不等式教案(通用8篇)
不等式教案 篇1
1、 ( 、 )。
2、 ( 、 , )(當(dāng)且僅當(dāng) 時(shí)取等號)。
3、若 、 、 且 ,則 (真分?jǐn)?shù)的分子分母加上同一個正數(shù),值變大)。
4、若 、 、 且 ,則 。
5、 。
6、一個重要的均值不等式鏈:設(shè) ,則有 (當(dāng)且僅當(dāng) 時(shí)取等號)。
7、若已知條件中含有或隱含著" "或" "這一信息,常常可以設(shè)" "用這種和式增量法來證明不等式、求值、或比較大小。
8、不等式證明常用的放縮方法:
(1) ;
(2) 。
七、解析幾何:
1、兩條平行直線 和 之間的距離為 。
2、直線 過定點(diǎn) ,且點(diǎn) 在圓 內(nèi),則 與圓 必相交。
過圓內(nèi)一點(diǎn) 的弦長,以直徑為最大,垂直于 ( 為圓心)的弦為最小。
3、直線在 軸、 軸上的截距相等包含有直線過原點(diǎn)這一特殊情況。
4、直線過定點(diǎn) 時(shí),根據(jù)情況有時(shí)可設(shè)其方程為 ( 時(shí)直線 )應(yīng)用點(diǎn)斜式解題,應(yīng)檢驗(yàn)直線斜率不存在的情況。
5、 已知圓的方程是 和點(diǎn) ,若點(diǎn) 是圓上的點(diǎn),則方程 表示過點(diǎn) 的圓的切線方程;若點(diǎn) 在圓外,則方程 表示過點(diǎn) 向圓所作的兩條切線的切點(diǎn)所在的直線方程(又稱切點(diǎn)弦方程)。
6、過圓 上一點(diǎn) 的圓的切線方程是:
。
7、圓 和 相交于 、 兩點(diǎn),則直線 為這兩圓的"根軸",其方程為 (即為公共弦 所在的直線方程。利用此法,可以推導(dǎo)圓的切點(diǎn)弦方程)。
8、已知一個圓的直徑端點(diǎn)是 、 ,則圓的方程是:
。
9、給一定點(diǎn) 和橢圓: , 、 分別為左右焦點(diǎn),有如下性質(zhì):
(1)若點(diǎn) 在橢圓上,則 , (由橢圓第二定義推出);
(2)若點(diǎn) 在橢圓上,過這一點(diǎn)的橢圓的切線方程則可表示為: ;
(3)若點(diǎn) 在橢圓外,則這一點(diǎn)對應(yīng)的橢圓的切點(diǎn)弦可表示為: ;
(4)若點(diǎn) 在橢圓內(nèi),則這一點(diǎn)對應(yīng)的橢圓的極線可表示為: ;
補(bǔ)充:直線 與橢圓 相切的充要條件是:
。
10、三種圓錐曲線的通徑(通徑是最短的焦點(diǎn)弦):
(1)橢圓 的通徑長為 ;
(2)雙曲線 的通徑長為 ;
(3)拋物線 的通徑長為 。
11、雙曲線的焦半徑公式:點(diǎn) 為雙曲線 上任意一點(diǎn), 、 分別為左右焦點(diǎn)
(1)若 在右支上,則 , ;
(2)若 在左支上,則 , 。
12、雙曲線標(biāo)準(zhǔn)方程(焦點(diǎn)在 軸或 軸上)的統(tǒng)一形式為 ( ),雙曲線 的漸近線方程為 ,也可記作 。
13、過拋物線 的焦點(diǎn)且傾斜角為 的弦 , 時(shí),最短弦長為 ,即為拋物線的通徑。
14、圓錐曲線中幾條特殊的垂直弦和定點(diǎn)弦:
(1)過拋物線 的頂點(diǎn)作兩條互相垂直的弦 ,則弦 過定點(diǎn) ;
(2)過拋物線 的頂點(diǎn)作兩條互相垂直的弦 ,點(diǎn) 分別為 的中點(diǎn),則直線 過定點(diǎn) ;
(3)過拋物線 上一點(diǎn) 作兩條互相垂直的弦 ,則弦 過定點(diǎn) ;
(4)過橢圓 的中心 作兩條相互垂直的弦 ,則原點(diǎn)到弦ab的距離為定值: ,且 (此時(shí)弦ab最短), (此時(shí)弦ab最長);
(5)過橢圓 的右頂點(diǎn) 作兩條相互垂直的弦 ,則弦mn過定點(diǎn): ;
(6)過橢圓 的右焦點(diǎn) 作兩條相互垂直的弦 ,點(diǎn) 分別為 的中點(diǎn),則直線mn過定點(diǎn): ;
(7)過雙曲線 的中心 作兩條相互垂直的弦 ,則原點(diǎn)到弦ab的距離為定值: ;
15、過拋物線 上一點(diǎn) 的焦半徑 ;若 、 是過焦點(diǎn) 弦的端點(diǎn), , 則:
(1) , ;
(2) ;
(3) ( 為直線 與 軸的夾角);
(4)若 、 在準(zhǔn)線 上的射影分別為 、 ,則 ;
(5)以焦點(diǎn)弦 為直徑的圓與準(zhǔn)線 相切,切點(diǎn)為 的中點(diǎn);
(6)以焦半徑 為直徑的圓與 軸相切;
(7)以 為直徑的圓與焦點(diǎn)弦 相切,切點(diǎn)為焦點(diǎn)f;
16、過拋物線的準(zhǔn)線與對稱軸的交點(diǎn)作拋物線的兩條切線,則切點(diǎn)弦長等于該拋物線的通徑。過拋物線 的對稱軸上任意一點(diǎn) 作拋物線的切線,切點(diǎn)分別為 、 ,則直線過定點(diǎn) 。
17、由拋物線焦點(diǎn)發(fā)出的光線,經(jīng)過拋物線上一點(diǎn)反射后,反射光線平行拋物線的軸。
18、若雙曲線的兩條漸近線方程分別為 ,則對應(yīng)雙曲線方程可設(shè)為為 為參數(shù))。
19、等軸雙曲線的離心率 ;雙曲線的焦點(diǎn)到漸近線的距離等于虛半軸長 。
20、若一直線被雙曲線及兩條漸近線所截,則夾在雙曲線與漸近線間的線段長相等。
21、點(diǎn)與圓錐曲線的位置關(guān)系:
(1)若點(diǎn) 在拋物線 內(nèi)部,則 。
若點(diǎn) 在拋物線 外部,則 ;
(2)若點(diǎn) 在 內(nèi)部,則 。
若點(diǎn) 在 外部,則 ;
(3)雙曲線 內(nèi)的點(diǎn) (指點(diǎn)在雙曲線弧內(nèi)),滿足 ;
雙曲線 外的點(diǎn) (指點(diǎn)在雙曲線弧外),滿足 。
22、若直線 與二次曲線交于 、 兩點(diǎn),則由:
,知直線與二次曲線相交所截得的弦長:
其中 (涉及直線與二次曲線相交的位置關(guān)系應(yīng)注意 ,還需要注意圓錐曲線本身的范圍。若求弦所在直線的斜率常用"點(diǎn)差法")。
23、中心在原點(diǎn)的橢圓、雙曲線方程(焦點(diǎn)位置不定)可設(shè)為 (其中 且 時(shí)為橢圓, 時(shí)為雙曲線)。
24、圓錐曲線的參數(shù)方程:
(1)橢圓 的參數(shù)方程為 ( 為參數(shù));
(2)雙曲線 的參數(shù)方程為 ( 為參數(shù));
(3)拋物線 的參數(shù)方程為 ( 為參數(shù))。
25、若 為橢圓 上任一點(diǎn), 、 為焦點(diǎn), 為短軸的一個端點(diǎn),則 (證明用到橢圓定義、余弦定理)。
26、與直線 平行的直線系方程為 (參數(shù) );
與直線 垂直的直線系方程為 ( 為參數(shù))。
27、共離心率的橢圓系方程為 ( 為參數(shù))。橢圓的離心率 越接近1,橢圓越扁;橢圓的離心率越接近于0,橢圓就接近于圓。可以概括為:橢圓的離心率越大,橢圓越扁。
28、共漸近線的雙曲線系方程為 ( 為參數(shù))。
29、設(shè) 是橢圓 上的任意一點(diǎn)(不在長軸上), 、 為左右焦點(diǎn),則稱 為焦點(diǎn)三角形, , , ,該三角形有如下性質(zhì):
(1)離心率: ;
(2)面積: ;
(3)旁切球:左右兩個旁切球的球心都在直線 上;
(4)設(shè)其內(nèi)心為 ,連接pi并延長交長軸于點(diǎn)m,則有: ;
(5)當(dāng)且僅當(dāng)點(diǎn)p在短軸端點(diǎn)時(shí), 最大, 也最大。
30、設(shè) 是雙曲線 上的任意一點(diǎn)(不在實(shí)軸上), 、 為左右焦點(diǎn), ,則 的面積為 。
31、橢圓 內(nèi)接三角形,四邊形的面積最大問題
(1)橢圓內(nèi)接三角形面積的最大值為: (當(dāng)且僅當(dāng)三角形的重心為橢圓的中心);
(2)橢圓內(nèi)接四邊形面積的最大值為: (當(dāng)且僅當(dāng)四邊形的對角線為橢圓的一對共軛直徑)
32、設(shè)m,n為橢圓 上關(guān)于原點(diǎn)中心對稱的兩點(diǎn),p為橢圓上異于m,n的任意一點(diǎn),則 。(雙曲線中為: )
33、已知兩點(diǎn) 、 及直線
(1)若點(diǎn) 、 在直線 的同側(cè),則 。
(2)若點(diǎn) 、 在直線 的異側(cè),則 。
34、已知點(diǎn) 、及直線 ,點(diǎn) 關(guān)于直線 的對稱點(diǎn)為 ,則有 其中
35、在線性規(guī)劃中,
(1)對形如 型的目標(biāo)函數(shù),可變形為 , 看做直線在 軸上的截距,問題轉(zhuǎn)化為求縱截距范圍或
(2)對形如 型的目標(biāo)函數(shù),變形為 的形式,將問題轉(zhuǎn)化為求可行域內(nèi)的點(diǎn) 與點(diǎn) 連線斜率的 倍的范圍;
(3)對形如 型的目標(biāo)函數(shù),可化為 的形式,將問題化歸為求可行域內(nèi)的點(diǎn) 到直線 距離的 倍的最值。
36、在圓錐曲線中,求形如 ( 是圓錐曲線內(nèi)的一點(diǎn), 是圓錐曲線的一個焦點(diǎn))的最值問題時(shí),可利用圓錐曲線的第二定義將 轉(zhuǎn)化為圓錐曲線上的點(diǎn)到準(zhǔn)線的距離。
有關(guān)線段和差關(guān)系的計(jì)算,可優(yōu)先考慮圓錐曲線的第一定義。
37、凡是動點(diǎn)到圓上動點(diǎn)之間距離的最值,必過圓心時(shí)才能取得,應(yīng)先求動點(diǎn)到圓心的最值,再加上或減去半徑
不等式教案 篇2
整體設(shè)計(jì)
教學(xué)分析
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實(shí)數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí), 讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實(shí)例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實(shí)數(shù)與數(shù)軸上 點(diǎn)的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實(shí)數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
三維目標(biāo)
1.在學(xué)生了解不等式產(chǎn)生的實(shí)際背景下,利用數(shù)軸回憶實(shí)數(shù)的基本理論,理解實(shí)數(shù)的大小關(guān)系,理解實(shí)數(shù)大小與數(shù)軸上對應(yīng)點(diǎn)位置間的關(guān)系.
2.會用作差法判斷實(shí)數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):比較實(shí)數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
教學(xué)難點(diǎn):準(zhǔn)確比較兩個代數(shù)式的大小.
課時(shí)安排
1課時(shí)
教學(xué)過程
導(dǎo)入新課
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實(shí)世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時(shí)間、數(shù)學(xué)成績的多少等現(xiàn)實(shí)生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué) 生用數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實(shí)世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
推進(jìn)新課
新知探究
提出問題
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實(shí)際例子嗎?
3數(shù)軸上的任意兩 點(diǎn)與對應(yīng)的兩實(shí)數(shù)具有怎樣的關(guān)系?
4任意兩個實(shí)數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實(shí)世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實(shí)際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實(shí)例1:某天的天氣預(yù)報(bào)報(bào)道,氣溫32 ℃,最低氣溫26 ℃.
實(shí)例2:對于數(shù)軸上任意不同的兩點(diǎn)A、B,若點(diǎn)A在點(diǎn)B的左邊,則xA
實(shí)例3:若一個數(shù)是非負(fù)數(shù),則這個數(shù)大于或等于零.
實(shí)例4:兩點(diǎn)之間線段最短.
實(shí)例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實(shí)例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過40 km/h.
實(shí)例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點(diǎn)撥:能夠發(fā)現(xiàn)身 邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實(shí)例用不等式表示出來.實(shí)例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實(shí)例3,若用x表示一個非負(fù)數(shù),則x≥0.實(shí)例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|b,a應(yīng)用示例
例1(教材本節(jié)例1和例2)
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點(diǎn)評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時(shí)經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
變式訓(xùn)練
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實(shí)數(shù)的大小,常根據(jù)實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨(dú)立完成,但要點(diǎn)撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點(diǎn).
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時(shí)取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
當(dāng)y0時(shí),x-yy>0,即xy-1>0.∴xy>1.
點(diǎn)評:當(dāng)字母y取不同范圍的值時(shí),差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時(shí)增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文 字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時(shí)增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時(shí)增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點(diǎn)評:一般地,設(shè)a、b為正實(shí)數(shù),且a
變式訓(xùn)練
已知a1,a2,…為各項(xiàng)都大于零的等比數(shù)列,公比q≠1,則( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項(xiàng)都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
課堂小結(jié)
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實(shí)數(shù)的基本性質(zhì)的回顧,到兩個實(shí)數(shù)大小的比較方法;從例題的活動探究點(diǎn)評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點(diǎn)睛,點(diǎn)撥利用實(shí)數(shù)的基本性質(zhì)對兩個實(shí)數(shù)大小比較時(shí)易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
作業(yè)
習(xí)題3—1A組3;習(xí)題3—1B組2.
設(shè)計(jì)感想
1.本節(jié)設(shè)計(jì)關(guān)注了教學(xué)方法 的優(yōu)化.經(jīng)驗(yàn)告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計(jì)最能體現(xiàn)教學(xué)規(guī)律的教學(xué) 過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實(shí)驗(yàn)?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計(jì)注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷 來是高考的重點(diǎn)與熱點(diǎn).作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計(jì)關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點(diǎn)撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
不等式教案 篇3
【教學(xué)目標(biāo)】
1.通過具體情境讓學(xué)生感受和體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,鼓勵學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。
2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。
3.了解不等式或不等式組的實(shí)際背景。
4.能用不等式或不等式組解決簡單的實(shí)際問題。
【重點(diǎn)難點(diǎn)】
重點(diǎn):
1.通過具體的問題情景,讓學(xué)生體會不等量關(guān)系存在的普遍性及研究的必要性。
2.用不等式或不等式組表示實(shí)際問題中的不等關(guān)系,并用不等式或不等式組研究含有簡單的不等關(guān)系的問題。
3.理解不等式或不等式組對于刻畫不等關(guān)系的意義和價(jià)值。
難點(diǎn):
1.用不等式或不等式組準(zhǔn)確地表示不等關(guān)系。
2.用不等式或不等式組解決簡單的含有不等關(guān)系的實(shí)際問題。
【方法手段】
1.采用探究法,按照閱讀、思考、交流、分析,抽象歸納出數(shù)學(xué)模型,從具體到抽象再從抽象到具體的方法進(jìn)行啟發(fā)式教學(xué)。
2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用。
3.設(shè)計(jì)教典型的現(xiàn)實(shí)問題,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。
【教學(xué)過程】
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計(jì)意圖
導(dǎo)入新課
日常生活中,同學(xué)們發(fā)現(xiàn)了哪些數(shù)量關(guān)系。你能舉出一些例子嗎?
實(shí)例1.某天的天氣預(yù)報(bào)報(bào)道,最高氣溫35℃,最低氣溫29℃。
實(shí)例2.若一個數(shù)是非負(fù)數(shù),則這個數(shù)大于或等于零。
實(shí)例3.兩點(diǎn)之間線段最短。
實(shí)例4.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
引導(dǎo)學(xué)生想生活中的例子和學(xué)過的數(shù)學(xué)中的例子。在老師的引導(dǎo)下,學(xué)生肯定會迫不及待的能說出很多個例子來。即活躍了課堂氣氛,又激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
推進(jìn)新課
同學(xué)們所舉的這些例子聯(lián)系了現(xiàn)實(shí)生活,又考慮到數(shù)學(xué)上常見的數(shù)量關(guān)系,非常好。而且大家已經(jīng)考慮到本節(jié)課的標(biāo)題《不等關(guān)系與不等式》,所舉的實(shí)例都是反映不等量的關(guān)系。
(下面利用電腦投影展示兩個實(shí)例)
實(shí)例5:限時(shí)40km/h的路標(biāo),指示司機(jī)在前方路段行使時(shí),應(yīng)使汽車的速度v不超過40km/h。
實(shí)例6:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
同學(xué)們認(rèn)真觀看顯示屏幕上老師所舉的例子。
讓學(xué)生們邊看邊思考:生活中有許多的事情的描述可以采用不等的數(shù)量關(guān)系來描述
過程引導(dǎo)
能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但是我們還要能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)、進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,那么我們用什么知識來表示這些不等關(guān)系呢?
什么是不等式呢?
用大屏幕展示一組不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式組把這些不等關(guān)系表示出來,也就是建立不等式數(shù)學(xué)模型的過程通過對不等式數(shù)學(xué)模型的研究,反過來作用于現(xiàn)實(shí)生活,這才是學(xué)習(xí)數(shù)學(xué)的最終目的。
思考并回答老師的問題:可以用不等式或不等式組來表示不等關(guān)系。
經(jīng)過老師的啟發(fā)和點(diǎn)撥,學(xué)生可以自己總結(jié)出:用不等號將兩個解析試連接起來所成的式子叫不等式。
目的是讓學(xué)生回憶不等式的一些基本形式,并說明不等號≤,≥的含義,是或的關(guān)系。回憶了不等式的概念,不等式組學(xué)生自然而然就清楚了。
此時(shí)學(xué)生已經(jīng)迫不及待地想說出自己的觀點(diǎn)了。
合作探究
(一)。下面我們把上述實(shí)例中的不等量的關(guān)系用不等式或不等式組一一的表示出來,那應(yīng)該怎么表示呢?
這兩位同學(xué)的觀點(diǎn)是否正確?
老師要表揚(yáng)學(xué)生:“很好!這樣思考問題很嚴(yán)密。”應(yīng)該用不等式組來表示此實(shí)際問題中的不等量關(guān)系,也可以用“且”的形式來表達(dá)。
(二)。問題一:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn)。
請同學(xué)們用不等式或不等式組來表示出此問題中的不等量的關(guān)系。
老師提示:借助于圖形,這個問題是不是可以解決?
(下面讓學(xué)生板演,結(jié)合三角形草圖來表達(dá))
問題(二):某種雜志原以每本2。5元的價(jià)格銷售,可以售出8萬本,據(jù)市場調(diào)查,若單價(jià)每提高0。1元,銷售量就可能相應(yīng)減少20xx本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬元呢?
是不是還有其他的思路?
為什么可以這樣設(shè)?
很好,請繼續(xù)講。
這位學(xué)生回答的很好,表述得很準(zhǔn)確。請同學(xué)們對兩種解法作比較。
問題(三):某鋼鐵廠要把長度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不超過500mm鋼管的3倍。怎樣寫出滿足上述所有不等式關(guān)系的不等式?
假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根。根據(jù)題意,應(yīng)當(dāng)有什么樣的不等量關(guān)系呢?
右邊的三個不等關(guān)系是“或”還是“且”的關(guān)系呢?
這位學(xué)生回答得很好,思維很嚴(yán)密,那么該用怎樣的不等式組來表示此問題中的不等關(guān)系呢?
通過上述三個問題的探究,同學(xué)們對如何用不等式或不等式組把實(shí)際問題中隱藏的不等量關(guān)系表示出來,這一點(diǎn)掌握得很好。請同學(xué)們完成書本練習(xí)第74頁1,2。
課堂小結(jié):
1.學(xué)習(xí)數(shù)學(xué)可以幫助我們解決實(shí)際生活中的問題。
2.數(shù)學(xué)和我們的生活聯(lián)系非常密切。
3.本節(jié)課鞏固了二元一次不等式及二元一次不等式組,并且能用它來解決現(xiàn)實(shí)生活中存在的大量不等量關(guān)系的實(shí)際問題。還要注意思維要嚴(yán)密,規(guī)范,并且要注意數(shù)形結(jié)合等思想方法的綜合應(yīng)用。
布置作業(yè):
第75頁習(xí)題3.1 A組4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|b,或者a=b”,等價(jià)于“a不小于b,即若a>b或a=b之中有一個正確,則ab正確.3.實(shí)數(shù)比較大小的依據(jù)與方法.
(1)如果ab是正數(shù),那么ab;如果ab等于零,那么ab;如果ab是負(fù)數(shù),那么ab.反之也成立,就是(ab>0a>b;ab=0a=b;ab
(二)基礎(chǔ)練習(xí)
1.用不等式表示下面的不等關(guān)系:
(1)a與b的和是非負(fù)數(shù);
(2)某公路立交橋?qū)νㄟ^車輛的高度h“限高4m”;解:
(1)ab0;
(2)h4.2.有一個兩位數(shù)大于50而小于60,其個位數(shù)字比十位數(shù)字大2.試用
不等式表示上述關(guān)系(用a和b分別表示這個兩位數(shù)的十位數(shù)字和個位數(shù)字).解:由題意知5010ab60,5010ab60,5011a260
ba2,ba2,43a5.11114811a5843.比較(a+3)(a-5)與(a+2)(a-4)的大小.解:(a+3)(a-5)-(a+2)(a-4)=(a22a15)-a22a6=-7
(三)提升訓(xùn)練
1.比較x23與3x的大小,其中xR.
222233333解:x33xx3x3x3x3x
24422220,x233x.方法總結(jié):兩個實(shí)數(shù)比較大小,通常用作差法來進(jìn)行,其一般步驟是:
第一步:作差;第二步:變形,常采用配方、因式分解等恒等變形手段,將差化積;第三步:定號.最后得出結(jié)論.
2.小明帶了20元錢去超市買筆記本和鋼筆.已知筆記本每本2元,鋼筆每枝5元.設(shè)他所能買的筆記本和鋼筆的數(shù)量分別為x,y,則x,2x5y20,y應(yīng)滿足關(guān)系式xN,
yN.3.一個盒中紅、白、黑三種球分別有x個、y個、z個,黑球個數(shù)至少是白球個數(shù)的一半,至多是紅球的,白球與黑球的個數(shù)之和至少
為55,使用不等式將題中的不等關(guān)系表示出來(x,y,zN*).yxz,解:32
yz55.
(四)課后鞏固
p74練習(xí)題:1,2.p75習(xí)題3.1 A組:1,2. 4
不等式教案 篇4
教學(xué)內(nèi)容
3.2一元二次不等式及其解法
三維目標(biāo)
一、知識與技能
1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;
2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;
3.會用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;
4.會利用一元二次不等式,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解題.
二、過程與方法
1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價(jià)值觀
1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
教學(xué)重點(diǎn)
1.從實(shí)際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
教學(xué)難點(diǎn)
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
教學(xué)方法
啟發(fā)、探究式教學(xué)
教學(xué)過程
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系。回顧下等比數(shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司B的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。
學(xué)生自己討論
點(diǎn)題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為
二算:,判斷正負(fù),有根則求并畫出對應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
[例題剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
課本80頁練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁習(xí)題3.2A組第1.2.4題B組1
練習(xí)調(diào)配
設(shè)計(jì)42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測評1、3、4、5、6、7、8、
不等式教案 篇5
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價(jià)值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】一元二次不等式的解法。
【難點(diǎn)】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。
不等式教案 篇6
(一)教學(xué)目標(biāo)
1.知識與技能:使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的有關(guān)內(nèi)容。
2.過程與方法:以問題方式代替例題,學(xué)習(xí)如何利用不等式研究及表示不等式,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;
3.情態(tài)與價(jià)值:通過學(xué)生在學(xué)習(xí)過程中的感受、體驗(yàn)、認(rèn)識狀況及理解程度,注重問題情境、實(shí)際背景的的設(shè)置,通過學(xué)生對問題的探究思考,廣泛參與,改變學(xué)生學(xué)習(xí)方式,提高學(xué)習(xí)質(zhì)量。
(二)教學(xué)重、難點(diǎn)
重點(diǎn):用不等式(組)表示實(shí)際問題中的不等關(guān)系,并用不等式(組)研究含有不等關(guān)系的問題,理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值。
難點(diǎn):用不等式(組)正確表示出不等關(guān)系。
(三)教學(xué)設(shè)想
[創(chuàng)設(shè)問題情境]
問題1:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn),則d≤。
問題2:某種雜志原以每本2.5元的價(jià)格銷售,可以售出8萬本。根據(jù)市場調(diào)查,若單價(jià)每提高0.1元,銷售量就可能相應(yīng)減少20xx本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬元?
分析:若雜志的定價(jià)為x元,則銷售的總收入為萬元。那么不等關(guān)系“銷售的總收入不低于20萬元”可以表示為不等式≥20
問題3:某鋼鐵廠要把長度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不能超過500mm鋼管的3倍。怎樣寫出滿足上述所有不等關(guān)系的不等式呢?
分析:假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根..
根據(jù)題意,應(yīng)有如下的不等關(guān)系:
(1)解得兩種鋼管的總長度不能超過4000mm;
(2)截得600mm鋼管的數(shù)量不能超過500mm鋼管數(shù)量的3倍;
(3)解得兩鐘鋼管的數(shù)量都不能為負(fù)。
由以上不等關(guān)系,可得不等式組:
[練習(xí)]第82頁,第1、2題。
[知識拓展]
設(shè)問:等式性質(zhì)中:等式兩邊加(減)同一個數(shù)(或式子),結(jié)果仍相等。不等式是否也有類似的性質(zhì)呢?
從實(shí)數(shù)的基本性質(zhì)出發(fā),可以證明下列常用的不等式的基本性質(zhì):
(1)
(2)
(3)
(4)
證明:
例1講解(第82頁)
[練習(xí)]第82頁,第3題。
[思考]:利用以上基本性質(zhì),證明不等式的下列性質(zhì):
[小結(jié)]:1.現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系;
2.利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;
[作業(yè)]:習(xí)題3.1(第83頁):(A組)4、5;(B組)2.
不等式教案 篇7
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項(xiàng)系數(shù)a的討論。
若二次項(xiàng)系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號)
b.畫圖觀察,若有區(qū)間端點(diǎn)對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。
若沒有區(qū)間端點(diǎn)對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問題)
a.對二次項(xiàng)系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。
b.a=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫出所求解集。
不等式教案 篇8
教學(xué)分析
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實(shí)數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實(shí)例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實(shí)數(shù)與數(shù)軸上點(diǎn)的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實(shí)數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
三維目標(biāo)
1.在學(xué)生了解不等式產(chǎn)生的實(shí)際背景下,利用數(shù)軸回憶實(shí)數(shù)的基本理論,理解實(shí)數(shù)的大小關(guān)系,理解實(shí)數(shù)大小與數(shù)軸上對應(yīng)點(diǎn)位置間的關(guān)系.
2.會用作差法判斷實(shí)數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):比較實(shí)數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
教學(xué)難點(diǎn):準(zhǔn)確比較兩個代數(shù)式的大小.
課時(shí)安排
1課時(shí)
教學(xué)過程
導(dǎo)入新課
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實(shí)世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時(shí)間、數(shù)學(xué)成績的多少等現(xiàn)實(shí)生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實(shí)世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
推進(jìn)新課
新知探究
提出問題
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實(shí)際例子嗎?
3數(shù)軸上的任意兩點(diǎn)與對應(yīng)的兩實(shí)數(shù)具有怎樣的關(guān)系?
4任意兩個實(shí)數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實(shí)世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實(shí)際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實(shí)例1:某天的天氣預(yù)報(bào)報(bào)道,最高氣溫32 ℃,最低氣溫26 ℃.
實(shí)例2:對于數(shù)軸上任意不同的兩點(diǎn)A、B,若點(diǎn)A在點(diǎn)B的左邊,則xA
實(shí)例3:若一個數(shù)是非負(fù)數(shù),則這個數(shù)大于或等于零.
實(shí)例4:兩點(diǎn)之間線段最短.
實(shí)例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實(shí)例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過40 km/h.
實(shí)例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點(diǎn)撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實(shí)例用不等式表示出來.實(shí)例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實(shí)例3,若用x表示一個非負(fù)數(shù),則x≥0.實(shí)例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|b,a0a>b;a-b=0a=b;a-bg(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實(shí)數(shù)的大小,常根據(jù)實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨(dú)立完成,但要點(diǎn)撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點(diǎn).
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時(shí)取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
當(dāng)y0時(shí),x-yy>0,即xy-1>0.∴xy>1.
點(diǎn)評:當(dāng)字母y取不同范圍的值時(shí),差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時(shí)增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時(shí)增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時(shí)增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點(diǎn)評:一般地,設(shè)a、b為正實(shí)數(shù),且a0,則a+mb+m>ab.
變式訓(xùn)練
已知a1,a2,…為各項(xiàng)都大于零的等比數(shù)列,公比q≠1,則( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項(xiàng)都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
知能訓(xùn)練
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
A.3 B.2 C.1 D.0
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因?yàn)?x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
課堂小結(jié)
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實(shí)數(shù)的基本性質(zhì)的回顧,到兩個實(shí)數(shù)大小的比較方法;從例題的活動探究點(diǎn)評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點(diǎn)睛,點(diǎn)撥利用實(shí)數(shù)的基本性質(zhì)對兩個實(shí)數(shù)大小比較時(shí)易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
作業(yè)
習(xí)題3—1A組3;習(xí)題3—1B組2.
設(shè)計(jì)感想
1.本節(jié)設(shè)計(jì)關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗(yàn)告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計(jì)最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實(shí)驗(yàn)?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計(jì)注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點(diǎn)與熱點(diǎn).作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計(jì)關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點(diǎn)撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
備課資料
備用習(xí)題
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
3.已知x>0,求證:1+x2>1+x .
4.若x
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
參考答案:
1.解:∵(x-3)2-(x-2)(x-4)
=(x2-6x+9)-(x2-6x+8)
=1>0,
∴(x-3)2>(x-2)(x-4).
2.解:(1)(m2-2m+5)-(-2m+5)
=m2-2m+5+2m-5
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
(2)(a2-4a+3)-(-4a+1)
=a2-4a+3+4a-1
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
3.證明:∵(1+x2)2-(1+x)2
=1+x+x24-(x+1)
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
4.解:(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時(shí),ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
當(dāng)b>a>0時(shí),0
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.