正、反比例的意義(通用6篇)
正、反比例的意義 篇1
教學目標
1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.
教學重點
理解正反比例的意義,掌握正反比例的變化的規律.
教學難點
理解正反比例的意義,掌握正反比例的變化的規律.
教學過程
一、導入 新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量
(三)教師談話
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.寫出路程和時間的比并計算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 這個比值表示什么意義?
(4) 360比5可以嗎?為什么?
……
2.思考
(1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.
3.小結:有什么規律?
教師板書:商不變
(二)成反比例的量
1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.
工效(個)
10
20
30
40
50
60……時間(時)
60
30
20
15
12
10
……
2.教師提問
(1)計算工效和時間的乘積.
(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?
(3)請你舉例說明誰與誰是相對應的兩個數?
(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)
3.小結:有什么規律?(板書:積不變)
(三)不成比例的量
1.出示表格
運走的噸數
10
20
30
40
剩下的噸數
90
80
70
60
總噸數(和不變)
100
100
100
100
2.教師提問
(1)總噸數是怎樣得到的?
(2)誰與誰是兩種相關聯的量?
(3)它們又是怎樣變化的?變化的規律是什么?
運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變
(四)結合三組題觀察、討論、總結變化規律.
討論題:
1.這三組題每組題中誰與誰是兩種相關聯的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化
不同點:第一組商不變,第二組積不變,第三組和不變.
總結:
3.分別概括
4.強調第三組題中兩種相關聯的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關系式
三、鞏固練習
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(元)
1.2
2.4
3.6
4.8
6
7.2
支數
1
2
3
4
5
6
單價(元)
1
2
4
5
10
支數
100
50
25
20
10
(1)表中有哪兩種相關聯的量?
(2)說出幾組這兩種量中相對應的兩個數的比
(3)每組等式說明了什么?
(4)兩種相關的量是否成比例?成什么比例?
2.當速度一定,時間路程成什么比例?
當時間一定,路程和速度成什么比例?
當路程一定,速度和時間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數和剩下的米數.
四、課堂總結
今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質.
五、課后作業
(一)判斷下面每題中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價一定,購買蘋果的數量和總價.
2.輪船行駛的速度一定,行駛的路程和時間.
3.每小時織布米數一定,織布總米數和時間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數.
2.種子的總量一定,每公頃的播種量和播種的公頃數.
3.李叔叔從家到工廠,騎自行車的速度和所需時間.
4.華容做12道數學題,做完的題和沒有做的題.
六、板書設計
正、反比例的意義 篇2
教學目標
1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.
教學重點
理解正反比例的意義,掌握正反比例的變化的規律.
教學難點
理解正反比例的意義,掌握正反比例的變化的規律.
教學過程
一、導入 新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量
(三)教師談話
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.寫出路程和時間的比并計算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 這個比值表示什么意義?
(4) 360比5可以嗎?為什么?
……
2.思考
(1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.
3.小結:有什么規律?
教師板書:商不變
(二)成反比例的量
1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.
工效(個)
10
20
30
40
50
60……時間(時)
60
30
20
15
12
10
……
2.教師提問
(1)計算工效和時間的乘積.
(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?
(3)請你舉例說明誰與誰是相對應的兩個數?
(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)
3.小結:有什么規律?(板書:積不變)
(三)不成比例的量
1.出示表格
運走的噸數
10
20
30
40
剩下的噸數
90
80
70
60
總噸數(和不變)
100
100
100
100
2.教師提問
(1)總噸數是怎樣得到的?
(2)誰與誰是兩種相關聯的量?
(3)它們又是怎樣變化的?變化的規律是什么?
運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變
(四)結合三組題觀察、討論、總結變化規律.
討論題:
1.這三組題每組題中誰與誰是兩種相關聯的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化
不同點:第一組商不變,第二組積不變,第三組和不變.
總結:
3.分別概括
4.強調第三組題中兩種相關聯的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關系式
三、鞏固練習
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(元)
1.2
2.4
3.6
4.8
6
7.2
支數
1
2
3
4
5
6
單價(元)
1
2
4
5
10
支數
100
50
25
20
10
(1)表中有哪兩種相關聯的量?
(2)說出幾組這兩種量中相對應的兩個數的比
(3)每組等式說明了什么?
(4)兩種相關的量是否成比例?成什么比例?
2.當速度一定,時間路程成什么比例?
當時間一定,路程和速度成什么比例?
當路程一定,速度和時間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數和剩下的米數.
四、課堂總結
今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質.
五、課后作業
(一)判斷下面每題中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價一定,購買蘋果的數量和總價.
2.輪船行駛的速度一定,行駛的路程和時間.
3.每小時織布米數一定,織布總米數和時間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數.
2.種子的總量一定,每公頃的播種量和播種的公頃數.
3.李叔叔從家到工廠,騎自行車的速度和所需時間.
4.華容做12道數學題,做完的題和沒有做的題.
六、板書設計
正、反比例的意義 篇3
教學目標
1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.
教學重點
理解正反比例的意義,掌握正反比例的變化的規律.
教學難點
理解正反比例的意義,掌握正反比例的變化的規律.
教學過程
一、導入 新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量
(三)教師談話
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.寫出路程和時間的比并計算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 這個比值表示什么意義?
(4) 360比5可以嗎?為什么?
……
2.思考
(1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.
3.小結:有什么規律?
教師板書:商不變
(二)成反比例的量
1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.
工效(個)
10
20
30
40
50
60……時間(時)
60
30
20
15
12
10
……
2.教師提問
(1)計算工效和時間的乘積.
(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?
(3)請你舉例說明誰與誰是相對應的兩個數?
(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)
3.小結:有什么規律?(板書:積不變)
(三)不成比例的量
1.出示表格
運走的噸數
10
20
30
40
剩下的噸數
90
80
70
60
總噸數(和不變)
100
100
100
100
2.教師提問
(1)總噸數是怎樣得到的?
(2)誰與誰是兩種相關聯的量?
(3)它們又是怎樣變化的?變化的規律是什么?
運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變
(四)結合三組題觀察、討論、總結變化規律.
討論題:
1.這三組題每組題中誰與誰是兩種相關聯的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化
不同點:第一組商不變,第二組積不變,第三組和不變.
總結:
3.分別概括
4.強調第三組題中兩種相關聯的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關系式
三、鞏固練習
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(元)
1.2
2.4
3.6
4.8
6
7.2
支數
1
2
3
4
5
6
單價(元)
1
2
4
5
10
支數
100
50
25
20
10
(1)表中有哪兩種相關聯的量?
(2)說出幾組這兩種量中相對應的兩個數的比
(3)每組等式說明了什么?
(4)兩種相關的量是否成比例?成什么比例?
2.當速度一定,時間路程成什么比例?
當時間一定,路程和速度成什么比例?
當路程一定,速度和時間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數和剩下的米數.
四、課堂總結
今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質.
五、課后作業
(一)判斷下面每題中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價一定,購買蘋果的數量和總價.
2.輪船行駛的速度一定,行駛的路程和時間.
3.每小時織布米數一定,織布總米數和時間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數.
2.種子的總量一定,每公頃的播種量和播種的公頃數.
3.李叔叔從家到工廠,騎自行車的速度和所需時間.
4.華容做12道數學題,做完的題和沒有做的題.
六、板書設計
正、反比例的意義 篇4
教學目標
1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.
教學重點
理解正反比例的意義,掌握正反比例的變化的規律.
教學難點
理解正反比例的意義,掌握正反比例的變化的規律.
教學過程
一、導入 新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量
(三)教師談話
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.寫出路程和時間的比并計算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 這個比值表示什么意義?
(4) 360比5可以嗎?為什么?
……
2.思考
(1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.
3.小結:有什么規律?
教師板書:商不變
(二)成反比例的量
1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.
工效(個)
10
20
30
40
50
60……時間(時)
60
30
20
15
12
10
……
2.教師提問
(1)計算工效和時間的乘積.
(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?
(3)請你舉例說明誰與誰是相對應的兩個數?
(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)
3.小結:有什么規律?(板書:積不變)
(三)不成比例的量
1.出示表格
運走的噸數
10
20
30
40
剩下的噸數
90
80
70
60
總噸數(和不變)
100
100
100
100
2.教師提問
(1)總噸數是怎樣得到的?
(2)誰與誰是兩種相關聯的量?
(3)它們又是怎樣變化的?變化的規律是什么?
運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變
(四)結合三組題觀察、討論、總結變化規律.
討論題:
1.這三組題每組題中誰與誰是兩種相關聯的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化
不同點:第一組商不變,第二組積不變,第三組和不變.
總結:
3.分別概括
4.強調第三組題中兩種相關聯的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關系式
三、鞏固練習
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(元)
1.2
2.4
3.6
4.8
6
7.2
支數
1
2
3
4
5
6
單價(元)
1
2
4
5
10
支數
100
50
25
20
10
(1)表中有哪兩種相關聯的量?
(2)說出幾組這兩種量中相對應的兩個數的比
(3)每組等式說明了什么?
(4)兩種相關的量是否成比例?成什么比例?
2.當速度一定,時間路程成什么比例?
當時間一定,路程和速度成什么比例?
當路程一定,速度和時間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數和剩下的米數.
四、課堂總結
今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質.
五、課后作業
(一)判斷下面每題中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價一定,購買蘋果的數量和總價.
2.輪船行駛的速度一定,行駛的路程和時間.
3.每小時織布米數一定,織布總米數和時間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數.
2.種子的總量一定,每公頃的播種量和播種的公頃數.
3.李叔叔從家到工廠,騎自行車的速度和所需時間.
4.華容做12道數學題,做完的題和沒有做的題.
六、板書設計
正、反比例的意義 篇5
教學內容蘇教版九義小數教科書第十二冊正、反比例的意義設計理念[大膽重組教材,落實新課標的三維的目標]學生的數學學習活動應當是一個生動活潑、主動的和富有個性的過程。改變教與學的方式,創設“現實的、有意義的、學生感興趣的數學問題情境”,引導學生觀察分類、自主探索、合作交流,呈現學生“分類方法”的多樣化,在兩次“分類”中不斷激發學生探究兩種相關聯量變化規律的熱情,在不斷探究兩種相關聯量變化規律的活動中體驗探索成功的樂趣,樹立學好數學的信心。教學目標1、使學生理解正、反比例的意義,能夠初步判斷兩種相關聯的量是否成比例,成什么比例。2、通過觀察、比較、歸納,提高學生綜合概括推理的能力。3、滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育。4、在學生獨立思考的基礎上加強交流,體驗與同伴合作的快樂,培養合作交流的意識,提高學習的信心。教學過程一、創設情境,導入新課1、為更好地服務于同學們,學校食堂新學期推出了一項優惠獎勵措施,同學們,你們知道是什么措施嗎?生:一次性交清本學期伙食費的同學可免費享受15次早餐、每月兩次水果。師:對,請我們班免費享受15次早餐的同學舉手!,你已吃掉了幾次?根據他已吃掉的次數,大家能想到什么?生:還剩多少次?師:你為什么馬上能想到還剩的次數呢?(生:有關系唄!…………)2、[出示表格(1)] 表(1)15次免費早餐,已吃的次數和還剩的次數如下表:已吃的免費早餐(次數)12345……還剩的免費早餐(次數) ……如果吃掉( )次,還剩( )次 ……;觀察表格,你們發現了什么?(吃得次數多,剩余的次數就少)師小結:像這樣[出示板書:“一種量變化,另一種量也隨著變化”],我們就把這兩種量叫做相關聯的量[板書:兩種相關聯的量]這里“已吃的免費早餐(次數)”和“還剩的免費早餐(次數)”是兩種相關聯的量。在實際生活中兩種相關聯的量是很多的,你還能舉出一些例子嗎?3、出示另外四張表格。要求:看懂表格(哪兩種相關聯的量?為什么?)表(2)一列火車行駛的時間和所行的路程如下表:時間(時)1234567……路程(千米)90 270 450 630……表(3)加工一批機器零件,每小時加工的數量和所需的加工時間如下表:工效(個)1020304050……時間(時)6030 12……表(4)運一批貨物,每天運的噸數和需要的天數如下表:每天運的噸數300150100756050……需要的天數1234 ……表(5)長征造紙廠的生產情況如下表:時間(天)1234567……生產量(噸)70140210 490……二、分類比較,講授新課(一)請同學們根據五張表格的變化規律,分類。思考:為什么這樣分?1、先個體,再同桌,同桌統一最合理的分法。2、集體交流。大部分認可的意見:兩類[第一類:(2)(5)第二類(1)(3)(4)](二)觀察第一類,教學正比例的意義。師生共同交流:“為什么把表2和表5分為一類”?根據學生回答,老師整理:1、都有兩種相關聯的量。(如何相關聯的?)2、都是一種量變化,另一種量也隨著變化。(舉例說明變化的規律。)師根據學生發言,相機寫出路程和時間的比,并計算比值.(1)=90(2)=90 2表示什么?180呢?比值呢? (3)=90 這個比值表示什么意義?(4)=90 360比5可以嗎?為什么?*、思考:180千米對應的時間是多少?4小時對應的路程又是多少?在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?(板書:時間、路程、速度)速度是怎樣得到的?(板書:)速度也就是路程和時間的比值,比值相當于除法中的什么?3、小結:有什么規律?(板書:[比值][也就是商]不變)(師說明:“不變“也就是“一定”)(三)觀察第二類,教學反比例的意義。1、師生共同交流:“為什么把(1)(3)(4)分為一類”?2、提問:(1)這一組題中涉及了幾種量?誰與誰是相關聯的量?(2)舉例說明誰與誰是相對應的兩個數?(3)舉例說明在這一組題中兩種相關聯的量是如何變化的? (4)有什么規律?[在討論變化規律中,發現(3)(4)和(1)也不同]3、通過表(3)和表(4)揭示:“積不變”;“反比例的意義”(四)針對表(1)質疑,加深比例表象:表(1)中“已吃的免費早餐(次數)”和“還剩的免費早餐(次數)”這兩種相關聯的量,成比例關系嗎?為什么?說明:表(1)表中相關聯的兩種量,雖“一種量變化,另一種量也隨著變化”,但它們是和不變,不是積不變,也不是商不變,所以它們不存在比例關系。三、再次分類,突出新知。1、通過剛才的學習,現在,如果再請大家給這五張表格分類,你們準備怎么分?為什么?2、四人小組討論。3、集體交流并說理。第一種:(2、5)、(3、4)和(1)三類第二種:(2、5、3、4)和(1)兩類4、表揚并小結:完善正、反比例的意義5、強化:(1)兩種量成正比例必須具備什么條件?(2)兩種量成反比例必須具備什么條件?6、字母關系式。四、鞏固練習,拓展新知。1、集體判斷下面各題中的兩種量是否成比例?成什么比例?為什么?一種圓珠筆:總價(元)1.22.43.64.867.2支數123456 單價(元)124510支數100502520102、四人小組合作判斷下面各題是否成比例?成什么比例?練習三1和4(一人選一道)3、你能舉出一個正比例或反比例的例子嗎?為什么? 生1:一幅地圖上的比例尺是1:60000,圖上距離和實際距離成正比例關系。 生2:圓的直徑和它的周長成正比例關系。生3:乘積是1的兩個數成反比例關系四、課堂總結,提煉本質。今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質。教后反思1、學生學習熱情高漲。激發學生的參與熱情是引導學生主動學習的前提,這里我聯系在校就餐生活,通過學校新學期的“熱門就餐優惠話題”,激起學生探新知的強烈愿望。2、學習方式自主靈活。特別是“分類比較,講授新課”的教學,經歷了“明確探究目標”----“個體獨立思考”----“小組合作探究”----“班內匯報交流”----“表1設疑點睛”等幾個重要環節,注重了科學的學習方法的滲透與培養,尊重學生的學習成果,在尊重的基礎上,揭示“正反比例的意義”。
3、數學源于生活,又用于生活。聯系生活創設問題情境是新課標精神的體現。教學中,我能從創設生活數學問題入手,進入新課學習,在學生掌握新知的基礎上,又回到問題情境的創設上,同時還提供一個更具有綜合性、開放性的題目:“你能舉出一個正比例或反比例的例子嗎?為什么?”4、重組教材,使思維更具靈性。教材中是把正反比例分塊教學,雖有便于教學的優勢,學生也易于接受,但我覺得,會使學生的思維過于模式化,缺乏靈性。為此,我大膽重組教材中的正反比例例子,把正反比例的意義通過五張表格分類探究進行教學,從而水到渠成地落實了三維目標。
正、反比例的意義 篇6
教學目標
1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.
教學重點
理解正反比例的意義,掌握正反比例的變化的規律.
教學難點
理解正反比例的意義,掌握正反比例的變化的規律.
教學過程
一、導入 新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量
(三)教師談話
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.寫出路程和時間的比并計算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 這個比值表示什么意義?
(4) 360比5可以嗎?為什么?
……
2.思考
(1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.
3.小結:有什么規律?
教師板書:商不變
(二)成反比例的量
1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.
工效(個)
10
20
30
40
50
60……時間(時)
60
30
20
15
12
10
……
2.教師提問
(1)計算工效和時間的乘積.
(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?
(3)請你舉例說明誰與誰是相對應的兩個數?
(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)
3.小結:有什么規律?(板書:積不變)
(三)不成比例的量
1.出示表格
運走的噸數
10
20
30
40
剩下的噸數
90
80
70
60
總噸數(和不變)
100
100
100
100
2.教師提問
(1)總噸數是怎樣得到的?
(2)誰與誰是兩種相關聯的量?
(3)它們又是怎樣變化的?變化的規律是什么?
運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變
(四)結合三組題觀察、討論、總結變化規律.
討論題:
1.這三組題每組題中誰與誰是兩種相關聯的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化
不同點:第一組商不變,第二組積不變,第三組和不變.
總結:
3.分別概括
4.強調第三組題中兩種相關聯的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關系式
三、鞏固練習
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(元)
1.2
2.4
3.6
4.8
6
7.2
支數
1
2
3
4
5
6
單價(元)
1
2
4
5
10
支數
100
50
25
20
10
(1)表中有哪兩種相關聯的量?
(2)說出幾組這兩種量中相對應的兩個數的比
(3)每組等式說明了什么?
(4)兩種相關的量是否成比例?成什么比例?
2.當速度一定,時間路程成什么比例?
當時間一定,路程和速度成什么比例?
當路程一定,速度和時間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數和剩下的米數.
四、課堂總結
今天這節課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關系還是反比例的關系,要抓住兩種相關聯的量的變化規律,這是本質.
五、課后作業
(一)判斷下面每題中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價一定,購買蘋果的數量和總價.
2.輪船行駛的速度一定,行駛的路程和時間.
3.每小時織布米數一定,織布總米數和時間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數.
2.種子的總量一定,每公頃的播種量和播種的公頃數.
3.李叔叔從家到工廠,騎自行車的速度和所需時間.
4.華容做12道數學題,做完的題和沒有做的題.
六、板書設計