正比例的意義(通用13篇)
正比例的意義 篇1
教學內容:教科書第19—21頁,練習六的1—3題。
教學目的:
1.使學生理解,能夠根據判斷兩種量是不是成正比例。
2.初步培養學生用事物相互聯系和發展變化的觀點來分析問題。
3.初步滲透函數思想。
教具準備:投影儀、投影片、小黑板。
教學過程 :
一、復習
用,投影片逐一出示下面的題目,讓學生回答。
1.已知路程和時間,怎樣求速度?板書: =速度
2.已知總價和數量,怎樣求單價?板書: =單價
3.己知工作總量和工作時間,怎樣求工作效率?板書:
=工作效率
4,已知總產量和公頃數,怎樣求公頃產量?板書: =公頃產量
二、導人新課
教師:這是我們過去學過的一些常見的數量關系。這節課我們進一步來研究這些數量關系中的一些特征,首先來研究這些數量之間的正比例關系。(板書課題:)
三、新課
1.教學例1。
用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:
提問:
“誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)
“表中有哪幾種量?”
“當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”
“這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)
教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯的量。(板書:兩種相關聯的量)“時間和路程是兩種相關聯的量,路程是怎樣隨著時間變化而變化的呢?”
教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發現路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規律是怎么樣的呢?
讓每一小組(8個小組)的同學選一組相對應的數據,計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規律。教師板書:相對應的兩個數的比值(也就是商)一定。
然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)
教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯的量。)路程和時間這兩種量的變化規律是什么呢?(路程和時間的比的比值(速度)總是一定的。)
2.教學例2。
出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數和總價的表。
讓學生觀察上表,并回答下面的問題:
(1)表中有哪兩種量?
(2)米數擴大,總價怎樣?米數縮小,總價怎樣?
(3)相對應的總價和米數的比各是多少?比值是多少?
當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……
然后進一步問:
“這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)
教師小結:通過剛才的思考和分析,我們知道總價和米數也是兩種相關聯的量,總價是隨著米數的變化而變化的,米數擴大,總價也隨著擴大;米數縮小,總價也隨著縮小。它們擴大、縮小的規律是:總價和米數的比的比值總是一定的。
3.抽象概括。
教師:請同學們比較一下剛才這兩個例題,回答下面的問題;
(1)都有幾種量?
(2)這兩種量有沒有關系?
(3)這兩種量的比值都是怎樣的?
教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數第二段。)
接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯的量:它們是不是成正比例的量?為什么?
最后教師提出:如果我們用字母X,y表示兩種相關聯的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?
學生回答后,教師板書: =K(一定)
4,教學例3。
出示例3:每袋面粉的重量一定,面粉的總重量和袋數是不是成正比例?
教師引導:
“面粉的總重量和袋數是不是相關聯的量?”·
“面粉的總重量和袋數有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的總重量和袋數的比的比值是一定的,所以面粉的總重量和袋數成正比例。”
5.鞏固練習。
讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產效率和每天生產的噸數都可以。
四、課堂練習
完成練習六的第1—3題。
第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)
第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。
正比例的意義 篇2
教學目標
1.使學生初步認識正比例的意義、掌握正比例意義的變化規律。
2.學會判斷成正比例關系的量。
3.進一步培養學生觀察、分析、概括的能力。
教學重點和難點
理解正比例的意義,掌握正比例變化的規律。
教學過程 設計
(一)復習準備
請同學口述三量關系:
(1)路程、速度、時間;(2)單價、總價、數量;(3)工作效率、時間、工作總量。
(學生口述關系式、老師板書。)
(二)學習新課
今天我們進一步研究這些數量關系中的一些特征,請同學們回答老師的問題。
幻燈出示:
一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?
生:60千米、120干米、180千米……
師:根據剛才口答的問題,整理一個表格。
出示例1。(小黑板)
例1 一列火車行駛的時間和所行的路程如下表。
師:(看著表格)回答下面的問題。表中有幾種量?是什么?
生:表中有兩種量,時間和路程。
師:路程是怎樣隨著時間變化的?
生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……
師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關聯的量。
(板書:兩種相關聯的量)
師:表中誰和誰是兩種相關聯的量?
生:時間和路程是兩種相關聯的量。
師:我們看一看他們之間是怎樣變化的?
生:時間由1小時變2小時,路程由60千米變為120千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。
師:現在我們從后往前看,時間由8小時變為7小時、6小時、4小時……路程又是如何變化的?
生:路程由480千米變為420千米、360千米……
師:從上面變化的情況,你發現了什么樣的規律?(同桌進行討論。)
生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。
師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?
(分組討論)
師:請同學發表意見。
生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。
師:我們對這種變化規律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規律是什么?
師:根據時間和路程可以求出什么?
生:可以求出速度。
師:這個速度是誰與誰的比?它們的結果又叫什么?
生:這個速度是路程和時間的比,它們的結果是比值。
師:這個60實際是什么?變化了嗎?
生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。
駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。
師:誰是定量時,兩種相關聯的量同擴同縮?
生:速度一定時,時間和路程同擴同縮。
師:對。這兩種相關聯的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應的商是不是一定。
(學生口算驗證。)
生:都是60千米,速度不變,符合變化的規律,同擴同縮。
師:同學們總結得很好。時間和路程是兩種相關聯的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規律是:路程和時間的比的比值總是一樣的。
師:誰能像老師這樣敘述一遍?
(看黑板引導學生口述。)
師:我們再看一題,研究一下它的變化規律。
出示例2。(小黑板)
例2 某種花布的米數和總價如下表:
(板書)
按題目要求回答下列問題。(幻燈)
(1)表中有哪兩種量?
(2)誰和誰是相關聯的量?關系式是什么?
(3)總價是怎樣隨著米數變化的?
(4)相對應的總價和米數的比各是多少?
(5)誰是定量?
(6)它們的變化規律是什么?
生:(答略)
師:比較一下兩個例題,它們有什么共同點?
生:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。
師:對。兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是今天我們學習的新內容。(板書課題:正比例的意義)
師:你能按照老師說的敘述一下例1中兩個相關聯的量之間的關系嗎?
生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關系是正比例關系。
師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)
師:很好。請打開書,看書上是怎樣總結的?
(生看書,并畫出重點,讀一遍意義。)
師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯的量與定量的關系?
師:你能舉出日常生活中成正比例關系的兩種相關聯的量的例子嗎?
生:(答略)
師:日常生活和生產中有很多相關聯的量,有的成正比例關系,有的是相關聯,但不成比例關系。所以判斷兩種相關聯的量是否成正比例關系,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關系。
(三)鞏固反饋
1.課本上的“做一做”。
2.幻燈出示題,并說明理由。
(1)蘋果的單價一定,買蘋果的數量和總價( )。
(2)每小時織布米數一定,織布總米數和時間( )。
(3)小明的年齡和體重( )。
(四)課堂總結
師:今天主要講的是什么內容?你是如何理解的?
(生自己總結,舉手發言。)
師:打開書,并說出正比例的意義。有什么不明白的地方提出來。
(五)布置作業
(略)
課堂教學設計說明
第一部分:復習三量關系,為本節內容引路。
第二部分:新課從創設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯的兩個量、商一定展開思路,結合例題中的數據整理知識,發現規律,由討論表象到抽象概念,使知識得到深化。
第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節重點,突破難點。安排適當的練習題,在反復的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業 ,進一步鞏固所學知識。
總之,在設計教案的過程中,力爭體現教師為主導,學生為主體的精神,使學生認識結構不斷發展,認識水平不斷提高,做到在加強雙基的同時發展智力,培養能力,并為以后學習打下良好的基礎。
板書設計
正比例的意義 篇3
教學內容:教材第39—41頁例1一例3、“練一練”,練習八第1—3題。
教學要求:
1.使學生認識正比例關系的意義,理解、掌握成正比例量的變化規律及其特征,能依據判斷兩種相關聯的量成不成正比例關系。
2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯量成不成正比例關系的方法,培養學生判斷、推理的能力。
教學重點:認識正比例關系的意義。
教學難點 :掌握成正比例量的變化規律及其特征。
教學過程 :
一、復習鋪墊
1.說出下列每組數量之間的關系。
(1)速度 時間 路程
(2)單價 數量 總價
(3)工作效率 工作時間 工作總量
2.引入新課。
上面是已經學過的一些常見數量關系,每組數量中,數量之間是有聯系的,存在著相依關系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規律的,這節課開始,我們就來研究和認識這種變化規律。今天,先認識正比例關系的意義。(板書課題)
二、教學新課
1.教學例1。
出示例l。讓學生計算,在課本上填表,并思考能發現什么。指名口答,老師板書填表。讓 學 生觀察表里兩種量變化的數據,思考:
(1)表里有哪兩種數量,這兩種數量是怎樣變化?
(2)路程和時間相對應數值的比的比值各是多少?這兩種量變化有什么規律?
引導學生進行討論,得出:
(1)表里的兩種量是所行時間和所行路程。路程和時間是兩種相關聯的量,(板書:兩種相關聯的量)路程隨著時間的變化而變化。
(2)時間擴大,路程也擴大;時間縮小,路程也縮小。
(3)可以看出它們的變化規律是:路程和時間比的比值總是一定的。(板書:路程和時間比的比值一定)因為路程和時間對應數值比的比值都是50。提問:這里比值50是什么數量?(誰能說出它的數量關系式?想一想,這個式子表示的是什么意思?(把上面板書補充成:速度一定時,路程和時間比的比值一定)
2.教學例2。
出示例2和思考題。要求學生按剛才學習例1的方法學習例2,然后把你學習中的發現綜合起來告訴大家。學生觀察思考后,指名回答。然后再提問:這兩種相關聯量的變化規律是什么?枝數比的比值一定)你是怎樣發現的?比值1.6是什么數量,你能用數量關系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成c單價一定時,總價和枝數比的比值一定)
3.概括。
(1)綜合例1、例2的共同點。
提問:請大家比較例l和例2,你發現這兩個例題有什么共同的地方?(①都有兩種相關聯的量;②都是一種量隨著另一種量變化;③兩種量里對應數值的比的比值一定)
(2)概括正比例關系的意義。
像例l、例2里這樣的兩種相關聯的量是怎樣的關系呢,請同學們看課本第40頁最后一節。說明:根據剛才學習例1、例2時發現的規律,這里有兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。追問;兩種相關聯量成不成正比例的關鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的比值,那么上面這種數量關系式可以怎樣寫呢? 指出:這個式子表示兩種相關聯的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關系。所以,兩個量成正比例關系,我們就用式子 =k (一定)來表示。
4.具體認識。
(1)提問:例l里有哪兩種相關聯的量?這兩種量成正比例關系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關聯的量是不是成正比例,關鍵要看什么?
(2)做練習八第1題。
讓學生讀題思考。指名依次口答題里的問題。指出:根據上面所說的,要知道兩個量是不是成正比例關系,只要先看兩種量是不是相關聯的量,再看兩種量變化時比值是不是一定。如果兩種相關聯的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關系。
5.教學例3。
出示例3,讓學生思考。提問:怎樣判斷是不是成正比例?哪位同學說說零件總數和時間成不成正比例?為什么?請同學們看一看例3,書上怎樣判斷的,我們說得對不對。追問:判斷兩種量是不是成正比例要怎樣想?強調:關鍵是列出關系式,看是不是比值一定。
三、鞏固練習
現在,我們根據上面的判斷方法來做一些題。
1.做“練一練”第l題。
指名學生口答,說明理由。可以結合寫出數量關系式。
2.做“練一練”第2題。
指名口答,并要求說明理由。
3.做練習八第2題。
小黑板出示。讓學生把成正比例關系的先勾出來。指名口答,選擇幾題讓學生說一說怎樣想的?(必要時寫出關系式讓學生判斷)
4.下列題里有哪兩種相關聯的量?這兩種量成不成正比例?為什么?
一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。
四、課堂小結
這節課學習了什么內容?正比例關系的意義是什么?用怎樣的式子表示y和x這兩種相關聯的量成正比例?判斷兩種相關聯的量是不是成正比例,關鍵看什么?
五、家庭作業
練習八第3題。
正比例的意義 篇4
一、教學背景分析
1、教材分析
首先是這節課的教學背景,正比例的意義是小學數學“數與代數”當中重要的內容之一,也是學生系統學習函數的開始。提起函數,可以簡單的說:函數是一種以運動和變化的觀點來反映兩種數量之間相互聯系的一種數學模型。而正比例的意義,正比例關系也是當中最簡單最線性的關系,其實在學生以往的學習過程當中,比如說探索規律,還有對數量關系、運算公式的學習,包括字母表示數以及統計圖、統計表的認識,以及比和比例等內容,都為學生學習正比例的意義奠定了一定的知識基礎。同時,正比例意義的學習將直接為反比例意義的學習提供研修方法和研修模式,又為后續的解決實際問題,乃至于將在初中系統的學習函數做好了知識和方法的準備。
2、學情分析
剛剛談到了學生已有的知識經驗,另外從學生的學習情況來考慮,在課前訪談中,通過學生對于涉及的兩種相變化的量思考的時候,還能夠結合自己充分的生活經驗,舉出了大量實例。比如在訪談中,當涉及到“兩種相關聯的量”這個話題的時候,有的孩子就說:大樹生長的高度跟它生長的年份相關系,還有的說一天當中氣溫是隨著時間的變化而發生變化的等等。這些展示出了孩子對于日常生活中那種變化現象的關注和探究的興趣。但是不可否認的是從學生面對正比例的學習角度來看,這方面的學習還是存在一定的認知困難的,因為從研究數量關系的角度來看,應該說孩子對以往的數量關系,包括一些運算公式有了比較清晰的了解,比如說路程、時間、速度這組常見的數量關系,應該說孩子比較熟悉,但是還僅僅停留在對具體問題的解決上,而正比例的意義是要從一種運動和變化的觀點去理解數量間的關系,要通過觀察、分析兩種數量之間的變化情況,變化規律,進而達到對兩個變量關系的進一步理解。因此說學生對數量關系的認識和思考將從以往的靜態過渡到今天的動態觀察分析,乃至于抽象概括上來。這種研究問題的角度,學生相對來說還是比較陌生的。
二、我的思考
基于以上的了解,我進行了這樣的思考。關于正比例意義的學習,是僅僅讓學生記住描述正比例意義的一段文字,還是說僅僅讓學生能夠記住關于正比例的關系式,或者說能利用正比例意義,利用關系式進行判斷等等。能做到這些就夠了嗎?經過思考,不難發現,事實上這些僅僅是基本知識、基本技能的層面,學生學習正比例的意義,應該在系統地認識所謂函數的這樣一個大的背景下來展開,其更深遠的價值在于學生以一種運動和變化的觀點,變化的眼光來看待生活中的現象,應該在變化當中尋求對應關系,在對應中確定事物間的聯系,從而實現從另外一個角度,或者說與以往觀察的角度不同的理解,來促進學生進一步的理解常見的數量關系。基于這一部分內容的抽象性,也應該在教學過程中適當的采取文字、表格、關系式和圖像等多種形式來促進學生的理解,從而有意義的建構正比例的意義。
三、教學目標
基于以上的思考,我制定了本課的教學目標如下:
1、在具體情境中認識成正比例的量,理解正比例的意義,并能結合生活實例進行判斷。
2、在借助多種形式理解正比例意義的過程中,培養學生的觀察、比較和抽象概括能力。
3、進一步體會數學與現實的密切聯系,滲透數形結合思想和初步的函數思想。
四、教學重難點
本課的教學重點是理解正比例的意義,掌握正比例關系的判斷方法。教學難點比較突出,通過多種形式的表征來豐富學生的認識,從而達到深入理解正比例的意義。
五、教學過程
第五方面是教學過程,我將從以下四個方面來進行。一是情境引入,初步感知,二是聯系實際,建立意義,三是鞏固練習,促進理解,四是質疑總結,拓展延伸。
1、情境引入,初步感知
首先是課堂的起始階段,從情境引入,初步引發學生對兩種相關聯量的感知,出示這樣一個實際的調查表,是一個男孩的體重變化情況,從出生到七周歲,當然這個表格的出示可以用動態的形式來呈現,隨著出生后年齡的變化,而逐個出示與之相對應體重的具體情況。當觀察表格之后,明確引發學生思考:通過觀察這個表格,你有什么發現?引發孩子具體觀察里邊的數據,當然這個過程學生很快就會意識到,這個小男孩的體重是隨著他年齡的變化而變化的。從而產生兩種相互依賴的相關聯的量這樣一層含義。而后是引導學生繼續結合自己的日常生活舉例,比如說剛才所提到的課前調研到的:樹木生長的高度與年份的問題,包括孩子一些感興趣的話題,都可以借助這個機會引導學生充分舉例,老師適時的呈現關于這個樹木生長的話題,以曲線統計圖的形式來豐富學生的理解,進一步提高學生對于圖像當中所反映問題的初步思考。
剛才的兩個情境,其實并沒有直接進入典型的正比例關系這樣一個話題,而是從學生已有的生活經驗出發,引導學生明確地認識到:只要是一種量變化,引起另一種量發生變化,那么這兩種量就是相關聯的量,并且充分感知,大量實例證明兩種相關聯的量在我們現實世界中是廣泛存在的。以上是課堂的第一個環節。
2、聯系實際,建立意義
第二是聯系實際,建立意義的過程。首先呈現的是兩幅表格,第一個是關于老師步行回家的時間和路程的統計表,還是以動態的逐個逐列的呈現形式來進行,老師步行回家1分鐘80米,2分鐘140米,一直到8分鐘提出明確的與之相對應的問題:8分鐘行多少米?第二個表格是國慶時三軍儀仗隊通過天安門受閱區時間和路程的統計表,形式大致相同,但是觀察兩個表格,可以明確引發學生進一步思考,在完成表格填空的過程中,不難發現,都是關于步行時間和路程的統計表。為什么第一幅表格不能確定準確的與8分鐘相對應的路程,而第二幅表格卻通過推算、簡單的思考,能夠確定出準確的路程呢?
那么,通過具體的觀察、討論,學生們可以明確的意識到雖然時間和路程這兩種相關聯的量是在不斷發生著變化,這一點不容置疑,但是仔細觀察,兩種量中相對應的數據,我們也可以明確的發現,三軍儀仗隊通過天安門受閱區的時候,他們所步行的速度是保持不變的,也就是能夠算出準確的與8分鐘相對應的路程。當然這個素材的選取也是經過一定思考的,比如相關的還有一些信息也可以藉此機會給學生提供,比如說還是關于天安門受閱區三軍儀仗隊的通過問題,還有相關的信息,比如說每步行進75厘米,一分鐘116步,通過天安門整個受閱區911步,分秒不差這樣一個奇跡,增強學生的民族自豪感,從中也可以結合豐富的信息積累更多的經驗,包括可以進行以后的初步判斷等等。以上是第一個表格的問題。
第二個問題呢,是想豐富學生的進一步感知的材料,準備以單價、數量、總價這組常用的數量關系來進行,大致情況是這樣的:首先是以圖像的形式呈現部分數據,一個是蘋果的質量,一個是總價。1千克對應的是5元,2千克對應的是10元,3千克對應的是15元,這里突出的是以圖像的形式呈現對應。在此基礎上,可以直觀的發現蘋果的單價,并且可以利用學生獲取的這樣一些數據信息,引發學生進一步思考:買6千克蘋果需要多少元呢?這里學生可以借助單價進行簡單的計算,從而確定出與6千克對應的點的位置,其實孩子可以借助剛才三個點的發展變化趨勢,來推測出與6千克相對應的點的位置。而后可以進一步借助圖像增進學生的理解,也就是還可以購買不同質量的蘋果,而且都能在這個圖中找出與之相對應的價錢。無數多個點集合在一起,并通過連點成線,就更明確地發現了事物的變化趨勢,從而以運動和變化過程中的觀點去認識變與不變的內在規律。當然還可以涉及到更多的價錢,乃至于0千克的價錢,從而完善了學生對這條直線的一個明確的認識。當然這個過程也是進一步讓學生理解到總價是隨著數量的變化而變化的,蘋果的單價始終保持不變,所關注的還是內在規律,這樣就把數據信息和圖像信息有機的結合在一起。
接下來為了實現從圖像和表格的多種形式融合,將上述內容移植到表格當中去,從而初步實現圖像和表格的進一步溝通。通過以上兩個情境的具體材料,應該說學生對于正比例的意義已經有了一個初步的認識。
接下來的環節就是借助剛剛兩個事例引導學生進行明確的對比和溝通,從而找到兩個事例當中的共同點。當然孩子可以借助自己的理解,用文字的形式進行表達,老師也可以進一步豐富學生的認識,可以借助手勢的形式來進行。比如說剛才所提到的兩個事例當中,都涉及到兩種相關聯的量,一種量變化,另一種量也隨著變化。具體來說是一種量擴大,另一種量也隨之擴大(手勢),一種量縮小的話,另一種量也隨之縮小(手勢)。同時,這兩種量中相對應的兩個數的比值是保持不變的。從而以文字和手勢的形式明確正比例的意義。當然還要引導學生進一步關注以關系式的形式來進行總結概括。這樣的情況下,通常都可以采用一個關系式來進行,剛才所涉及到的路程、時間和速度,總價、數量和單價都可以用字母的形式來明確概括,即y/x=k(一定)的形式。從而初步引導學生用多種形式完成對正比例意義的初步概括。
以上這個環節給孩子提供了熟悉的情境,通過觀察、分析、對比和抽象概括的過程,努力地抓住了示例中兩個量變化的基本特點,進而總結和概括出正比例的意義。
3、鞏固練習,促進理解
課堂的第三大環節是鞏固練習,促進理解。首先是利用表格的一個判斷形式,表格中所涉及到的是關于總價隨著單價的變化而發生變化,但是始終不變的是什么?是買3只筆的這樣一個常量。這道練習題目的設計,努力克服掉了剛剛學生所形成的總價/數量=單價(一定)的思維定式,從而實現關注整個事情變化兩種相關聯量的理解,以及到底誰沒有發生變化這樣一個關注點,進一步促進學生理解,同時,這里還有一個訓練表達的問題。
第二個練習是進一步豐富學生的判斷經驗,引導學生用連貫的、完整的話來進行分析和判斷。是判斷下面問題中的兩種量是否成正比例關系,第①個練習很清晰,每分鐘打字50個,請思考打字的總數和打字的時間是否成正比例關系。這道題的訓練目的是引導孩子初步形成判斷正比例的方法以及表達的步驟。當然學生也可以舉出實例,具體的數據加以解釋說明。第②個判斷的題目是正方形的周長與邊長。它的目的是在于引導學生關注周長與邊長之間固定不變的四倍關系這個常量的思考,從而引導學生進一步引發判斷時應該注意關注對定量的思考。第③個是一本書有200頁,每天讀20頁,看過的頁數和剩下的頁數, 這里明顯是總和一定,從而進一步引發學生思考,判斷兩種量是否成正比例關系,至關重要的是看他們兩種量行對應的比值是否一定,才能下結論。第④個是借助函數圖像的形式來豐富學生的判斷。就是以圖像的形式來判斷大樹的生長時間和生長的高度是否成比例關系。當然這里還可以通過計算去解決,也可以通過直觀預測和推斷來完成判斷過程。到15年后,大樹的高度是不再生長的,現在不能準確說它成正比例關系。
4、質疑總結,拓展延伸
課堂最后一個環節是質疑總結,拓展延伸。通過設計這樣一個開放一點的題目來進行,就是觀察圖中信息,你有什么發現?
這里還是以圖像形式來進行的,引出香蕉和蘋果兩種水果的單價與總價之間變化情況圖像,引發學生思考:這里學生的發現應該是開放的,可以借助直觀的圖像找到相對應的價錢,比如說香蕉3千克是24元,蘋果5千克是20元等等找到單價,計算單價。也可以通過描述發展變化的情況,變化的規律進行準確地判斷,總價是隨著數量的變化而變化的,是成正比例關系的。還可以從另外一個角度來思考,兩種線,藍顏色的線和紅顏色的線傾斜的角度是不一樣的,從而初步滲透所謂的一次函數y=ks,k值的傾斜角度的感知和理解。以上是課堂的主體環節。
六、教學特色
如果從教學特色來看,有以下兩點,一是關注知識系統抓本質,二是注重多種表達促理解。
以上只是基于已有的教學經驗和對學生的初步了解所形成的教學設計,還需要進一步在教學實踐中檢驗,也誠懇希望得到各位領導和老師的寶貴意見。我的說課就到這里,謝謝大家。
正比例的意義 篇5
教學目標
1.使學生初步認識正比例的意義、掌握正比例意義的變化規律。
2.學會判斷成正比例關系的量。
3.進一步培養學生觀察、分析、概括的能力。
教學重點和難點
理解正比例的意義,掌握正比例變化的規律。
教學過程設計
(一)復習準備
請同學口述三量關系:
(1)路程、速度、時間;(2)單價、總價、數量;(3)工作效率、時間、工作總量。
(學生口述關系式、老師板書。)
(二)學習新課
今天我們進一步研究這些數量關系中的一些特征,請同學們回答老師的問題。
幻燈出示:
一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?
生:60千米、120干米、180千米……
師:根據剛才口答的問題,整理一個表格。
出示例1。(小黑板)
例1 一列火車行駛的時間和所行的路程如下表。
師:(看著表格)回答下面的問題。表中有幾種量?是什么?
生:表中有兩種量,時間和路程。
師:路程是怎樣隨著時間變化的?
生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……
師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關聯的量。
(板書:兩種相關聯的量)
師:表中誰和誰是兩種相關聯的量?
生:時間和路程是兩種相關聯的量。
師:我們看一看他們之間是怎樣變化的?
生:時間由1小時變2小時,路程由60千米變為120千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。
師:現在我們從后往前看,時間由8小時變為7小時、6小時、4小時……路程又是如何變化的?
生:路程由480千米變為420千米、360千米……
師:從上面變化的情況,你發現了什么樣的規律?(同桌進行討論。)
生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。
師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?
(分組討論)
師:請同學發表意見。
生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。
師:我們對這種變化規律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規律是什么?
師:根據時間和路程可以求出什么?
生:可以求出速度。
師:這個速度是誰與誰的比?它們的結果又叫什么?
生:這個速度是路程和時間的比,它們的結果是比值。
師:這個60實際是什么?變化了嗎?
生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。
駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。
師:誰是定量時,兩種相關聯的量同擴同縮?
生:速度一定時,時間和路程同擴同縮。
師:對。這兩種相關聯的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應的商是不是一定。
(學生口算驗證。)
生:都是60千米,速度不變,符合變化的規律,同擴同縮。
師:同學們總結得很好。時間和路程是兩種相關聯的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規律是:路程和時間的比的比值總是一樣的。
師:誰能像老師這樣敘述一遍?
(看黑板引導學生口述。)
師:我們再看一題,研究一下它的變化規律。
出示例2。(小黑板)
例2 某種花布的米數和總價如下表:
(板書)
按題目要求回答下列問題。(幻燈)
(1)表中有哪兩種量?
(2)誰和誰是相關聯的量?關系式是什么?
(3)總價是怎樣隨著米數變化的?
(4)相對應的總價和米數的比各是多少?
(5)誰是定量?
(6)它們的變化規律是什么?
生:(答略)
師:比較一下兩個例題,它們有什么共同點?
生:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。
師:對。兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是今天我們學習的新內容。(板書課題:正比例的意義)
師:你能按照老師說的敘述一下例1中兩個相關聯的量之間的關系嗎?
生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關系是正比例關系。
師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)
師:很好。請打開書,看書上是怎樣總結的?
(生看書,并畫出重點,讀一遍意義。)
師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯的量與定量的關系?
師:你能舉出日常生活中成正比例關系的兩種相關聯的量的例子嗎?
生:(答略)
師:日常生活和生產中有很多相關聯的量,有的成正比例關系,有的是相關聯,但不成比例關系。所以判斷兩種相關聯的量是否成正比例關系,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關系。
(三)鞏固反饋
1.課本上的“做一做”。
2.幻燈出示題,并說明理由。
(1)蘋果的單價一定,買蘋果的數量和總價( )。
(2)每小時織布米數一定,織布總米數和時間( )。
(3)小明的年齡和體重( )。
(四)課堂總結
師:今天主要講的是什么內容?你是如何理解的?
(生自己總結,舉手發言。)
師:打開書,并說出正比例的意義。有什么不明白的地方提出來。
(五)布置作業
正比例的意義 篇6
教學內容:教科書第19—21頁正比例的意義,練習六的1—3題。
教學目的:
1.使學生理解正比例的意義,能夠根據正比例的意義判斷兩種量是不是成正比例。
2.初步培養學生用事物相互聯系和發展變化的觀點來分析問題。
3.初步滲透函數思想。
教具準備:投影儀、投影片、小黑板。
教學過程:
一、復習
用,投影片逐一出示下面的題目,讓學生回答。
1.已知路程和時間,怎樣求速度?板書: =速度
2.已知總價和數量,怎樣求單價?板書: =單價
3.己知工作總量和工作時間,怎樣求工作效率?板書:
=工作效率
4,已知總產量和公頃數,怎樣求公頃產量?板書: =公頃產量
二、導人新課
教師:這是我們過去學過的一些常見的數量關系。這節課我們進一步來研究這些數量關系中的一些特征,首先來研究這些數量之間的正比例關系。(板書課題:正比例的意義)
三、新課
1.教學例1。
用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:
提問:
“誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)
“表中有哪幾種量?”
“當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”
“這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)
教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯的量。(板書:兩種相關聯的量)“時間和路程是兩種相關聯的量,路程是怎樣隨著時間變化而變化的呢?”
教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發現路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規律是怎么樣的呢?
讓每一小組(8個小組)的同學選一組相對應的數據,計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規律。教師板書:相對應的兩個數的比值(也就是商)一定。
然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)
教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯的量。)路程和時間這兩種量的變化規律是什么呢?(路程和時間的比的比值(速度)總是一定的。)
2.教學例2。
出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數和總價的表。
讓學生觀察上表,并回答下面的問題:
(1)表中有哪兩種量?
(2)米數擴大,總價怎樣?米數縮小,總價怎樣?
(3)相對應的總價和米數的比各是多少?比值是多少?
當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……
然后進一步問:
“這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)
教師小結:通過剛才的思考和分析,我們知道總價和米數也是兩種相關聯的量,總價是隨著米數的變化而變化的,米數擴大,總價也隨著擴大;米數縮小,總價也隨著縮小。它們擴大、縮小的規律是:總價和米數的比的比值總是一定的。
3.抽象概括正比例的意義。
教師:請同學們比較一下剛才這兩個例題,回答下面的問題;
(1)都有幾種量?
(2)這兩種量有沒有關系?
(3)這兩種量的比值都是怎樣的?
教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數第二段。)
接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯的量:它們是不是成正比例的量?為什么?
最后教師提出:如果我們用字母X,y表示兩種相關聯的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?
學生回答后,教師板書: =K(一定)
4,教學例3。
出示例3:每袋面粉的重量一定,面粉的總重量和袋數是不是成正比例?
教師引導:
“面粉的總重量和袋數是不是相關聯的量?”·
“面粉的總重量和袋數有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的總重量和袋數的比的比值是一定的,所以面粉的總重量和袋數成正比例。”
5.鞏固練習。
讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產效率和每天生產的噸數都可以。
四、課堂練習
完成練習六的第1—3題。
第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)
第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。
正比例的意義 篇7
教學目標:1、知道什么是成正比例的量,理解正比例關系。
2、能運用有關知識初步判斷兩個量是否成正比例。
3、滲透函數的初步思想,建立事物是相互聯系的這一辨證觀點。
教學重點:理解正比例的意義,并能正確判斷。
教學難點:對“相關聯的量”、“相對應的數”等術語含義的理解。
教學過程:
一、知識鋪墊,建立表象。
1、初步理解“相關聯的量”的含義。
比身高和兩手臂伸直的長度。請兩位同學來玩一個比賽,其他同學做裁判,老師發令“先比身高,后比兩手臂伸直的長度。”接著老師和學生比一比?如果再過幾年,他長得像姚明一樣有2米多高,那時我再跟他去比,你覺得會有什么不一樣?為什么?也就是人越來越高的話,兩手臂伸直的長度也就越來越長。像這樣的量,我們可以叫做兩種相關聯的量。
2、舉例說明“什么是不相關聯的量”。
二、創設情景,學習新知。
活動一:
1、教師拿出帽子,學生猜價格,引出總價和數量。大家先來猜一猜這頂帽子的價格,看誰最厲害(2元)。如果老師有4元錢,可以買幾個帽子?8元呢?要買10個帽子的話,得有幾元?(板書數字)1、2、3、10這些叫數量,2、4、6、20叫做總價(板書:數量 總價)
2、研究總價和數量。大家注意觀察這張表格,你有沒有什么發現?(強調這兩個量是相關聯的量;一種量擴大,另一種量也隨著擴大,一種量縮小,另一種量也隨著縮小;板書:比值一定)用箭頭表示兩種量的變化規律。
3、過渡到“相對應的兩個數”。老師還有一個疑問,為什么要20除以10,不除以3呢?板書:相對應的兩個數。
活動二:
1、出示2張表格,根據所提問題,選擇1張表格,分組討論。
第一張:1列火車行60千米,2小時行多少千米?3小時,4小時呢?
路程(千米)60120180 240
時間(小時)12 3 4
第二張:本書厚8mm,2本、3本、4本呢?
書的本數1 2 3 4
厚度(mm)816 24 32
問題:①表中有哪兩個量,他們是相關聯的量嗎? 你是怎么判斷的?
②觀察表格中的數據,你覺得兩個量是怎樣變化的?
③寫出3組這兩種量相對應的兩個數的比,并求出比值?
④說明這個比值所表示的意義。
板書:
活動三:
1、歸納總結,揭示意義。
①觀察這3個例子,你覺得他們之間有什么共同點?為什么?
同桌共同觀察,相互交流,匯報相同點。當學生把“兩種相關聯的量”和“相對應的兩個數的比值都一定”總結出來時就可以提出“這就是我們今天所要研究的正比例意義” 我們把兩種相關聯的量叫做成正比例的量,把兩種量相對應的兩個數比值一定的關系叫做正比例關系。(板書:成正比例的量和正比例關系)
②提出正比例的意義。(自己看書本p-93 正比例的意義)
如果讓你來編寫正比例的意義,你認為哪兩點是不能少的?為什么?
接下去我請兩位同學表示兩個量,用動作把這兩點主要的特征表示出來,用個圈把兩位同學連一起的話就是(兩種相關聯的量),然后一個量慢慢變小,另外一個量應該怎么樣?能不能一個蹲得這么低,一個蹲得這么高?(不能)為什么?這又表示什么呢?(相對應的兩個數的比值一定)
③用字母表示正比例關系。如果用字母x和y表示兩種相關聯的量,用k表示它們的比值,你能用一個式子來表示正比例關系嗎?
大家學得都很起勁,接下去我要檢驗一下,大家有沒有信心通過檢驗。
三、分層練習,深化新知。
1、觀察表格,判斷它們是不是成正比例,為什么?
正方形邊長1234
正方形周長481216
(1)
(2) 小紅堅持每天做3道題。
天數330 2 3 4
題數36 9 12
(3)
正方形邊長1234
正方形面積14916
2、直接判斷兩種量是不是成正比例,為什么?
(1)洗衣粉的單價一定,買洗衣粉的數量和總價。
(2)人數和手的總共只數。
(3)長方形的長一定,寬和面積。
(4)工作效率一定,工作時間和工作總量。
(5)一個人的年齡和體重。
小結判斷方法:兩個量是否成正比例?(板書:判斷)
(要看這兩個量是相關聯的,他們相對應的兩個數的比值一定。)
3、選擇題。(下面哪一個式子表示x和y這兩種量是成正比例的量。)
x+y=5 =5 xy=5
4、看圖判斷總價同長度是不是成正比例?為什么?
①估計一下買1.5米的彩帶大約要花多少元?
②小剛買的彩帶的長度是小紅的3倍,他所花的錢是小紅的幾倍?4倍呢?5倍呢?
5、現在某體育用品店聲稱:“如果買50只籃球以下,每只42元;如果買50只籃球以上(包括50只),每只40元。”請問總價同籃球的數量是不是成正比例,如果成正比例,那是在什么情況?
正比例的意義 篇8
1、成正比例的量
教學內容:成正比例的量
教學目標:
1.使學生理解正比例的意義,會正確判斷成正比例的量。
2.使學生了解表示成正比例的量的圖像特征,并能根據圖像解決有關簡單問題。
教學重點:正比例的意義。
教學難點:正確判斷兩個量是否成正比例的關系。
教學過程:
一揭示課題
1.在現實生活中,我們常常遇到兩種相關聯的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的此導下,學生會舉出一些簡單的例子,如:
(1)班級人數多了,課桌椅的數量也變多了;人數少了,課桌椅也少了。
(2)送來的牛奶包數多了,牛奶的總質量也多了;包數少了,總質量也少了。
(3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。
(4)排隊時,每行人數少了,行數就多了;每行人數多了。行數就少了。
2.這種變化的量有什么規律?存在什么關系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量
二探索新知
1.教學例1
(1)出示例題情境圖。
問:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。
(2)出示表格。
高度/㎝24681012
體積/㎝
底面積/㎝2
問:你有什么發現?
學生不難發現:杯子的底面積不變,是25㎝2。
板書:
教師:體積與高度的比值一定。
(2)說明正比例的意義。
①在這一基礎上,教師明確說明正比例的意義。
因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關聯的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。
②學生讀一讀,說一說你是怎么理解正比例關系的。
要求學生把握三個要素:
第一,兩種相關聯的量;
第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三,兩個量的比值一定。
(3)用字母表示。
如果用字母X和Y表示兩種相關聯的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:
(4)想一想:
師:生活中還有哪些成正比例的量?
學生舉例說明。如:
長方形的寬一定,面積和長成正比例。
每袋牛奶質量一定,牛奶袋數和總質量成正比例。
衣服的單價一不定期,購買衣服的數量和應付錢數成正比例。
地磚的面積一定,教室地板面積和地磚塊數成正比例。
2.教學例2。
(1)出示表格(見書)
(2)依據下表中的數據描點。(見書)
(3)從圖中你發現了什么?
這些點都在同一條直線上。
(4)看圖回答問題。
①如果杯中水的高度是7㎝,那么水的體積是多少?
生:175㎝3。
②體積是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?
生:水的體積是350㎝3,相對應的點一定在這條直線上。
(5)你還能提出什么問題?有什么體會?
通過交流使學生了解成正比例量的圖像特往。
3.做一做。
過程要求:
(1)讀一讀表中的數據,寫出幾組路程和時間的比,說一說比值表示什么?
比值表示每小時行駛多少千米。
(2)表中的路程和時間成正比例嗎?為什么?
成正比例。理由:
①路程隨著時間的變化而變化;
②時間增加,路程也增加,時間減少,路程也隨著減少;
③種程和時間的比值(速度)一定。
(3)在圖中描出表示路程和時間的點,并連接起來。有什么發現?所描的點在一條直線上。
(4)行駛120KM大約要用多少時間?
(5)你還能提出什么問題?
4.課堂小結
說一說成正比例關系的量的變化特征。
三鞏固練習
完成課文練習七第1~5題。
2、成反比例的量
教學內容:成反比例的量
教學目標:
1.經歷探索兩種相關聯的量的變化情況過程,發現規律,理解反比例的意義。
2.根據反比例的意義,正確判斷兩種量是否成反比例。
教學重點:反比例的意義。
教學難點:正確判斷兩種量是否成反比例。
教學過程:
一導入新課
1.讓學生說一說成正比例的兩種量的變化規律。
回答要點:
(1)兩種相關聯的量;
(2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;
(3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質量相同,大米的袋數與總質量成正比例。
理由:
(1)每袋大米質量一定,大米的總質量隨著袋數的變化而變化;
(2)大米的袋數增加,大米的總質量也相應增加,大米的袋數
減少,大米的總質量也相應減少;
(3)總質量與袋數的比值一定。
所以,大米的袋數與總質量成正比例。
板書:
3.揭示課題。
今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?
板書課題:成反比例的量[ 內 容 結 束 ]
正比例的意義 篇9
教學目標:
1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。
2、培養學生概括能力和分析判斷能力。
3、培養學生用發展變化的觀點來分析問題的能力。
教學重點:
成正比例的量的特征及其判斷方法。
教學難點:
理解兩個變量之間的比例關系,發現思考兩種相關聯的量的變化規律.
教 法:
啟發引導法
學 法:
自主探究法
教 具:
教學過程:
一、定向導學(5分)
1、已知路程和時間,求速度
2、已知總價和數量,求單價
3、已知工作總量和工作時間,求工作效率
4、導入課題
今天我們來學習成正比例的量。
5、出示學習目標
1、理解正比例的意義。
2、能根據正比例的意義判斷兩種量是不是成正比例。
二、自主學習(8分)
自學內容:書上45頁例1
自學時間:8分鐘
自學方法:讀書法、自學法
自學思考:
1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
2、正比例關系式是什么?
(1)兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。
(2)構成正比例關系的兩種量,必須具備三個條件:一是必須是兩種相關聯的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定
(3)如果用x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
y/x=k(一定)
(4)不計算,根據圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
2、歸類提升
引導學生小結成正比例的量的意義和關系式。
三、合作交流(5分)
第46頁正比例圖像
1、正比例圖像是什么樣子的?
2、完成46頁做一做
3、各組的b1同學上臺講解
四、質疑探究(5分)
1、第49頁第1題
2、第49頁第2題
3、你還有什么問題?
五、小結檢測(8分)
1、什么是正比例關系?如何判斷是不是正比例關系?
2、檢測
1、49頁第3題。
六、堂清作業(9分)
練習九頁第4、5題。
板書設計:
成正比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。
關系式:
y/x=k
(一定)
正比例的意義 篇10
教學內容
教科書第52頁例1,第55頁課堂活動第1題及練習十二1,2,3題。
教學目標
1.使學生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系,能找到生活中成正比例的實例,并進行交流。
2.通過探索正比例意義的教學活動,使學生感受事物中充滿著運動、變化的思想,并且特定的事物發展、變化是有規律的。
3.通過觀察、交流、歸納、推斷等教學活動,感受數學思維過程的合理性,培養學生的觀察能力、推理能力、歸納能力和靈活應用知識的能力。
教學重點
認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系。
教學難點
理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發展、變化是有規律的。
教學準備
教具:多媒體課件。
學具:作業本,數學書。
教學過程
一、聯系生活,復習引入
(1)下面是居委會張阿姨負責的小區水費收繳情況,用這個表中的數能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。
(2)揭示課題。
教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數量呢?
教師:這些數量之間藏著不少的知識,今天這節課我們就來研究這些數量間的一些規律和特征。
二、自主探索,學習新知
1.教學例1
用課件在剛才準備題的表格中增加幾列數據,變成表。
教師:請同學們觀察這張表,先獨立思考后再討論、交流:從這張表中你發現了什么規律?并根據這種規律幫助張阿姨把表格填寫完整。
教師根據學生的回答將表格完善,并作必要的板書。
教師:同學們發現表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關聯的。
板書:相關聯
教師:你們還發現哪些規律?
學生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據學生的回答板書出來,便于其他學生觀察:
教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數。
板書:
2.教學試一試
教師:我們再來研究一個問題。
課件出示第52頁下面的試一試。
學生先獨立完成。
教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數據嗎?
教師根據學生的回答歸納如下:
表中的路程和時間是相關聯的量,路程隨著時間的變化而變化。
時間擴大若干倍,路程也擴大相同的倍數;時間縮小若干倍,路程縮小相同的倍數。
路程與時間的比值是一定的,速度是每時80 km,它們之間的關系可以寫成路程時間=速度(一定)
3.教學議一議
教師:我們研究了上面生活中的兩個問題,誰能發現它們之間的共同點呢?
引導學生歸納出這兩個問題中都有相關聯的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數,所以它們的比值始終是一定的。
教師:像上面這樣的兩種量,叫做成正比例的量,它們的關系叫做成正比例關系。
4.教學課堂活動
教師:請大家說一說生活中還有哪些是成正比例的量。
三、夯實基礎,鞏固提高
(1)完成練習十二的第1題。
教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關系嗎?為什么?
學生獨立思考,先小組內交流再集體交流。
(2)完成練習十二的第2題。
四、全課小結
教師:這節課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?
正比例的意義 篇11
1.使學生初步認識正比例的意義、掌握正比例意義的變化規律。
2.學會判斷成正比例關系的量。
3.進一步培養學生觀察、分析、概括的能力。
教學重點和難點
理解正比例的意義,掌握正比例變化的規律。
教學過程設計
(一)復習準備
請同學口述三量關系:
(1)路程、速度、時間;(2)單價、總價、數量;(3)工作效率、時間、工作總量。
(學生口述關系式、老師板書。)
(二)學習新課
今天我們進一步研究這些數量關系中的一些特征,請同學們回答老師的問題。
幻燈出示:
一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?
生:60千米、120干米、180千米……
師:根據剛才口答的問題,整理一個表格。
出示例1。(小黑板)
例1 一列火車行駛的時間和所行的路程如下表。
師:(看著表格)回答下面的問題。表中有幾種量?是什么?
生:表中有兩種量,時間和路程。
師:路程是怎樣隨著時間變化的?
生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……
師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關聯的量。
(板書:兩種相關聯的量)
師:表中誰和誰是兩種相關聯的量?
生:時間和路程是兩種相關聯的量。
師:我們看一看他們之間是怎樣變化的?
生:時間由1小時變2小時,路程由60千米變為120千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。
師:現在我們從后往前看,時間由8小時變為7小時、6小時、4小時……路程又是如何變化的?
生:路程由480千米變為420千米、360千米……
師:從上面變化的情況,你發現了什么樣的規律?(同桌進行討論。)
生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。
師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?
(分組討論)
師:請同學發表意見。
生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。
師:我們對這種變化規律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規律是什么?
師:根據時間和路程可以求出什么?
生:可以求出速度。
師:這個速度是誰與誰的比?它們的結果又叫什么?
生:這個速度是路程和時間的比,它們的結果是比值。
師:這個60實際是什么?變化了嗎?
生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。
駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。
師:誰是定量時,兩種相關聯的量同擴同縮?
生:速度一定時,時間和路程同擴同縮。
師:對。這兩種相關聯的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應的商是不是一定。
(學生口算驗證。)
生:都是60千米,速度不變,符合變化的規律,同擴同縮。
師:同學們總結得很好。時間和路程是兩種相關聯的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規律是:路程和時間的比的比值總是一樣的。
師:誰能像老師這樣敘述一遍?
(看黑板引導學生口述。)
師:我們再看一題,研究一下它的變化規律。
出示例2。(小黑板)
例2 某種花布的米數和總價如下表:
(板書)
按題目要求回答下列問題。(幻燈)
(1)表中有哪兩種量?
(2)誰和誰是相關聯的量?關系式是什么?
(3)總價是怎樣隨著米數變化的?
(4)相對應的總價和米數的比各是多少?
(5)誰是定量?
(6)它們的變化規律是什么?
生:(答略)
師:比較一下兩個例題,它們有什么共同點?
生:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。
師:對。兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是今天我們學習的新內容。(板書課題:正比例的意義)
師:你能按照老師說的敘述一下例1中兩個相關聯的量之間的關系嗎?
生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關系是正比例關系。
師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)
師:很好。請打開書,看書上是怎樣總結的?
(生看書,并畫出重點,讀一遍意義。)
師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯的量與定量的關系?
師:你能舉出日常生活中成正比例關系的兩種相關聯的量的例子嗎?
生:(答略)
師:日常生活和生產中有很多相關聯的量,有的成正比例關系,有的是相關聯,但不成比例關系。所以判斷兩種相關聯的量是否成正比例關系,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關系。
(三)鞏固反饋
1.課本上的“做一做”。
2.幻燈出示題,并說明理由。
(1)蘋果的單價一定,買蘋果的數量和總價( )。
(2)每小時織布米數一定,織布總米數和時間( )。
(3)小明的年齡和體重( )。
(四)課堂總結
師:今天主要講的是什么內容?你是如何理解的?
(生自己總結,舉手發言。)
師:打開書,并說出正比例的意義。有什么不明白的地方提出來。
(五)布置作業
(略)
課堂教學設計說明
第一部分:復習三量關系,為本節內容引路。
第二部分:新課從創設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯的兩個量、商一定展開思路,結合例題中的數據整理知識,發現規律,由討論表象到抽象概念,使知識得到深化。
第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節重點,突破難點。安排適當的練習題,在反復的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業,進一步鞏固所學知識。
總之,在設計教案的過程中,力爭體現教師為主導,學生為主體的精神,使學生認識結構不斷發展,認識水平不斷提高,做到在加強雙基的同時發展智力,培養能力,并為以后學習打下良好的基礎。
板書設計
正比例的意義 篇12
教材分析:
正比例的意義是九年義務教育六年制小學浙教版第十二冊第3單元的內容。這部分知識是在學生學習了除法、分數和比的知識等的基礎上教學的,是本套教材教學內容的最后一個單元。教材通過實例說明兩種相關聯的量,一種量隨著另一種量的變化而變化。一種量擴大,另一種量隨著擴大;一種量縮小,另一種量也隨著縮小。并且從具體的數據中看出:這兩種相關聯的量擴大、縮小的變化規律是它們相對應的兩個數的比值(商)總是一定的,寫成關系式就是:xy=k(一定),
從而給出正比例的意義。通過正比例意義的教學,向學生滲透初步的函數思想。
1、使學生掌握正比例的意義及字母表達式,會正確判斷兩個量是不是成正比例關系的兩個量。
2、通過對比、觀察、歸納、培養學生良好的數學學習習慣。
3、在主動參與數學活動的過程中,感受數學思考過程的條理性和數學結論的確定性,并樂于與人交流。正確理解正比例的意義,并能準確判斷成正比例的量。為了使學生掌握好反比例的意義這部分知識,達到以上的教學目的,突破以上教學重難點,教師采用遷移法、對比法、引導法、講解法、聯系法、自主探索法來進行教學。通過本課教學,使學生學會利用舊知構建新知的方法、合作探究的方法、分析小結的方法等等。
第一部分:復習三量關系,為本節內容引路。
第二部分:新課從創設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯的兩個量、商一定展開思路,結合例題中的數據整理知識,發現規律,由討論表象到抽象概念,使知識得到深化。
第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節重點,突破難點。安排適當的練習題,在反復的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業,進一步鞏固所學知識。
總之,在設計教案的過程中,力爭體現教師為主導,學生為主體的精神,使學生認識結構不斷發展,認識水平不斷提高,做到在加強雙基的同時發展智力,培養能力,并為以后學習打下良好的基礎。這節課通過具體實例,借助事物表象,引導學生逐步了解數量之間的內在聯系,從而發現兩種相關聯量的變化規律。在教學過程中,面向全體學生,創設情境,激發學習興趣,調動學生主動探索規律的積極性,重視初步邏輯思維能力的培養。練習設計,具有坡度,深化拓寬了所學知識,有利于提高學生的思維品質。
正比例的意義 篇13
素質教育目標
(一)知識教學點
1.使學生理解正比例的意義。
2.能根據正比例的意義判斷兩種量是不是成正比例。
(二)能力訓練點
1.培養學生用發展變化的觀點來分析問題的能力。
2.培養學生抽象概括能力和分析判斷能力。
(三)德育滲透點
1.通過引導學生用發展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。
2.進一步滲透函數思想。
教學重點:使學生理解正比例的意義。
教學難點:引導學生通過觀察、思考發現兩種相關聯的量的變化規律,即它們相對應的數的比值一定,從而概括出正比例關系的概念。
教具學具準備:投影儀、投影片、小黑板。
教學步驟
一、鋪墊孕伏
用投影逐一出示下列題目,請同學回答:
1.已知路程和時間,怎樣求速度?
2.已知總價和數量,怎樣求單價?
3.已知工作總量和工作時間,怎樣求工作效率?
二、探究新知
1.導入新課:這些都是我們已經學過的常見的數量關系。這節課,我們繼續研究這些數量關系中的一些特征。
2.教學例1
(1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……
(2)出示下表,并根據上述內容填表。
一列火車行駛的時間和所行的路程如下表
(3)邊填表邊思考:在填表過程中,你發現了什么?
學生交流時,使之明確。
①表中有時間和路程兩種量。
②當時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。
教師點撥:
像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯的量。(板書:兩種相關聯的量)
③如果學生沒有問題,教師提示:請每位同學任選一組相對應的數據,計算出路程與時間的比的比值。
教師問:根據計算,你發現了什么?
引導學生得出:相對應的兩個數的比值都是60或都一樣,固定不變等。
教師指出:相對應的兩個數的比的比值都一樣或固定不變,在數學上叫做“一定”。(板書:相對應的兩個數的比值一定)
④比值60,實際就是火車的速度。用式子表示它們的關系就是:
(4)教師小結:
剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規律是:路程和時間的比的比值總是一定的。
3.教學例2
(1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數和總價的表。
(2)觀察上表,引導學生明確:
①表中有數量(米數)和總價這兩種量,它們是兩種相關聯的量。
②總價隨米數的變化情況是:
米數擴大,總價隨著擴大;米數縮小,總價也隨著縮小。
③相對應的總價和米數的比的比值是一定的。
④比值3.1,實際就是這種花布的單價。用式子表示它們的關系就是:
(3)師生小結:通過剛才的觀察和分析,我們知道總價和米數也是兩種什么樣的量?(兩種相關聯的量)為什么?(總價隨著米數的變化而變化。)怎樣變化?(米數擴大,總價隨著擴大;米數縮小,總價隨著縮小。)它們擴大、縮小的規律是怎樣的?(總價和米數的比的比值總是一定的。)
4.抽象概括正比例的意義。
(1)比較例1、例2,思考并討論,這兩個例子有什么共同點?
(2)學生初步交流時引導學生明確:
①例1中有路程和時間兩種量;例2中有米數和總價兩種量。即它們都有兩種相關聯的量;
②例1中時間變化,路程就隨著變化;例2中米數變化,總價也隨著變化。
教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)
③例1中路程與時間的比的比值一定:例2中總價與米數的比的比值一定。概括地講就是:兩種量中相對應的兩個數的比值(也就是商)一定。
(學生答不出來時,教師引導、點撥,并補充板書:兩種量中)
(3)引導學生抽象概括出兩例的共同點:
兩種相關聯的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數的比值(也就是商)一定。
(4)教師指明:兩種相關聯的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
(補充板書:如果這成正比例的量正比例關系)
這就是我們這節課學習的“正比例的意義”(板書課題)
(5)看書19、20頁的內容,進一步理解正比例的意義。
(6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。
(7)想一想:在例2中,有哪兩種相關聯的量?它們是不是成正比例的量?為什么?
(8)教師提出:如果字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
(9)教師提出:根據正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
5.教學例3
(1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數是不是成正比例?
(2)根據正比例的意義,由學生討論解答。
(3)匯報判斷結果,并說明判斷的根據。
教師板書:
面粉的總重量和袋數是兩種相關聯的量。
所以面粉的總重量和袋數成正比例。
6.反饋練習
讓學生試做第21頁的做一做,并訂正。
三、鞏固發展
1.完成練習三第1題。
先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數的.比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?
2.完成練習三第2題的(1)-(9)
先讓學生自己判斷,再訂正。
四、全課小結(師生共同進行)
通過這節課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?