人教版初中八年級《反比例函數》說課稿范文(精選5篇)
人教版初中八年級《反比例函數》說課稿范文 篇1
一、說教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。
五、說教學過程
(一)創設情境,發現新知
首先提出問題
問題1:小明同學用50元錢買學習用品,單價y(元)與數量x(件)之間的關系式是什么?
【設計意圖及教法說明】
在課開頭,我認為以一個簡單的數字問題引入,目的是讓學生在很快的時間里說出顯而易見的答案,便于增強學生學好本課的自信心,使他們能愉快地進行新知的學習。
問題2:我們知道,電流i、電阻r、電壓u之間滿足關系式u=ir,當u=220v,
(1)你能用含有r的代數式表示i嗎?
(2)利用寫出的關系式完成下表。
r/ω 20 40 60 80 100
i/a
當r越來越大時,i怎樣變化?當r越來越小呢?
(3)變量i是r的函數嗎?為什么?
【設計意圖及教法說明】
因為數學來源于生活,并服務于生活,問題2是一個與物理有關的數學問題,這樣設計便于使學生把數學知識和物理知識相聯系,增加學科的相通性,另外通過本題的學習,可以讓學生在情境中體會變量之間的關系,問題2先讓學生獨立思考,然后再同桌交流,最后小組討論并匯報,此問題中的(1)(2)問題比較簡單,學生可以獨立完成,但對于問題(3),老師要給適當的指導。
問題2的深化:舞臺燈光可以在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實現的?
【設計意圖及教法說明】
學生可以根據問題2以及學過的物理知識來解釋這個問題,這樣既增強學生學習新知的積極性,又達到了解決問題的目的。
問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關系?變量t是v的函數嗎?為什么?
【設計意圖及教法說明】
問題3是一個行程問題,先讓學生獨立思考、同桌討論,最后列出正確的函數關系式,進一步體會函數是刻畫變量之間關系的數學模型,為形成反比例函數的概念打基礎。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設計意圖及教法說明】
這個環節目的在于讓學生親身經歷觀察、思考、抽象、概括、補充、完善的過程,讓學生嘗試用自己的語言說明他們的新發現,培養他們的歸納能力和自主探索與合作交流的良好學習習慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導,初步形成反比例函數的概念。
2.啟發學生建構新知
反比例函數的定義:一般地,如果兩個變量x、y之間的關系可以表示成y=k/x(k為常數,k≠0)的形式,那么稱y是x的反比例函數。
反比例函數自變量不能為0!
反比例函數的一般形式:y= k/x(k為常數,k≠0)
反比例函數的變式形式:k=yx,x=k/y(k為常數,k≠0)
【設計意圖及教法說明】
這種從不同的問題情境中抽象出相同的數學模型,再進行抽象得出概念的過程,并非教師所強加,而是學生通過自己分析走向概念,突破本節課的難點,使學生的自豪感和成功感在活動中得以提升,體現類比、轉化、建模等數學思想,把本節課推向高潮。
(三)反饋練習,應用新知
根據學生認知的差異性,我設計了基礎過關和拓展訓練兩類練習題。
1.基礎過關
(1)下列函數的表達式中,x表示自變量,那么哪些是反比例函數?每一個反比例函數相應的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設計意圖及教法說明】
此題較簡單,以口答的形式進行,設計的目的是重視基礎知識的教學和面向全體學生的教學,并告誡學生判斷一個函數是否是反比例函數不能單從形式上判斷,一定要嚴謹認真,同時也完成了隨堂練習1。
(2)做一做
①一個矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?
②某村有耕地346.2公頃,人口數量n逐年發生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數n的函數嗎?是反比例函數嗎?為什么?
③y是x的反比例函數,下表給出了x和y的一些值:
a.寫出這個反比例函數的表達式;
b.根據函數表達式完成下表。
表略。
【設計意圖及教法說明】
通過三個實際問題的解決,培養了學生“發現問題”、“解決問題”的能力,也達到了學以致用的目的。
2.能力拓展
(1)你能舉個反比例函數的實例嗎?與同學進行交流。
(2)y=5xm是反比例函數,求m的值。
【設計意圖及教法說明】
問題(1)是一個開放性的題,既解決了隨堂練習2,也培養了學生的發散性思維。問題(2)能助于學生抓住關鍵點,澄清易錯點(反比例函數中k≠0),并且加強了新舊知識的聯系。
(四)歸納總結,反思提高
通過這節課的學習你有哪些收獲?還有哪些問題?與同伴進行討論。
(如:你學到了什么?懂得了什么?你發現了什么?還有什么困惑?應注意什么?還想知道什么?)
【設計意圖及教法說明】通過問題式的小結,讓學生再次歸納、總結本節課的重點,彌補教學中的不足。
(五)推薦作業,分層落實
必做題:課本第134頁習題1、2題。
選做題:已知y與2x成反比例,且當x=2時,y=-1,求:
(1)y與x的函數關系式。
(2)當x=4時,y的值。
(3)當y=4時,x的值。
【設計意圖及教法說明】作業以推薦的形式進行,必做題體現了對新課標下“學有價值的數學”、“人人能獲得必要的數學”的落實,選做題體現了讓“不同的人在數學上得到不同的發展”。
【名師點評】
說課者對本節課的特點把握較好。無論是教材的分析,還是學情的了解;無論是重點的把握,還是難點的確定;無論是目標的定位,還是時間的分配;無論是資源的選擇,還是教學的構想都能夠圍繞內容進行宏觀性說課。
然而,從這次說課中也不難看出存在的問題:設想中的不少環節均沒有得到體現,實際效果離設計相差不小。也許過于想要達到預期效果,在準備過程中多多少少忽略了學生的想法。在備課過程中,沒有考慮學生,站在學生的角度去設計課堂,這方面做的很不夠。所以教學設計雖然體現了精講多練,實時檢測,但還是效果一般。
另外說課中教師操作技術不熟練,板書不夠端正,肢體語言的多余動作、類似口頭禪的多余話較多,需要在今后的教學過程中嚴格要求自己,對方方面面進行改善!
人教版初中八年級《反比例函數》說課稿范文 篇2
一、說教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。
五、說教學過程
(一)創設情境,發現新知
首先提出問題
問題1:小明同學用50元錢買學習用品,單價y(元)與數量x(件)之間的關系式是什么?
【設計意圖及教法說明】
在課開頭,我認為以一個簡單的數字問題引入,目的是讓學生在很快的時間里說出顯而易見的答案,便于增強學生學好本課的自信心,使他們能愉快地進行新知的學習。
問題2:我們知道,電流I、電阻R、電壓U之間滿足關系式U=IR,當U=220V,
(1)你能用含有R的代數式表示I嗎?
(2)利用寫出的關系式完成下表。
R/Ω 20 40 60 80 100
I/A
當R越來越大時,I怎樣變化?當R越來越小呢?
(3)變量I是R的函數嗎?為什么?
【設計意圖及教法說明】
因為數學來源于生活,并服務于生活,問題2是一個與物理有關的數學問題,這樣設計便于使學生把數學知識和物理知識相聯系,增加學科的相通性,另外通過本題的學習,可以讓學生在情境中體會變量之間的關系,問題2先讓學生獨立思考,然后再同桌交流,最后小組討論并匯報,此問題中的(1)(2)問題比較簡單,學生可以獨立完成,但對于問題(3),老師要給適當的指導。
問題2的深化:舞臺燈光可以在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實現的?
【設計意圖及教法說明】
學生可以根據問題2以及學過的物理知識來解釋這個問題,這樣既增強學生學習新知的積極性,又達到了解決問題的目的。
問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關系?變量t是v的函數嗎?為什么?
【設計意圖及教法說明】
問題3是一個行程問題,先讓學生獨立思考、同桌討論,最后列出正確的函數關系式,進一步體會函數是刻畫變量之間關系的數學模型,為形成反比例函數的概念打基礎。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設計意圖及教法說明】
這個環節目的在于讓學生親身經歷觀察、思考、抽象、概括、補充、完善的過程,讓學生嘗試用自己的語言說明他們的新發現,培養他們的歸納能力和自主探索與合作交流的良好學習習慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導,初步形成反比例函數的概念。
2.啟發學生建構新知
反比例函數的定義:一般地,如果兩個變量x、y之間的關系可以表示成y=k/x(k為常數,k≠0)的形式,那么稱y是x的反比例函數。
反比例函數自變量不能為0!
反比例函數的一般形式:y= k/x(k為常數,k≠0)
反比例函數的變式形式:k=yx,x=k/y(k為常數,k≠0)
【設計意圖及教法說明】
這種從不同的問題情境中抽象出相同的數學模型,再進行抽象得出概念的過程,并非教師所強加,而是學生通過自己分析走向概念,突破本節課的難點,使學生的自豪感和成功感在活動中得以提升,體現類比、轉化、建模等數學思想,把本節課推向高潮。
(三)反饋練習,應用新知
根據學生認知的差異性,我設計了基礎過關和拓展訓練兩類練習題。
1.基礎過關
(1)下列函數的表達式中,x表示自變量,那么哪些是反比例函數?每一個反比例函數相應的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設計意圖及教法說明】
此題較簡單,以口答的形式進行,設計的目的是重視基礎知識的教學和面向全體學生的教學,并告誡學生判斷一個函數是否是反比例函數不能單從形式上判斷,一定要嚴謹認真,同時也完成了隨堂練習1。
(2)做一做
①一個矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?
②某村有耕地346.2公頃,人口數量n逐年發生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數n的函數嗎?是反比例函數嗎?為什么?
③y是x的反比例函數,下表給出了x和y的一些值:
a.寫出這個反比例函數的表達式;
b.根據函數表達式完成下表。
表略。
【設計意圖及教法說明】
通過三個實際問題的解決,培養了學生“發現問題”、“解決問題”的能力,也達到了學以致用的目的。
2.能力拓展
(1)你能舉個反比例函數的實例嗎?與同學進行交流。
(2)y=5xm是反比例函數,求m的值。
【設計意圖及教法說明】
問題(1)是一個開放性的題,既解決了隨堂練習2,也培養了學生的發散性思維。問題(2)能助于學生抓住關鍵點,澄清易錯點(反比例函數中k≠0),并且加強了新舊知識的聯系。
(四)歸納總結,反思提高
通過這節課的學習你有哪些收獲?還有哪些問題?與同伴進行討論。
(如:你學到了什么?懂得了什么?你發現了什么?還有什么困惑?應注意什么?還想知道什么?)
【設計意圖及教法說明】通過問題式的小結,讓學生再次歸納、總結本節課的重點,彌補教學中的不足。
(五)推薦作業,分層落實
必做題:課本第134頁習題1、2題。
選做題:已知y與2x成反比例,且當x=2時,y=-1,求:
(1)y與x的函數關系式。
(2)當x=4時,y的值。
(3)當y=4時,x的值。
【設計意圖及教法說明】作業以推薦的形式進行,必做題體現了對新課標下“學有價值的數學”、“人人能獲得必要的數學”的落實,選做題體現了讓“不同的人在數學上得到不同的發展”。
【名師點評】
說課者對本節課的特點把握較好。無論是教材的分析,還是學情的了解;無論是重點的把握,還是難點的確定;無論是目標的定位,還是時間的分配;無論是資源的選擇,還是教學的構想都能夠圍繞內容進行宏觀性說課。
然而,從這次說課中也不難看出存在的問題:設想中的不少環節均沒有得到體現,實際效果離設計相差不小。也許過于想要達到預期效果,在準備過程中多多少少忽略了學生的想法。在備課過程中,沒有考慮學生,站在學生的角度去設計課堂,這方面做的很不夠。所以教學設計雖然體現了精講多練,實時檢測,但還是效果一般。
另外說課中教師操作技術不熟練,板書不夠端正,肢體語言的多余動作、類似口頭禪的多余話較多,需要在今后的教學過程中嚴格要求自己,對方方面面進行改善!
人教版初中八年級《反比例函數》說課稿范文 篇3
一、說教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。
五、說教學過程
(一)創設情境,發現新知
首先提出問題
問題1:小明同學用50元錢買學習用品,單價y(元)與數量x(件)之間的關系式是什么?
【設計意圖及教法說明】
在課開頭,我認為以一個簡單的數字問題引入,目的是讓學生在很快的時間里說出顯而易見的答案,便于增強學生學好本課的自信心,使他們能愉快地進行新知的學習。
問題2:我們知道,電流i、電阻r、電壓u之間滿足關系式u=ir,當u=220v,
(1)你能用含有r的代數式表示i嗎?
(2)利用寫出的關系式完成下表。
r/ω 20 40 60 80 100
i/a
當r越來越大時,i怎樣變化?當r越來越小呢?
(3)變量i是r的函數嗎?為什么?
【設計意圖及教法說明】
因為數學來源于生活,并服務于生活,問題2是一個與物理有關的數學問題,這樣設計便于使學生把數學知識和物理知識相聯系,增加學科的相通性,另外通過本題的學習,可以讓學生在情境中體會變量之間的關系,問題2先讓學生獨立思考,然后再同桌交流,最后小組討論并匯報,此問題中的(1)(2)問題比較簡單,學生可以獨立完成,但對于問題(3),老師要給適當的指導。
問題2的深化:舞臺燈光可以在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實現的?
【設計意圖及教法說明】
學生可以根據問題2以及學過的物理知識來解釋這個問題,這樣既增強學生學習新知的積極性,又達到了解決問題的目的。
問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關系?變量t是v的函數嗎?為什么?
【設計意圖及教法說明】
問題3是一個行程問題,先讓學生獨立思考、同桌討論,最后列出正確的函數關系式,進一步體會函數是刻畫變量之間關系的數學模型,為形成反比例函數的概念打基礎。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設計意圖及教法說明】
這個環節目的在于讓學生親身經歷觀察、思考、抽象、概括、補充、完善的過程,讓學生嘗試用自己的語言說明他們的新發現,培養他們的歸納能力和自主探索與合作交流的良好學習習慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導,初步形成反比例函數的概念。
2.啟發學生建構新知
反比例函數的定義:一般地,如果兩個變量x、y之間的關系可以表示成y=k/x(k為常數,k≠0)的形式,那么稱y是x的反比例函數。
反比例函數自變量不能為0!
反比例函數的一般形式:y= k/x(k為常數,k≠0)
反比例函數的變式形式:k=yx,x=k/y(k為常數,k≠0)
【設計意圖及教法說明】
這種從不同的問題情境中抽象出相同的數學模型,再進行抽象得出概念的過程,并非教師所強加,而是學生通過自己分析走向概念,突破本節課的難點,使學生的自豪感和成功感在活動中得以提升,體現類比、轉化、建模等數學思想,把本節課推向高潮。
(三)反饋練習,應用新知
根據學生認知的差異性,我設計了基礎過關和拓展訓練兩類練習題。
1.基礎過關
(1)下列函數的表達式中,x表示自變量,那么哪些是反比例函數?每一個反比例函數相應的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設計意圖及教法說明】
此題較簡單,以口答的形式進行,設計的目的是重視基礎知識的教學和面向全體學生的教學,并告誡學生判斷一個函數是否是反比例函數不能單從形式上判斷,一定要嚴謹認真,同時也完成了隨堂練習1。
(2)做一做
①一個矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?
②某村有耕地346.2公頃,人口數量n逐年發生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數n的函數嗎?是反比例函數嗎?為什么?
③y是x的反比例函數,下表給出了x和y的一些值:
a.寫出這個反比例函數的表達式;
b.根據函數表達式完成下表。
表略。
【設計意圖及教法說明】
通過三個實際問題的解決,培養了學生“發現問題”、“解決問題”的能力,也達到了學以致用的目的。
2.能力拓展
(1)你能舉個反比例函數的實例嗎?與同學進行交流。
(2)y=5xm是反比例函數,求m的值。
【設計意圖及教法說明】
問題(1)是一個開放性的題,既解決了隨堂練習2,也培養了學生的發散性思維。問題(2)能助于學生抓住關鍵點,澄清易錯點(反比例函數中k≠0),并且加強了新舊知識的聯系。
(四)歸納總結,反思提高
通過這節課的學習你有哪些收獲?還有哪些問題?與同伴進行討論。
(如:你學到了什么?懂得了什么?你發現了什么?還有什么困惑?應注意什么?還想知道什么?)
【設計意圖及教法說明】通過問題式的小結,讓學生再次歸納、總結本節課的重點,彌補教學中的不足。
(五)推薦作業,分層落實
必做題:課本第134頁習題1、2題。
選做題:已知y與2x成反比例,且當x=2時,y=-1,求:
(1)y與x的函數關系式。
(2)當x=4時,y的值。
(3)當y=4時,x的值。
【設計意圖及教法說明】作業以推薦的形式進行,必做題體現了對新課標下“學有價值的數學”、“人人能獲得必要的數學”的落實,選做題體現了讓“不同的人在數學上得到不同的發展”。
【名師點評】
說課者對本節課的特點把握較好。無論是教材的分析,還是學情的了解;無論是重點的把握,還是難點的確定;無論是目標的定位,還是時間的分配;無論是資源的選擇,還是教學的構想都能夠圍繞內容進行宏觀性說課。
然而,從這次說課中也不難看出存在的問題:設想中的不少環節均沒有得到體現,實際效果離設計相差不小。也許過于想要達到預期效果,在準備過程中多多少少忽略了學生的想法。在備課過程中,沒有考慮學生,站在學生的角度去設計課堂,這方面做的很不夠。所以教學設計雖然體現了精講多練,實時檢測,但還是效果一般。
另外說課中教師操作技術不熟練,板書不夠端正,肢體語言的多余動作、類似口頭禪的多余話較多,需要在今后的教學過程中嚴格要求自己,對方方面面進行改善!
人教版初中八年級《反比例函數》說課稿范文 篇4
各位評委,你們好:
我今天說課的內容是華東師大版八年級下冊第十八章第四節第一課時反比例函數。
一、說教學內容:
(一)、本課時的內容、地位及作用:
本課內容是華東師大版八年級(下)數學第十八章《函數及其圖象》第四節《反比例函數》的第一課時,是繼一次函數學習之后又一類新的函數——反比例函數,它位居初中階段三大函數中的第二,區別于一次函數,但又建立在一次函數之上,而又為以后更高層次函數的學習,函數、方程、不等式間關系的處理奠定了基礎。函數本身是數學學習中的重要內容,而反比例函數則是基礎函數,因此,本節內容有著舉足輕重的地位。
(二)本課題的教學目標:
教學目標是教學的出發點和歸宿。因此,我根據新課標的知識、能力和德育目標的要求,以學生的認知點,心理特點和本課的特點來制定教學目標:
1.知識目標
(1)、通過對實際問題的探究,理解反比例函數的意義。
(2)、體會反比例函數的不同表示法。
(3)、會判別反比例函數。
2.能力目標
(1)、通過兩個實際問題,培養學生勤于思考和分析歸納的能力。
(2)、在思考、歸納等過程中,發展學生的合情說理能力。
(3)、讓學生會求反比例函數關系式
3.情感目標
(1)、通過已有的知識經驗探索的過程,體驗數學研究和發現的過程,逐步培養學生在教學活動中的主動探索的意識和合作交流的習慣。
(2)、理論聯系實際,讓學生有學有所用的感性認識。
4、本課題的重點、難點和關鍵:
重點:反比例函數的意義;
難點:求反比例函數的解析式;
關鍵:如何由實際問題轉化為數學模型。
二、說教學方法:
本課將采用探究式教學,讓學生主動去探索,并分層教學將顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果。同時在教學中將理論聯系實際,讓學生用所學的知識去解決身邊的實際問題。
由于學生才第一次接觸函數,對一次函數盡管已經學習了,但對函數這部分內容不是十分熟練。因此,在教這節課時,要注意和一次函數,尤其是正比例函數與反比例函數的類比。引導學生從函數的意義、自變量的取值范圍等方面辨明相應的差別,在學生探索過程中,讓學生體會到在探索的途徑和方法上與一次函數相似。
對于所設置的兩個問題為學生所熟悉,盡量貼近學生生活,或者進入學生生活的圈子里,讓學生感受到親切、自然,激發學生的學習興趣,提高學生思考問題的積極主動性和解決問題的能力,從而培養對數學學科的濃厚興趣,使部分學生由不愛學變得愛學。讓學生真正體會到:生活處處皆數學,生活處處有函數。
三、說學法指導:
課堂,只有寶貴的四十五分鐘,有相當一部分學生很難駕馭,身不由已,注意力不能集中。針對這種情況,故意設置兩個貼近生活的實例,讓學生展開想象的翅膀,主動思考,相互探討,學生互動,師生互動。在想象與探討的互動中,迸發出思想的火花,尋求問題的答案――反比例函數的意義。
為了讓學生對反比例函數的意義牢牢掌握和深刻理解,啟發學生回憶正比例函數并與之相類比,從內容到形式,學生自主地體會出反比例函數的真正內涵。
在本課時的教學雙邊活動過程中,抓住初中學生的心理生理特點,盡量運用生動的語言,引發學生的興趣,吸引他們的注意力;另一方面積極創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
教師要善于捕捉學生的反饋信息,并能立即反饋給學生,矯正學生的學法和知識錯誤。力求體現以學生為主體,教師為主導的原則,在輕松愉快的氛圍中,順利地“消化”本節課的內容。同時,讓學生體會到“理論來自于實踐,而理論又反過來指導實踐”的哲學思想。從而培養和提高學生分析問題和解決問題的能力。
四、說教學程序:
(一)復習引入:
由于學生所學過的一次函數、正比例函數等概念時間已較長,所以在創設情境時對這些知識加以復習,以換取學生以有知識的記憶。回憶師生共同回憶前一階段所學知識,同時啟開新的課題——反比例函數(教師板書)
設計意圖:舊知的回顧,為了新知的探索作好鋪墊)
(二)創設情景,激發熱情
用兩個最貼近學生生活實例引出反比例函數的概念,教師發揮主導作用,啟發學生思考。
問題1、
小華的爸爸早晨騎自行車帶小華到15千米的鎮外去趕集,回來時讓小華乘公共汽車,用的時間少了。假設兩人經過的路程一樣,而且自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮上的時間和乘坐不同交通工具的速度之間的關系。
師問:
(1)、在這個故事中,有幾種交通工具?(生答:兩種)
(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時間呢?(生答:不一樣、一樣、不一樣)
師生共同探究,時間的變化是由速度的變化所引起,設小華乘坐交通工具的速度是v千米/時,從家里到鎮上的時間是t小時。因為在勻速運動中,時間=路程÷速度, 則有 t=15/v
你從這個關系式中發現了什么?
教師分析變量t與v之間的關系:
① 路程一定時,時間t就是速度v的反比例函數。即速度增大了,時間變小;速度減小了,時間增大。
② 自變量v的取值是v﹥0
問題2、
學校校外生物小組的同學準備自己動手,用舊圍欄建一個面積為24平方米的矩形飼養場。設它的一邊長為x(米),求另一邊的長y(米)與x的函數關系式。
仿上一問題讓學生分析變量關系,然后教師總結:依矩形面積可得
xy=24 即y=24/x
你從這個關系式中發現了什么?
教師指出,問題2中的的關系與問題1中的一樣,即:
① 當矩形的面積一定時,矩形的一邊增大了,則另一邊減小;若一邊減小了,則另一邊增大。
② 自變量x﹥0。
設計意圖:列舉生活中的兩個實例,讓學生感受數學與生活的緊密聯系。主要是幫助學生理清反比例函數的意義,掌握在不同的已知條件下,確定反比例函數的表達式。
(三)觀察歸納——形成概念
在這一環節中,為了突出重點,我通過問題“在上面我們所得到的關系式有沒有共同點”和“這一共同點能不能用一個統一的表達式表示”引導學生猜想,然后讓學生分組交流討論
由實例,即y=15/x和y=24/x 兩個式子教師引導學生概括總結出本課新的知識點:
上述兩個函數都具y=k/x的形式,一般地,形如y=k/x(k是常數,k不為0)的函數叫做反比例函數。(強調k≠0)
教師對反比例函數的定義加以說明:
1、正比例函數為y=kx(k是常數,且k≠0);反比例函數可化為xy=k,k是常數,且k≠0。
(提醒學生:要注意常數的位置,并可利用它來判別函數的種類。)
2、反比例函數的解析式又可以寫成:y=k/x=kx –1(k是常數,k≠0)
3、要求出反比例函數的解析式,只要求出k即可。
(四)討論研究——深化概念
在這里我給出兩道習題讓學生練習
1、下列函數關系中,X均表示自變量,那么哪些是反比例函數?每一個反比例函數的K的值是多少?
y=0.4/x y=x/2 xy=2 y=5x –1
學生自由組合思考回答后教師給出正確答案。
教師分析思路:確定函數是否為反比例函數,就是看它們的解析式經過整理后是否符合y=k/x(k是常數,k≠0)
2、當m為何值時,函數y=4/x 2m--2是反比例函數,并求出其函數解析式。(本題交給學生,教師矯正)
教師給出正確的解法:由反比例函數的定義可知:2m-2=1,即m=3/2。所以反比例函數的解析式為y=4/x。
設計意圖:學生通過對上面兩道題的觀察、討論、交流后更進一步理解和掌握反比例函數的概念。
(五)隨堂練習
教科書P50 練習第1題
(六)總結反思——提高認識
由學生總結本節課所學習的主要內容:
A、反比例函數的意義;
B、反比例函數的判別;
C、反比例函數解析式的求法。
設計意圖:讓學生通過知識性內容的小結,把課堂教學傳授的知識盡快化為學生的素質;通過數學思想方法的小結,使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
(七)布置作業
教科書P52 習題18.4 第2、4題
(作業的布置能幫助學生鞏固知識,強化對知識的理解和應用)
(八)板書設計
黑板分為左、中、右三部分,中間與右邊用于教師板書課本例題等,寫滿后擦去更新。左邊用于板書以下內容:
形如y=k/x(k是常數,k≠0)的函數叫反比例函數。
要求反比例函數的解析式,可通過待定系數法求出k值,即可確定。
人教版初中八年級《反比例函數》說課稿范文 篇5
一、教材分析:
反比例函數的圖象與性質是對正比例函數圖象與性質的復習和對比,也是以后學習二次函數的基礎。本課時的學習是學生對函數的圖象與性質一個再知的過程,由于初二學生是首次接觸雙曲線這種函數圖象,所以教學時應注意引導學生抓住反比例函數圖象的特征,讓學生對反比例函數有一個形象和直觀的認識。
二、教學目標分析
根據二期課改“以學生為主體,激活課堂氣氛,充分調動起學生參與教學過程”的精神。在教學設計上,我設想通過使用多媒體課件創設情境,在掌握反比例函數相關知識的同時激發學生的學習興趣和探究欲望,引導學生積極參與和主動探索。
因此把教學目標確定為:1.掌握反比例函數的概念,能夠根據已知條件求出反比例函數的解析式;學會用描點法畫出反比例函數的圖象;掌握圖象的特征以及由函數圖象得到的函數性質。2.在教學過程中引導學生自主探索、思考及想象,從而培養學生觀察、分析、歸納的綜合能力。3.通過學習培養學生積極參與和勇于探索的精神。
三、教學重點難點分析
本堂課的重點是掌握反比例函數的定義、圖象特征以及函數的性質;
難點則是如何抓住特征準確畫出反比例函數的圖象。
為了突出重點、突破難點。我設計并制作了能動態演示函數圖象的多媒體課件。讓學生親手操作,積極參與并主動探索函數性質,幫助學生直觀地理解反比例函數的性質。
四、教學方法
鑒于教材特點及初二學生的年齡特點、心理特征和認知水平,設想采用問題教學法
和對比教學法,用層層推進的提問啟發學生深入思考,主動探究,主動獲取知識。同時注意與學生已有知識的聯系,減少學生對新概念接受的困難,給學生充分的自主探索時間。通過教師的引導,啟發調動學生的積極性,讓學生在課堂上多活動、多觀察,主動參與到整個教學活動中來,組織學生參與“探究——討論——交流——總結” 的學習活動過程,同時在教學中,還充分利用多媒體教學,通過演示,操作,觀察,練習等師生的共同活動中啟發學生,讓每個學生動手、動口、動眼、動腦,培養學生直覺思維能力。
五、學法指導
本堂課立足于學生的“學”,要求學生多動手,多觀察,從而可以幫助學生形成分析、
對比、歸納的思想方法。在對比和討論中讓學生在“做中學”,提高學生利用已學知識去主動獲取新知識的能力。因此在課堂上要采用積極引導學生主動參與,合作交流的方法組織教學,使學生真正成為教學的主體,體會參與的樂趣,成功的喜悅,感知數學的奇妙。
六、教學過程
(一) 復習引入——反函數解析式
練習1:寫出下列各題的關系式:
(1) 正方形的周長C和它的一邊的長a之間的關系
(2) 運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關系
(3) 矩形的面積為10時,它的長x和寬y之間的關系
(4) 王師傅要生產100個零件,他的工作效率x和工作時間t之間的關系
問題1:請大家判斷一下,在我們寫出來的這些關系式中哪些是正比例函數?
問題1主要是復習正比例函數的定義,為后面學生運用對比的方法給出反比例函數的定義打下基礎。
問題2:那么請大家再仔細觀察一下,其余兩個函數關系式有什么共同點嗎?
通過問題2來引出反比例函數的解析式 ,請學生對比正比例函數的定
義來給出反比例函數的定義,這不僅有助于對舊知識的復習和鞏固,同時還可以培養學生的對比和探究能力。
例題1:已知變量y與x成反比例,且當x=2時,y=9
(1) 寫出y與x之間的函數解析式
(2) 當x=3.5時,求y的值
(3) 當y=5時,求x的值
通過對例1的學習使學生掌握如何根據已知條件來求出反比例函數的解析式。在
解題過程中,引導學生運用在求正比例函數的解析式時用到的“待定系數法”,先設反比例函數為,再把相應的x,y值代入求出k,k值的確定,函數解析式也就確定了。
課堂練習:已知x與y成反比例,根據以下條件,求出y與x之間的函數關系式
(1)x=2,y=3 (2)x=
通過此題,對學生掌握如何根據已知條件去求反比例函數的解析式的學習情況做一個簡單的反饋。
(二)探究學習1——函數圖象的畫法
問題3:如何畫出正比例函數的圖象?
通過問題3來復習正比例函數圖象的畫法主要分為列表、描點、連線三個步驟,為學習反比例函數圖像的畫法打下基礎。
問題4:那反比例函數的圖象應該怎樣去畫呢?
在教學過程中可以引導學生仿照正比例函數圖象的的畫法。
設想的教學設計是:
(1) 引導學生運用在畫正比例函數圖象中所學到的方法,分小組討論嘗試,采用列表、描點、連線的方法畫出函的圖象;
(2) 老師邊巡視,邊指導,用實物投影儀反映一些學生在函數圖象中出現的典型錯誤,和學生一起找出錯誤的地方,分析原因;
(3) 隨后老師在黑板上演示畫好反比例函數圖像的步驟,展示正確的函數圖象,引導學生觀察其圖象特征(雙曲線有兩個分支)。
初二學生是首次接觸到雙曲線這種比較特殊函數圖象,設想學生可能會在下面幾個環節中出錯:
(1) 在“列表”這一環節
在取點時學生可能會取零,在這里可以引導學生結合代數的方法得出x不能為零。也可能由于在取點時的不恰當,導致函數圖象的不完整、不對稱。在這里應該要指導學生在列表時,自變量x的取值可以選取絕對值相等而符號相反的數,相應的就得到絕對相等而符號相反的對應的函數值,這樣可以簡化計算的手續,又便于在坐標平面內找到點。
(2) 在“連線”這一環節
學生畫的點與點之間連線可能會有端點,未能用光滑的線條連接。因而在這里要特別要強調在將所選取的點連結時,應該是“光滑曲線”,為以后學習二次函數的圖像打下基礎。為了使函數圖象清晰明顯,可以引導學生注意盡量選取較多的自變量x的值和對應的函數值y,以便在坐標平面內得到較多的“點”,畫出曲線。
從而引導學生畫出正確的函數圖象。
(3) 圖象與x軸或y軸相交
在這里我認為可以埋下一個伏筆,給學生留下一個懸念,為后面學習函數的性質打下基礎。
需要說明的是:利用多媒體課件學習能吸引學生的注意力,引起學生進一步學習的興趣。不過,盡管多媒體的演示既快又準確,我認為在學生第一次學畫反比例函數圖象的過程中,老師還是應該在黑板上認真示范畫出圖象的每一個步驟,畢竟多媒體還是不能替代我們平時老師在黑板上板書。
鞏固練習:畫出函數的圖象
通過鞏固練習,讓學生再次動手畫出函數圖象,改正在初次畫圖象時出現在一些問題。老師使用函數圖象的課件,用屏幕顯示的函數圖象驗證學生畫出的函數圖象的準確性。
(三) 探究學習2——函數圖象性質
1、圖象的分布情況
問題5:請大家回憶一下正比例函數
初中數學說課稿:初二數學《反比例函數》優秀說課稿范例
的分布情況是怎么樣的呢?
提出問題5主要是起到鞏固復習,為引導學生學習反比例函數圖象的分布情況打下基礎。
問題6:觀察剛才所畫的圖象我們發現反比例函數的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?
在這一環節中的設計:
(1) 引導學生對比正比例函數圖象的分布,啟發他們主動探索反比例函數的分布情況,給學生充分考慮的時間;
(2) 充分運用多媒體的優勢進行教學,使用函數圖象的課件試著任意輸入幾個k的值,觀察函數圖象的不同分布,觀察函數圖象的動態演變過程。把不同的函數圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數圖象的分布與k的關系有一個直觀的了解;
(3) 組織小組討論來歸納出反比例函數的一條性質:當k>0時,函數圖象的兩支分別在第一、三象限內;當k<0時,函數圖象的兩支分別在第二、四象限內。
2、 圖象的變化情況
問題7:正比例函數
圖象的變化情況是怎么樣的呢?
提出問題7主要是起到鞏固復習,為引導學生學習反比例函數圖象的變化情況打下基礎。
問題8:那反比例函數的圖象,是否也具有這樣的性質呢?
在這一環節的教學設計是:
(1)回顧反比例函數的圖象,通過實際觀察;
(2)根據解析式對x進行取值,比較x在取不同值時函數值的變化情況;
(3)電腦演示及學生小組討論,請學生給出結論。即這個問題必須分成兩種情況討論即當k>0時,自變量x逐漸增大時,y的值則隨著逐漸減小;當k<0時,自變量x逐漸增大時,y的值也隨著逐漸增大。
(4)對于學生做出的結論,老師應該要給予肯定,同時可以提出:有沒有同學需要補充的呢?若沒有,則可以舉例:當k>0,分別比較在第三象限x=-2,第一象限x=2時的y的值的大小,則以上性質是否依然成立?學生的回答應該是:不成立。這時老師再請學生做小結:必須限定在每一個象限內,才有以上性質成立。
問題9:當函數圖象的兩個分支無限延伸時,它與x軸、y軸相交嗎?為什么?
在這個環節中,可以結合剛才學生所畫的錯誤圖象,引導學生可以通過代數的方法分析反比例函數的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗證了反比例函數的圖象。當兩個分支無限延伸時,可以無限地逼近x軸、y軸,但永遠不會與兩軸相交。隨即強調畫圖時要注意準確性。
(四) 備用思考題
1、 反比例函數
的圖象在第一、三象限,求a的取值范圍
2、
(1) 當m為何值時,y是x的正比例函數
(2) 當m為何值時,y是x的反比例函數
(五) 小結:
1、 通過列表的形式,引導學生小結反比例函數的性質
名稱
解析式
圖像
圖象分布
函數變化情況
k>0
k<0
k>0
k<0
正比例函數
y=kx(k
0)
是一條經過原點和(1,k)的直線
一、三象限
二、四象限
y隨x的增大而增大
y隨x的增大而減小
反比例函數
雙曲線
一、三象限
二、四象限
y隨x的增大而減小
y隨x的增大而增大
2、 請學生小結一下我們在畫圖象的過程中需要大家注意的地方
(1) 在列表過程中,x的值不能取0;取值可以由原點向兩側取相反數;可以適當的多取一些點,方便連線
(2) 反比例函數圖象是光滑曲線
(3) 函數圖象只能是無限逼近y軸和x軸,永遠不會和兩軸相交
(六) 作業
基礎題:A冊習題21.5
提高題:同步72頁第14,15,16題