《積的變化規律 》教案(精選3篇)
《積的變化規律 》教案 篇1
教學過程:
一.談話,直接引入
師:同學們,我們已經學過了乘法,也能用乘法進行計算。其實在乘法計算中,有個很好的的規律。只要發現這個規律,并進行運用,就可以讓我們的計算變得更快更準確。你們想不想知道這個規律是什么啊?好、這節課就讓我們一起探究這個規律(板書課題:積的變化規律)
二、自主合作學習、探索規律
1、出示例題,研究問題
(1)6×2=12 (1)20×4=80
(2)6×20=120 (2)40×4=160
(3)6×200=1200 (3)80×4=320
師:知道得數嗎?誰說一說。
2、思考,概括規律
師:下面請同學仔細觀察這些算式、再認真想想,他們有什么特征呢?
生:一個因數都是6,另一個因數2到20,到200,都擴大了10倍。
師:你是說6不變,2擴大了10倍變成20,這個意思對嗎?
師:是個不錯的發現,還有誰想來說的?
生:一個因數是6,另一個因數2擴大了10倍,積也擴大了10倍
師:聽懂她的發現了嗎?你能具體地來說一說,你是怎么看出來的嗎?
生:6×2=12,6不變,2擴大10倍是20,6×20=120,12到120也擴大了10倍。(同時板書)
師:她的這個發現真有意思。你們都同意嗎?
師:我們把這個發現,用在右邊的算式,看看還是不是有這個規律,
生:一個因數4不變,另一個因數20擴大2倍,積也擴大2倍。
3.概括規律
師:剛才大家的這個發現能不能用一句話概括呢?
生:兩個因數相乘,一個因數不變,另一個因數乘幾,積就乘幾
4.驗證規律
師:是不是其他的算式也是這樣呢?我們來舉例驗證一下
每人寫2組這樣的算式,完成后和同桌一起找一找這些算式是不是也有這樣的規律
匯報
5.完整規律
師:從這些算式中,我們還能看出什么規律嗎?剛才我們從上往下看,現在換個角度,從下往上看。有了什么想法了,就趕緊把它寫下來,然后很自己的同桌輕輕地說說看。
生:兩個因數相乘,一個因數不變,另一個因數乘 幾,積就乘 幾兩個因數相乘,一個因數不變,另一個因數除以幾,積就除以幾
師:同意嗎?也寫一組算式,和你的同桌說一說這個規律。
師:其實,這就是積的變化規律,我們還可以這樣說:兩個因數相乘,一個因數不變,另一個因數乘(或除以)幾,積就乘(或除以)幾
三、鞏固拓展,運用新知
師:現在就讓我們應用這個規律,解決數學上遇到的一些問題。
1. 兩個相乘,一個因數不變,另一個因數擴大5倍,積( );一個因數縮小7倍,另一個因數不變,積( ),一個因數不變,要想使積擴大24倍,另一個因數( )
2.12× 20 =240 26×11=261
12×(20÷4)= (26×2)×11=
3.根據8×50=400,直接寫出下面各題的積
16×50= 4×50= 32×50= 8×25=
4.利用規律,直接說出答案
25×20=500
25×( )=1000
25×( )=1500
25×( )=250
3、算一算,想一想,你能發現什么規律?
①請大家完成下列計算,并在組內述說自己發現的規律
18×24=432
(18÷2)×(24×2)=
(18×2)×(24÷2)=
100×45=
(100×3)×(45÷3)=
(100÷5)×(45×5)=
小結:兩數相乘,一個因數乘(或除以)幾,另一個因數除以(或乘)它們的乘積不變。
②應用規律解決問題。
在□中填上運算符號,在○中填上數。
24×75=1800
(24□6)×(75×6)=1800
(24□3)×(75□○)=1800
36×104=3744
(36×4)×(104□4)=3744
(36□○)×(104□○)=3744
四、總結課堂
師:經過今天這節課,大家有什么收獲呢?
《積的變化規律 》教案 篇2
教學目標:
1.使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
2.嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
教學設計:
一、出示嘗試題,喚起學生得探求新知的欲望。
同學們的計算能力非常強,能快速口算這些題嗎?(出示)
6×2=12 80×4=320
6×20=120 40×4=160
6×200=1200 20×4=80
非常好!同學們,請仔細觀察上面每組算式,你能根據每組算式的特點接著再往下寫2個算式嗎?試一試。
學生獨立寫出。
二、自主學習,探索新知。
1.現在就請同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?
2.(先來匯報第一組)誰來介紹這組算式你接下去怎樣寫的?學生說出自己寫的第一組算式,你們也是這么寫的嗎?你們寫得這么正確,你一定發現了這組算式的規律,誰再來說一說我們發現的這組算式的特點?
點撥:擴大的倍數相同。
教師進一步引導:剛剛在這組算式里同學們發現,一個因數不變,另一個因數擴大10倍,積也擴大10倍。
如果讓你接著再往下寫,你還能再寫出來嗎?
3.猜一猜,如果一個因數不變,另一個因數擴大5倍,積會有怎樣的變化?
請同學們寫出一組這樣的算式驗證一下。學生寫出后匯報。
如果擴大30倍呢?如果擴大100倍呢?
你能試著用一句話來概括一下我們發現的這些規律嗎?
讓我們一起把剛才的發現記錄下來:(板書)一個因數不變,另一個因數擴大幾倍,積也擴大相同的倍數。
4.(第二組算式)同學們都這么愛動腦思考,你一定也發現了第二組算式的特點?誰來說一說?
根據我們發現的規律,同學們來查一查你寫的算式,對嗎?
同學們,讓我們再來看這組算式,我們已經發現一個因數不變,另一個因數縮小2倍,積也縮小相同的倍數。你能不能大膽的猜想,猜想一下這里會得出一個什么樣的規律?
板書:一個因數不變,另一個因數縮小幾倍,積也縮小相同的倍數。
誰來出一組算式,驗證一下我們的猜想!
5.同學們,你能把我們發現的規律用一句話來概括嗎?
板書:一個因數不變,另一個因數擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。
6.你還有什么問題嗎?
剛才同學們通過積極得動腦思考,交流探究,發現了……(學生讀板書)這也就是我們這節課重點學習的“積的變化規律”(同時板書課題)。
運用這個規律,能幫助我們解決許多的數學問題。想不想試一試?
三、鞏固拓展,運用新知。
59頁3、2、4、5
四、結束。
同學們,你們用自己的智慧發現了數學上的規律,真了不起。只要大家肯動腦筋,數學中還有許多規律等待我們去發現。大家有信心嗎?
《積的變化規律 》教案 篇3
教學內容:教材第58頁例4“積的變化規律”
教學目標:
1、使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
2、嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
3、初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
教學重難點:
引導學生自己發現規律,概括規律,進而運用規律。
教學過程:
一、創設情景,提出目標。
1、創設情景:通過前一段時間的學習,同學們對乘法的計算已經掌握的很好了,下面同學們算一算下面各題。
8×3= 60×4=
16×3= 180×4=
32×3= 240×4=
學生計算后。師:說說你是怎樣算的?你發現了什么?
學生匯報交流,
2、師引入:是的,在乘法運算中,積會隨著因數的變化而變化,這就是我們今天要研究的積的變化規律。
3、提出目標:
讓學生先說一說,再出示目標:
(1)積的變化規律是什么?學這些規律有何用?
(2)通過這節課的學習,你掌握了探索規律的什么方法?
[設計意圖]上面這兩個題蘊涵了函數思想,通過這兩組練習,使學生對積的變化規律有一個初步的感性認識,為學習新知做好準備。
二、展示學習成果
1、小組內個人展示。
(1)提出自學要求:自學課本58頁的例4、完成做一做后按學困生→中等生→優生的順序在小組內交流展示。
(2)生自學,師巡視指導,收集學習信息。
2、以小組為單位在全班展示發現的積的變化規律。
(1)積隨因數擴大而擴大的規律。
(2)積隨因數縮小而縮小的規律。
3、師生共同討論把兩個規律合并。
(1)合并:一個因數不變,另一個因數擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。
(2)質疑討論,引發沖突。生先質疑,師再補充質疑:
擴大(或縮小)什么意思?
為什么是相同的倍數?
對“一個因數不變”中的“因數”是否適用于任何整數。
(3)在充分討論的基礎上,把規律補充完整。學生進一步理解積的變化規律。
4、運用規律,完成練習。
讓學生展示“做一做”的完成情況,并說一說是如何根據積的變化規律來完成的。
[設計意圖]讓學生充分經歷學習的過程,學會研究問題的一般方法,使學生體會到學習的快樂。讓學生動腦、動口、動手,相互交流。進一步培養學生自主探究的能力和合作交流的意識。
三、鞏固拓展,運用新知
1、根據25×2=50,利用規律,直接寫答案。
25×20= 25×( )=1500
25×200= 25×( )=200
25= 25×( )=50
說說自己是怎樣想的?
2、練習九第1題。
3、指導學生完成練習九第5題。(一個因數擴大,另一個因數縮小的積的變化規律)
[設計意圖]通過練習,讓學生鞏固新知,進而引導學生繼續探索積的變化規律,使學生知道積的變化規律還沒研究完,從而進一步激發學生和探索欲望。
四、課堂小結,布置作業
1、學生談收獲。
2、作業:
(1)練習九的第2、3、4題。
(2)兩因數的積是345,把其中一個因數乘40,另一個因數除以5,則新的積是多少?(提高題)