2.2 整式的加減(2)
-(x-3)=-x+3 (括號沒了,括號內的每一項都改變了符號) 去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內原有幾項去掉括號后仍有幾項. 二、范例學習 例1.化簡下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b). 思路點撥:講解時,先讓學生判定是哪種類型的去括號,去括號后,要不要變號,括號內的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內,然后再去括號. 解答過程按課本,可由學生口述,教師板書. 例2.兩船從同一港口同時出發反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時. (1)2小時后兩船相距多遠? (2)2小時后甲船比乙船多航行多少千米? 教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路. 思路點撥:根據船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發反向而行,所以兩船相距等于甲、乙兩船行程之和. 解答過程按課本. 去括號時強調:括號內每一項都要乘以2,括號前是負因數時,去掉括號后,括號內每一項都要變號.為了防止出錯,可以先用分配律將數字2與括號內的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號. 三、鞏固練習 1.課本第68頁練習1、2題. 2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路點撥:一般地,先去小括號,再去中括號. 四、課堂小結 去括號是代數式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規律可以簡單記為“-”變“+”不變,要變全都變.當括號前帶有數字因數時,這個數字要乘以括號內的每一項,切勿漏乘某些項. 五、作業布置 1.課本第71頁習題2.2第2、3、5、8題. 2.選用課時作業設計.第二課時作業設計 一、選擇題: 1.下列各式化簡正確的是( ). a.a-(2a-b+c)=-a-b+c b.(a+b)-(-b+c)=a+2b+c c.3a-[5b-(2c-a)]=2a-5b+2c d.a-(b+c)-d=a-b+c-d 2.下面去括號錯誤的是( ).