教材分析、教法設計、學法設計、學情分析、教學程序、板書設計和評價設計等七個方面向各位闡述我對本節課的構思與設計。

  一、教材分析

  1、地位及作用

  圓錐曲線是一個重要的幾何模型,有許多幾何性質,這些性質在日常生活、生產和科學技術中有著廣泛的應用。同時,圓錐曲線也是體現數形結合思想的重要素材。

  推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,為學習雙曲線、拋物線內容提供了基本模式和理論基礎。因此本節課具有承前啟后的作用,是本章的重點內容。

  2、教學內容與教材處理

  橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數學方法有觀察、比較、歸納、猜想、推理驗證等,我將以課堂教學的組織者、引導者、合作者的身份,組織學生動手實驗、歸納猜想、推理驗證,引導學生逐個突破難點,自主完成問題,使學生通過各種數學活動,掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。

  3、教學目標

  根據教學大綱和學生已有的認知基礎,我將本節課的教學目標確定如下:

  1.知識目標

  ①建立直角坐標系,根據橢圓的定義建立橢圓的標準方程,

  ②能根據已知條件求橢圓的標準方程,

  ③進一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會數形結合的數學思想。

  2.能力目標

  ①讓學生感知數學知識與實際生活的密切聯系,培養解決實際問題的能力,

  ②培養學生的觀察能力、歸納能力、探索發現能力,

  ③提高運用坐標法解決幾何問題的能力及運算能力。

  3.情感目標

  ①親身經歷橢圓標準方程的獲得過程,感受數學美的熏陶,

  ②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹,

  ③養成實事求是的科學態度和契而不舍的鉆研精神,形成學習數學知識的積極態度。

  4、重點難點

  基于以上分析,我將本課的教學重點、難點確定為:

  ①重點:感受建立曲線方程的基本過程,掌握橢圓的標準方程及其推導方法,

  ②難點:橢圓的標準方程的推導。

  二、教法設計

  在教法上,主要采用探究性教學法和啟發式教學法。以啟發、引導為主,采用設疑的形式,逐步讓學生進行探究性的學習。探究性學習就是充分利用了青少年學生富有創造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學生根據教學目標的要求和題目中的已知條件,自覺主動地創造性地去分析問題、討論問題、解決問題。

  三、學法設計

  通過創設情境,充分調動學生已有的學習經驗,讓學生經歷“觀察——猜想——證明——應用”的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。

  四、學情分析

  1.能力分析

  ①學生已初步掌握用坐標法研究直線和圓的方程,

  ②對含有兩個根式方程的化簡能力薄弱。

  2.認知分析

  ①學生已初步熟悉求曲線方程的基本步驟,

  ②學生已經掌握直線和圓的方程及圓錐曲線的概念,對曲線的方程的概念有一定的了解,

  ③學生已經初步掌握研究直線和圓的基本方法。

  3.情感分析

  學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。

  五、教學程序

  從建構主義的角度來看,數學學習是指學生自己建構數學知識的活動,在數學活動過程中,學生與教材及教師產生交互作用,形成了數學知識、技能和能力,發展了情感態度和思維品質。基于這一理論,我把這一節課的教學程序分成六個步驟來進行。

圓的標準方程 篇5

  1。教學目標

  (1)知識目標: 1。在平面直角坐標系中,探索并掌握圓的標準方程;

  2。會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程。

  (2)能力目標: 1。進一步培養學生用解析法研究幾何問題的能力;

  2。使學生加深對數形結合思想和待定系數法的理解;

  3。增強學生用數學的意識。

  (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣。

  2。教學重點。難點

  (1)教學重點:圓的標準方程的求法及其應用。

  (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關的實際問題。

  3。教學過程

  (一)創設情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑AB所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2。7代入,得 。

  即在離隧道中心線2。7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:1。根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2。如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設M(x,y)是圓上任意一點,根據定義點M到圓心C的距離等于r,所以圓C就是集合P={MMC=r}

  由兩點間的距離公式,點M適合的條件可表示為 ①

  把①式兩邊平方,得(x?a)2 (y?b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

圓的標準方程 篇6

  【一】教學背景分析

  1.教材結構分析

  《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

  2.學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

  根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1) 知識目標:①掌握圓的標準方程;

  ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

  ③利用圓的標準方程解決簡單的實際問題.

  (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

  ②加深對數形結合思想的理解和加強對待定系數法的運用;

  ③增強學生用數學的意識.

  (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

  ②在體驗數學美的過程中激發學生的學習興趣.

  根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4. 教學重點與難點

  (1)重點:圓的標準方程的求法及其應用.

  (2)難點: ①會根據不同的已知條件求圓的標準方程;

  ②選擇恰當的坐標系解決與圓有關的實際問題.

  為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

  【二】教法學法分析

  1.教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.

  2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.

  下面我就對具體的教學過程和設計加以說明:

  【三】教學過程與設計

  整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

  創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學程序與設計意圖.

  首先:縱向敘述教學過程

  (一)創設情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.

  (二)深入探究——獲得新知

  問題二 1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2.如果圓心在,半徑為時又如何呢?

  這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

  得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.

  (三)應用舉例——鞏固提高

  I.直接應用 內化新知

  問題三 1.寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經過點,圓心在點.

  2.寫出圓的圓心坐標和半徑.

  我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.

  II.靈活應用 提升能力

  問題四 1.求以點為圓心,并且和直線相切的圓的方程.

  2.求過點,圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過圓上一點的切線方程.

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經過圓上一點的切線的方程是什么?

  我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.

  III.實際應用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

  我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.

  (四)反饋訓練——形成方法

  問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.

  2.求圓過點的切線方程.

  3.求圓過點的切線方程.

  接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.

  (五)小結反思——拓展引申

  1.課堂小結

  把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法

  ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:.

  ②已知圓的方程是,經過圓上一點的切線的方程是:.

  2.分層作業

  (A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.

  3.激發新疑

  問題七 1.把圓的標準方程展開后是什么形式?

  2.方程表示什么圖形?

  在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

  以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

  橫向闡述教學設計

  (一)突出重點 抓住關鍵 突破難點

  求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.

  第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.

  (二)學生主體 教師主導 探究主線

  本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.

  (三)培養思維 提升能力 激勵創新

  為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.

  以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.

圓的標準方程 篇7

  教學目標:(一)、知識與技能:理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據條件求橢圓的標準方程,會根據橢圓的標準方程求焦點坐標。(二)、過程與方法:讓學生經歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數形結合等數學思想;培養學生運用類比、聯想等方法提出問題。(三)、情感態度與價值觀:通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數學的對稱美、簡潔美,培養學生的審美情趣,形成學習數學知識的積極態度。教學重點:橢圓的標準方程教學難點:橢圓標準方程的推導教學過程:(一)、問題情境:生活中存在著大量的橢圓,比如:餐桌問題1:汽車貯油罐的橫截面的外輪廓線的形狀是橢圓,怎樣設計才能精確地制造它們?問題2:把一個圓壓扁了,像一個橢圓,它究竟是不是橢圓?問題3:電影放映機上的聚光燈泡的反射鏡、運用高能沖擊波擊碎腎結石的碎石機等儀器設備都是運用橢圓的性質制造的。怎樣才能準確地制造它們?學生回憶橢圓的定義:平面內到兩定點f1、f2距離之和等于常數(大于f1f2)的點的軌跡叫做橢圓,兩定點f1、f2叫做橢圓的焦點,兩定點間的距離叫做焦距.注:滿足幾個條件的動點的軌跡叫做橢圓?(1)平面內;若把平面內去掉,則軌跡是什么?(2)橢圓上的點到兩個焦點的距離之和為常數;記為2a;兩焦點之間的距離稱為焦距,記為2c,即: =2c.(3)常數 ,若 ,則軌跡是什么?若 呢?(二)師生探究:1、回顧求圓的標準方程的基本步驟建立坐標系、設點、找等量關系、代入坐標、化簡2、如何建立適當的坐標系?原則:盡可能使方程的形式簡單、運算簡單  (一般利用對稱軸或已有的互相垂直的線段所在的直線作為坐標軸。)①建立適當的直角坐標系:建立直角坐標系xoy,使x軸經過點 ,并且o與線段 的中點重合②設點:設 是橢圓上任意一點,橢圓的焦距為 ,那么焦點 的坐標分別為 .又設m與 的距離之和等于常數 yf2opf1③根據條件 得 所以得: x④化簡:整理得: 由橢圓的定義可知: 令 ,其中 ,代入上式整理得: 思考:怎樣推導焦點在y軸上的橢圓的標準方程?問題1:橢圓標準方程的特點是什么?問題2: 如何判斷橢圓焦點位置?

  橢圓的定義

  平面內到兩個定點 的距離的和等于常數(大于 )的點的軌跡。

  圖形

  標準方程

  焦點坐標

  a,b,c的關系

  焦點位置的判斷

  分母哪個大,焦點就在哪個軸上(三)學生活動一、基礎訓練1、若動點p到兩定點f1(-4,0),f2(4,0)的距離之和為8,則動點p的軌跡為(  b )  a. 橢圓        b. 線段f1f2  c. 直線f1f2     d. 不存在2、求下列橢圓的焦點坐標1、   2、   3、   4、 3、已知橢圓的方程為 ,則     ,     ,     ,焦點坐標為:          ,焦距為        如果曲線上一點p到焦點 的距離為8,則點p到另一個焦點 的距離等于          。二、例題講解例1、求適合下列條件的橢圓方程  (1)a=4,b=3,焦點在x軸上;(2)b=1,  ,焦點在y軸上;(3)若橢圓滿足: , ,焦點在x軸上,求它的標準方程;變:若把焦點在x軸上去掉呢?   (4)兩個焦點分別是 ,且經過 ;(5)已知橢圓經過 兩點,求它的標準方程;解答:(1)      (2)      (3) ,変題:      (4)       (5) 反思研究:(1)求橢圓方程的步驟:1.定型,2.定位,3.定量         (2)橢圓的標準方程可統一成 例2、已知一個運油車上的貯油罐橫截面的外輪廓線是一個橢圓,它的焦距為 m,外輪廓線上的點到兩個焦點之和為3m,求這個橢圓的標準方程。解:以兩焦點 所在直線為 軸,線段 的垂直平分線為 軸,建立直角坐標系 ,則這個橢圓的標準方程為 根據題意知 ,所以 因此,這個橢圓的標準方程為: 課堂小結:這節課我們學習了橢圓的標準方程,掌握了求焦點在x軸上和在y軸上的標準方程,求標準方程常用的方法:待定系數法,坐標轉移法;有時還需要數形結合、分類討論等思想。作業布置教材p30頁習題2.2第2,3,4,5題課后作業:創新作業

圓的標準方程 篇8

  1.教學目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

  (2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力;

  2.使學生加深對數形結合思想和待定系數法的理解;

  3.增強學生用數學的意識.

  (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據不同的.已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關的實際問題.

  3.教學過程

  (一)創設情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經過點 ,圓心在點 .

  2.根據圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關系求斜率-垂直)

  方法二:待定系數法(利用代數關系求斜率-聯立方程)

  方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經過圓上一點 的切線的方程是: .

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創設實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

圓的標準方程 篇9

  圓的標準方程是高中數學的一個重要知識點,下面小編為大家搜集的一篇“高二數學說課稿《圓的標準方程》”,供大家參考借鑒,希望可以幫助到有需要的朋友!

  1.教材結構分析

  《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

  2.學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

  根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1) 知識目標:①掌握圓的標準方程;

  ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

  ③利用圓的標準方程解決簡單的實際問題.

  (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

  ②加深對數形結合思想的理解和加強對待定系數法的運用;

  ③增強學生用數學的意識.

  (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

  ②在體驗數學美的過程中激發學生的學習興趣.

  根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4. 教學重點與難點

  (1)重點:圓的標準方程的求法及其應用.

  (2)難點: ①會根據不同的已知條件求圓的標準方程;

  ②選擇恰當的坐標系解決與圓有關的實際問題.

圓的標準方程 篇10

  教學目標:

  1、掌握圓的標準方程,能根據圓心、半徑寫出圓的標準方程。

  2、會用待定系數法求圓的標準方程。

  教學重點:圓的標準方程

  教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程。

  教學過程:

  (一)、情境設置:

  在直角坐標系中,確定直線的基本要素是什么?圓作為平面幾何中的基本圖形,確定它的要素又是什么呢?什么叫圓?在平面直角坐標系中,任何一條直線都可用一個二元一次方程來表示,那么,圓是否也可用一個方程來表示呢?如果能,這個方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  確定圓的基本條件為圓心和半徑,設圓的圓心坐標為A(a,b),半徑為r。(其中a、b、r都是常數,r>0)設M(x,y)為這個圓上任意一點,那么點M滿足的條件是(引導學生自己列出)P={M||MA|=r},由兩點間的距離公式讓學生寫出點M適合的條件①

  化簡可得:②

  引導學生自己證明為圓的方程,得出結論。

  方程②就是圓心為A(a,b),半徑為r的圓的方程,我們把它叫做圓的標準方程。

  (三)、知識應用與解題研究

  例1.(課本例1)寫出圓心為,半徑長等于5的圓的方程,并判斷點是否在這個圓上。

  分析探求:可以從計算點到圓心的距離入手。

  探究:點與圓的關系的判斷方法:

  (1)>,點在圓外

  (2)=,點在圓上

  (3)<,點在圓內

  解:

  例2.(課本例2)的三個頂點的坐標是求它的外接圓的方程。

  師生共同分析:不在同一條直線上的三個點可以確定一個圓,三角形有唯一的外接圓。從圓的標準方程可知,要確定圓的標準方程,可用待定系數法確定三個參數。

  解:

  例3.(課本例3)已知圓心為的圓經過點和,且圓心在上,求圓心為的圓的標準方程。

  師生共同分析:如圖,確定一個圓只需確定圓心位置與半徑大小。圓心為的圓經過點和,由于圓心與A,B兩點的距離相等,所以圓心在線段AB的垂直平分線m上,又圓心在直線上,因此圓心是直線與直線m的交點,半徑長等于或。

  解:

  總結歸納:(教師啟發,學生自己比較、歸納)比較例2、例3可得出圓的標準方程的兩種求法:

  1、根據題設條件,列出關于的方程組,解方程組得到的值,寫出圓的標準方程。

  ②﹑根據確定圓的要素,以及題設條件,分別求出圓心坐標和半徑大小,然后再寫出圓的標準方程。

  (四)、課堂練習(課本P120練習1,2,3,4)

  歸納小結:

  1、圓的標準方程。

  2、點與圓的位置關系的判斷方法。

  3、根據已知條件求圓的標準方程的方法。

  作業布置:課本習題4。1A組第2,3,4題。

  課后記:

圓的標準方程 篇11

  “說課”有利于提高教師理論素養和駕馭教材的能力,也有利于提高教師的語言表達能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。下面是小編為大家收集的關于高中數學說課稿:《圓的標準方程》,歡迎大家閱讀借鑒!

  高中數學說課稿:《圓的標準方程》

  【一】教學背景分析

  1.教材結構分析

  《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

  2.學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

  根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1) 知識目標:①掌握圓的標準方程;

  ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

  ③利用圓的標準方程解決簡單的實際問題.

  (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

  ②加深對數形結合思想的理解和加強對待定系數法的運用;

  ③增強學生用數學的意識.

  (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

  ②在體驗數學美的過程中激發學生的學習興趣.

  根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4. 教學重點與難點

  (1)重點:圓的標準方程的求法及其應用.

  (2)難點: ①會根據不同的已知條件求圓的標準方程;

  ②選擇恰當的坐標系解決與圓有關的實際問題.

  為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

  【二】教法學法分析

  1.教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.

  2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.

  下面我就對具體的教學過程和設計加以說明:

  【三】教學過程與設計

  整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

  創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學程序與設計意圖.

  首先:縱向敘述教學過程

  (一)創設情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.

  (二)深入探究——獲得新知

  問題二 1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2.如果圓心在,半徑為時又如何呢?

  這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

  得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.

  (三)應用舉例——鞏固提高

  I.直接應用 內化新知

  問題三 1.寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經過點,圓心在點.

  2.寫出圓的圓心坐標和半徑.

  我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.

  II.靈活應用 提升能力

  問題四 1.求以點為圓心,并且和直線相切的圓的方程.

  2.求過點,圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過圓上一點的切線方程.

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經過圓上一點的切線的方程是什么?

  我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.

  III.實際應用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

  我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.

  (四)反饋訓練——形成方法

  問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.

  2.求圓過點的切線方程.

  3.求圓過點的切線方程.

  接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.

  (五)小結反思——拓展引申

  1.課堂小結

  把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法

  ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:.

  ②已知圓的方程是,經過圓上一點的切線的方程是:.

  2.分層作業

  (A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.

  3.激發新疑

  問題七 1.把圓的標準方程展開后是什么形式?

  2.方程表示什么圖形?

  在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

  以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

  橫向闡述教學設計

  (一)突出重點 抓住關鍵 突破難點

  求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.

  第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.

  (二)學生主體 教師主導 探究主線

  本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.

  (三)培養思維 提升能力 激勵創新

  為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.

  以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.

圓的標準方程 篇12

  1.教學目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

  (2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力;

  2.使學生加深對數形結合思想和待定系數法的理解;

  3.增強學生用數學的意識.

  (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關的實際問題.

  3.教學過程

  (一)創設情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經過點 ,圓心在點 .

  2.根據圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關系求斜率-垂直)

  方法二:待定系數法(利用代數關系求斜率-聯立方程)

  方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經過圓上一點 的切線的方程是: .

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創設實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

  (五)小結反思(拓展引申)

  1.課堂小結:

  (1)圓心為c(a,b),半徑為r 的圓的標準方程為:

  當圓心在原點時,圓的標準方程為:

  (2) 求圓的方程的方法:①找出圓心和半徑;②待定系數法

  (3) 已知圓的方程是 ,經過圓上一點 的切線的方程是:

  (4) 求解應用問題的一般方法

  2.分層作業:(a)鞏固型作業:課本p81-82:(習題7.6)1.2.4

  (b)思維拓展型作業:

  試推導過圓 上一點 的切線方程.

  3.激發新疑:

  問題七:1.把圓的標準方程展開后是什么形式?

  2.方程: 的曲線是什么圖形?

  教學設計說明

  圓是學生比較熟悉的曲線,初中平面幾何對圓的基本性質作了比較系統的研究,因此這節課的重點確定為用解析法研究圓的標準方程及其簡單應用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎上,用實際問題引導學生探究獲得圓的標準方程,然后,利用圓的標準方程由淺入深的解決問題,并通過圓的方程在實際問題中的應用,增強學生用數學的意識。另外,為了培養學生的理性思維,我分別在引例和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,能力與知識的形成相伴而行,這樣的設計不但突出了重點,更使難點的突破水到渠成.

  本節課的設計了五個環節,以問題為紐帶,以探究活動為載體,使學生在問題的指引下、教師的指導下把探究活動層層展開、步步深入,充分體現以教師為主導,以學生為主體的指導思想。應用啟發式的教學方法把學生學習知識的過程轉變為學生觀察問題、發現問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力、培養了

  文章來源自3edu教育網興趣、增強了信心

圓的標準方程 篇13

  教學目標:

  1、掌握圓的標準方程,能根據圓心、半徑寫出圓的標準方程。

  2、會用待定系數法求圓的標準方程。

  教學重點:圓的標準方程

  教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程。

  教學過程:

  (一)、情境設置:

  在直角坐標系中,確定直線的基本要素是什么?圓作為平面幾何中的基本圖形,確定它的要素又是什么呢?什么叫圓?在平面直角坐標系中,任何一條直線都可用一個二元一次方程來表示,那么,圓是否也可用一個方程來表示呢?如果能,這個方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  確定圓的基本條件為圓心和半徑,設圓的圓心坐標為A(a,b),半徑為r。(其中a、b、r都是常數,r>0)設M(x,y)為這個圓上任意一點,那么點M滿足的條件是(引導學生自己列出)P={M||MA|=r},由兩點間的距離公式讓學生寫出點M適合的條件①

  化簡可得:②

  引導學生自己證明為圓的方程,得出結論。

  方程②就是圓心為A(a,b),半徑為r的圓的方程,我們把它叫做圓的標準方程。

  (三)、知識應用與解題研究

  例1.(課本例1)寫出圓心為,半徑長等于5的圓的方程,并判斷點是否在這個圓上。

  分析探求:可以從計算點到圓心的距離入手。

  探究:點與圓的關系的判斷方法:

  (1)>,點在圓外

  (2)=,點在圓上

  (3)0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的長度約為3.86M。

  Ⅳ.課堂練習、課時小結

  課本P77練習2,3

  師:通過本節學習,要求大家掌握圓的標準方程,理解并掌握切線方程的探求過程和方法,能運用圓的方程解決實際問題.

  Ⅴ.問題延伸、課后作業

  (一)若P(xo,yo)在圓(x-a)2+(y-b)2= r2上時,?求過P點的圓的切線方程。

  課本P81習題7.7 : 1,2,3,4

  (二)預習課本P77~P79

圓的標準方程(通用13篇) 相關內容:
  • 圓的標準方程教案

    1.教學目標 (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程; 2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程. (2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力; 2.使學生加深對數形結合思想和待定系數法...

  • 2.2.1橢圓的標準方程(精選2篇)

    教學目標:(一)、知識與技能:理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據條件求橢圓的標準方程,會根據橢圓的標準方程求焦點坐標。...

  • 高中數學說課稿:《圓的標準方程》

    說課有利于提高教師理論素養和駕馭教材的能力,也有利于提高教師的語言表達能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。下面是小編為大家收集的關于高中數學說課稿:《圓的標準方程》,歡迎大家閱讀借鑒!高中數學說課稿:《...

  • §2.2.1橢圓的標準方程

    教學目標:(一)、知識與技能:理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據條件求橢圓的標準方程,會根據橢圓的標準方程求焦點坐標。...

  • 完形填空的選擇標準之意識強化(精選2篇)

    Answers about grammar or set phrase1.But somewhere along the way, he made a wrong turn. He became lost in a wilderness of sand rock---a lonely place __42__ the temperature can __43__ top 40℃!42. A. that B. where C....

  • 教育筆記:不要用成人的標準評價孩子的作品

    在《3-6歲兒童學習與發展指南》中明確指出,“成人應對幼兒獨特的藝術表現給予充分的理解和尊重,不能用自己的審美標準去評判幼兒。”在一次繪畫教學中,我讓孩子們畫《美麗的天空》,孩子們有的畫出了互相追逐游戲的云兒,有的畫出了太陽與...

  • 常量、變量、標準函數和表達式

    一、課題:二、教學目標:⑴ 掌握常用的數據類型。⑵ 掌握常量、變量的概念及定義符號常量和變量的方法。⑶ 掌握調用函數的方法。⑷ 掌握算術表達式和字符串表達式。...

  • 工程圖樣及繪圖標準

    (說明:這只是教學內容和知識結構的記述,是對教材構架的充填。)在了解了投影、物體的三視圖、軸測圖的基本知識之后,我們就可以來介紹工程圖樣的有關知識了。因為,它們是繪制工程圖樣的基本依據。...

  • 新標準Module6

    課 時 教 學設 計 首 頁授課時間: 年月 日課 題a postcard form new york.課型presentation第幾課 時 1課時教學目標(三維)知識與技能:學生能夠聽說讀寫單詞someday,chopsticks,soon。...

  • 評課該用怎樣的標準

    ——有感于葉瀾教授的好課五標準 時下,公開課諸如觀摩課、示范課、匯報課等名目繁多,層出不窮,而每次開課后一般都要進行評課。在評課時,教師們大都能暢所欲言。可我發現,評課時教師的意見,往往有不同的觀點,甚至有些是截然相反的。...

  • 評課該用怎樣的標準

    ——有感于葉瀾教授的好課五標準 時下,公開課諸如觀摩課、示范課、匯報課等名目繁多,層出不窮,而每次開課后一般都要進行評課。在評課時,教師們大都能暢所欲言。可我發現,評課時教師的意見,往往有不同的觀點,甚至有些是截然相反的。...

  • 學生禮儀標準

    (一)、儀表方面 1.頭發:男生剪平頭;女生剪短發型的游泳裝。男女生均不湯發、染發。 2.衣服:在學校,統一穿著校服,并要求同一個班的學生在同一天里穿同一款式的校服。全校性的學生集會,要求全校學生穿統一的服裝。...

  • 衡量社會進步的主要標準

    第五課 當代青年的歷史責任1、本課要解決的主要問題:總結人類社會發展的一般過程,闡明,認清歷史前進的大趨勢和當代中國的基本國情,以及當代青年應該如何正確面對人生的重大選擇,自覺擔當歷史賦予我們的崇高使命。...

  • 完形填空的選擇標準之意識強化

    Answers about grammar or set phrase1.But somewhere along the way, he made a wrong turn. He became lost in a wilderness of sand rock---a lonely place __42__ the temperature can __43__ top 40℃!42. A. that B. where C....

  • 完形填空的選擇標準之意識強化

    Answers about grammar or set phrase1.But somewhere along the way, he made a wrong turn. He became lost in a wilderness of sand rock---a lonely place __42__ the temperature can __43__ top 40℃!42. A. that B. where C....

  • 高二數學教案
主站蜘蛛池模板: 精品国产免费看 | 国产亚洲精品久久久97蜜臀 | 99久久人妻无码精品系列 | 琪琪午夜成人理论福利片美容院 | 四虎蜜桃 | 亚洲乱码国产乱码精品精可以看 | 农村熟女大胆露脸自拍 | 免费A级毛片黄A片高清在线播放 | 91影院在线播放 | av天天爽 | 亚洲四区 | 国产成a人亚洲精v品无码性色 | 粉嫩极品国产在线无码 | 免费一区二区三区四区 | 国产精品成人网 | 国产美女视频免费的 | 黄色小说视频网 | 欧美综合婷婷欧美综合五月 | 欧美黄色大片在线观看 | 国产成综合 | 国产在线观看成人 | 国产成人精品一区二三区在线观看 | AV在线网址免费观看不卡 | 欧美日韩国产综合新一区 | 色一欲一性一乱一区二区三区 | 国产麻豆MD传媒视频 | 国产综合一| 中文字幕在线观看视频一区 | 三级一区 | 国产精品玖玖资源站大全 | 精品三级久久 | 97色精品视频在线观看免费 | 人人妻人人澡人人爽国产 | 欧美精品二 | 亚洲最大的AV无码网站 | 7788成人网站免费观看 | 一本大道大臿蕉香蕉网站 | fxⅹee性欧美 | 国产免费a∨片在线软件 | tube国产| 国产成人高清精品免费软件 |