5.2.2直線平行的條件(精選9篇)
5.2.2直線平行的條件 篇1
[教學目標]
借助用直尺和三角板畫平行線的過程,,得出直線平行的條件.
會用直線平行的條件來判定直線平行.
激發學生學習數學的興趣.
[教學重點與難點]
重點: 理解直線平行的條件.
難點: 直線平行的條件的應用[教學設計]提問
復習題:
1.如圖,已知四條直線ab、ac、de、fg
(1)∠1與∠2是直線_____和直線____被直線________所截而成的________角.
(2) ∠3與∠2是直線_____和直線____被直線________所截而成的________角.
(3) ∠5與∠6是直線_____和直線____被直線________所截而成的________角.
(4) ∠4與∠7是直線_____和直線____被直線________所截而成的________角.
(5) ∠8與∠2是直線_____和直線____被直線________所截而成的________角.
2.下面說法中正確的是 ( ).
(1) 在同一平面內,兩條直線的位置關系有相交、平行、垂直三種
(2) 在同一平面內, 不垂直的兩條直線必平行
(3) 在同一平面內, 不平行的兩條直線必垂直
(4) 在同一平面內,不相交的兩條直線一定不垂直
3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.
導言:
上節課我們學習了平行線的意義, 在同一平面內,兩條直線的位置關系,以及平行公理,
在此基礎上,我們再來研究直線平行的條件.
新課:
直線平行的條件
演示用直尺和三角板畫平行線的過程,
如果∠4+∠2=180°, a∥ b嗎?
三種方法可以簡單地說成:
例題 已知:如圖,直線ab ,cd,ef被mn所截, ∠1=∠2, ∠3+∠1=180°,試說明cd ∥ef.
解:因為∠1=∠2,
所以 ab ∥cd.
又因為 ∠3+∠1=180°,
所以 ab ∥ ef.
從而 cd ∥ef (為什么?).
課堂練習:
1.下列判斷正確的是 ( ).
因為∠1和∠2是同旁內角,所以∠1+∠2=180°
因為∠1和∠2是內錯角,所以∠1=∠2
因為∠1和∠2是同位角,所以∠1=∠2
因為∠1和∠2是補角,所以∠1+∠2=180°
2.如圖:(1) 已知∠1=65°, ∠2=65°,那么de與 bc平行嗎?為什么?
(2)如果∠1=65°, ∠3=115°,那么ab與df平行嗎?
為什么?
(3) )如果∠4=60°, ∠2=65°,那么de與bc平行嗎?
為什么?
3.
4.如圖所示:
(1)如果已知∠1=∠3,則可判定ab∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,則可判定___________∥______,其理由是__________________;
(3)如果已知∠1+∠2=180°,則可判定___________∥______,其理由是__________________;
(4)如果已知∠5+∠2=180°那么根據對頂角相等有∠2=__,
因此可知∠4+∠5= ____,所以可確定 ___________∥______,其理由是__________________;
(5)如果已知∠1=∠6,則可判定_____∥______,其理由是__________________.
第4題圖 第5題圖
5.如圖,(1)如果∠1=________,那么de∥ ac;
(2) 如果∠1=________,那么ef∥ bc;
(3)如果∠fed+ ∠________=180°,那么ac∥ed;
(4) 如果∠2+ ∠________=180°,那么ab∥df.
6.
7.
課后作業:習題5.2 第1,2,4題.
補充練習:
已知:如圖,ab ∥cd,ef分別交 ab、cd
于 e、f,eg平分∠ aef ,
fh平分∠ efd eg與 fh平行嗎?為什么?
5.2.2直線平行的條件 篇2
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學習平行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。
2、教學重難點
重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。
難 點 “轉化”的數學思想的培養。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學目標
知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。
能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。
情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。
通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。
②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。
三、教學方法
1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。
2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。
3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。
四、教學流程:
我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。
創設情境,孕育新知:
①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。
②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。
③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。
設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。
2、實驗操作,探索新知1
①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。
②學生思考三角尺起什么作用(教師點撥)?
③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。
④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習,學生獨立完成,鞏固新知。
在這一環節中,教師應關注:
①學生能否畫平行線,動手操作是否準確
②學生能否獨立探究、參與、合作、交流
設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,,體現學以致用的觀念,消除學生學無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學生分組討論:
①∠2和∠3是什么位置關系?
∠3和∠4是什么位置關系?
②直線CD繞O旋轉是否還保持上述位置關系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。
⑶學生獨立完成練習。
本環節教師關注:
①學生能否主動參與數學活動,敢于發表個人觀點。
②小組團結協作程度,創新意識。
③表揚優秀小組
設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。
4、解釋運用,鞏固新知
本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。
本環節教師應關注:
①深入學生當中,對學習有困難學生進行鼓勵,幫助。
②學生的思維角度是否合理。
設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。
5、總結新知,布置作業
通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。
設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。
五、教學設計
5.2.2直線平行的條件 篇3
反思之一:這節課看似簡單,但真正上好這節課并不容易。探索直線平行的條件,實際上是“平行線的判定”老內容新教法,我的體會最深之一就是怎樣讓學生自主探索直線平行的條件,這與以前的教學方法完全不同,我感覺這節課成功之處是:引導學生參與整個探索過程使學生真正理解和掌握“同位角”的概念,并能夠用自己的語言概括出“同位角相等,兩直線平行”這一重要結論。
反思之二:遺憾之處是學生用數學語言去描述和表達能力還欠缺。在今后的教學中對學生語言表達能力的培養,要滲透在平時的每一節課的教學中,注意培養學生的數學思想。體會之二就是每上好一節課就要做好兩點:1、備知識。熟悉這節課的內容以及有關知識。2、備學生。既要因材施教更要因生施教,上好一節課不能只看老師在規定的時間完成了教學內容更重要的是學生通過這節課學會了什么,也就是不要看老師按時(45分鐘)教了什么而是看學生到時學會了什么。學生學會了知識,掌握了知識才能說老師這節課是成功有效的教學。
我這節課雖然不算是成功的,但讓我感悟到了成功!
5.2.2直線平行的條件 篇4
人們在生活中存在著豐富的幾何圖形.探索直線平行的條件(1)就是在生動有趣的問題情境中,讓學生經歷探索直線平行的全過程.通過觀察、操作、推理、交流等數學活動中,得到同位角的概念和“同位角相等,兩直線平行”.同時此教材在探索直線平行的條件中自然引入了“三線八角”,而不是孤立地處理這些內容.學生從口頭表達理由到書寫理由需要一定的過渡.
創設豐富的情境,體現數學與現實世界的聯系.注重學生探索和交流的活動,充分發揮教師的主導、學生的主體、課堂的示范作用.
在使用多媒體的教學活動中,精湛的板書對全課起著畫龍點睛的作用.由教學實際出發,將內容系列化,給學生清晰、明快的感受.
本節課通過學生自己動手制作實驗、動手折、設計方案,讓每個學生得到充分的發展.以一些開放題激活學生的創造性,有意識的培養學生有條理的思考和語言表達.
5.2.2直線平行的條件 篇5
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學習平行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。
2、教學重難點
重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。
難 點 “轉化”的數學思想的培養。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學目標
知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。
能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。
情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。
通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。
②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。
三、教學方法
1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。
2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。
3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。
四、教學流程:
我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。
創設情境,孕育新知:
①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。
②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。
③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。
設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。
2、實驗操作,探索新知1
①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。
②學生思考三角尺起什么作用(教師點撥)?
③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。
④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習,學生獨立完成,鞏固新知。
在這一環節中,教師應關注:
①學生能否畫平行線,動手操作是否準確
②學生能否獨立探究、參與、合作、交流
設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,,體現學以致用的觀念,消除學生學無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學生分組討論:
①∠2和∠3是什么位置關系?
∠3和∠4是什么位置關系?
②直線CD繞O旋轉是否還保持上述位置關系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。
⑶學生獨立完成練習。
本環節教師關注:
①學生能否主動參與數學活動,敢于發表個人觀點。
②小組團結協作程度,創新意識。
③表揚優秀小組
設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。
4、解釋運用,鞏固新知
本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。
本環節教師應關注:
①深入學生當中,對學習有困難學生進行鼓勵,幫助。
②學生的思維角度是否合理。
設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。
5、總結新知,布置作業
通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。
設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。
五、教學設計
本節課的教學設計,依據《新課程標準》的要求,立足于學生的認知基礎來確定適當的起點與目標,內容安排從畫平行線的方法出發到平行線的三個充分條件的發現、論證和運用,逐步展示知識的過程,使學生的思維層層展開,逐步深入。在教學設計時,利用學具及多媒體輔助教學,展示圖片和動畫,使學生體會到數學無處不在,運用數學無時不有。以動代靜,使課堂氣氛活躍,面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲,同時注重利用學生的好奇心,培養學生的創新能力,引導學一從數學角度發現和提出問題,并用數學方法探索、研究和解決,體現《新課標》的教學理念
5.2.2直線平行的條件 篇6
直線平行的條件(一)
[教學目標]
3. 借助用直尺和三角板畫平行線的過程,,得出直線平行的條件.
4. 會用直線平行的條件來判定直線平行.
5. 激發學生學習數學的興趣.
[教學重點與難點]
重點: 理解直線平行的條件.
難點: 直線平行的條件的應用
[教學設計]提問
復習題:
1.如圖,已知四條直線AB、AC、DE、FG
(1)∠1與∠2是直線_____和直線____被直線________所截而成的________角.
(2) ∠3與∠2是直線_____和直線____被直線________所截而成的________角.
(3) ∠5與∠6是直線_____和直線____被直線________所截而成的________角.
(4) ∠4與∠7是直線_____和直線____被直線________所截而成的________角.
(5) ∠8與∠2是直線_____和直線____被直線________所截而成的________角.
2.下面說法中正確的是 ( ).
(1) 在同一平面內,兩條直線的位置關系有相交、平行、垂直三種
(2) 在同一平面內, 不垂直的兩條直線必平行
(3) 在同一平面內, 不平行的兩條直線必垂直
(4) 在同一平面內,不相交的兩條直線一定不垂直
3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.
導言:
上節課我們學習了平行線的意義, 在同一平面內,兩條直線的位置關系,以及平行公理,
在此基礎上,我們再來研究直線平行的條件.
新課:
直線平行的條件
演示用直尺和三角板畫平行線的過程,
如果∠4+∠2=180°, a∥ b嗎?
三種方法可以簡單地說成:
例題 已知:如圖,直線AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,試說明CD ∥EF.
解:因為∠1=∠2,
所以 AB ∥CD.
又因為 ∠3+∠1=180°,
所以 AB ∥ EF.
從而 CD ∥EF (為什么?).
課堂練習:
1.下列判斷正確的是 ( ).
A. 因為∠1和∠2是同旁內角,所以∠1+∠2=180°
B. 因為∠1和∠2是內錯角,所以∠1=∠2
C. 因為∠1和∠2是同位角,所以∠1=∠2
D. 因為∠1和∠2是補角,所以∠1+∠2=180°
2.如圖:(1) 已知∠1=65°, ∠2=65°,那么DE與 BC平行嗎?為什么?
(2)如果∠1=65°, ∠3=115°,那么AB與DF平行嗎?
為什么?
(3) )如果∠4=60°, ∠2=65°,那么DE與BC平行嗎?
為什么?
3.
4.如圖所示:
(1)如果已知∠1=∠3,則可判定AB∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,則可判定___________∥______,其理由是__________________;
(3)如果已知∠1+∠2=180°,則可判定___________∥______,其理由是__________________;
(4)如果已知∠5+∠2=180°那么根據對頂角相等有∠2=__,
因此可知∠4+∠5= ____,所以可確定 ___________∥______,其理由是__________________;
(5)如果已知∠1=∠6,則可判定_____∥______,其理由是__________________.
第4題圖 第5題圖
5.如圖,(1)如果∠1=________,那么DE∥ AC;
(2) 如果∠1=________,那么EF∥ BC;
(3)如果∠FED+ ∠________=180°,那么AC∥ED;
(4) 如果∠2+ ∠________=180°,那么AB∥DF.
6.
7.
課后作業:習題5.2 第1,2,4題.
補充練習:
已知:如圖,AB ∥CD,EF分別交 AB、CD
于 E、F,EG平分∠ AEF ,
FH平分∠ EFD EG與 FH平行嗎?為什么?
5.2.2直線平行的條件 篇7
教學目標:
1、經歷觀察、操作、想象、推理、交流等活動,進一步發展空間觀念、推理能力和有條理表達的能力.
2、經歷探索直線平行的條件的過程,掌握直線平行的條件,并能解決一些問題.
3、會用三角尺過已知直線外一點畫這條直線的平行線.
教學重點:
弄清內錯角和同旁內角的意義,會用“內錯角相等,兩直線平行”和“同旁內角互補,兩直線平行”.
教學難點:會用“內錯角相等,兩直線平行”和“同旁內角互補,兩直線平行”.
準備活動:
1、如圖,a∥b,數一數圖中有幾個角(不含平角)
2、寫出圖中的所有同位角.
教學過程:
一、引入:
小明有一塊小畫板,他想知道它的上下邊緣是否平行,于是他在兩個邊緣之間畫了一條線段ab(如圖所示).他只有一個量角器,他通過測量某些角的大小就能知道這個畫板的上下邊緣是否平行,你知道他是怎樣做的嗎?
定義:1、內錯角;2、同旁內角.
二、探索練習:
觀察三線八角,內錯角的變化和同旁內角的變化,討論:
(1)內錯角滿足什么關系時,兩直線平行?為什么?
(2)同旁內角滿足什么關系時,兩直線平行?為什么?
★結論:內錯角相等,兩直線平行.
同旁內角互補,兩直線平行.
三、鞏固練習:
1、如右圖,∵∠1=∠2
∴_____∥_____,___________________________
∵∠2=_____
∴____∥____,同位角相等,兩直線平行
∵∠3+∠4=180º
∴____∥_____,___________________________
∴ac∥fg,_______________________________
2、如右圖,∵de∥bc
∴∠2=_____,___________________________
∴∠b+_____=180º,___________________
∵∠b=∠4
∴_____∥_____,________________________
∴____+_____=180º,兩直線平行,同旁內角互補
小結:
會用“內錯角相等,兩直線平行”和“同旁內角互補,兩直線平行”.
作業:
課本p58習題2.3:1、2、3.
教學后記:
初步了解內錯角和同旁內角,但在三線八角圖中,找同位角、內錯角、同旁內角就有些混亂,不過能通過觀察內錯角、同旁內角度數的變化發現“內錯角相等,兩直線平行和同旁內角互補,兩直線平行”.在實際應用中比較亂,出現“同旁內角相等,兩直線平行”的錯誤.
5.2.2直線平行的條件 篇8
直線平行的條件 (第2課時)
一.教學目標
(1) 使學生進一步理解并掌握判定兩條直線平行的方法;
(2) 了解簡單的邏輯推理過程.
二.教學重點與難點
重點:判定兩條直線平行方法的應用;
難點:簡單的邏輯推理過程.
三.教學過程
復習提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯系在一起,我們學過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數;
(2) FC與AD平行嗎?為什么?
鞏固練習
1. 教科書19頁練習
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業:教科書19頁習題5.2第7、8題
5.2.2直線平行的條件 篇9
教學目標:
1、經歷觀察、操作、想象、推理、交流等活動,進一步發展空間觀念,推理能力和有條理表達的能力;
2、會認由三線八角所成的同位角;
3、經歷探索直線平行的條件的過程,掌握直線平行的條件,并能解決一些問題.
教學重點:
會認各種圖形下的同位角,并掌握直線平行的條件是“同位角相等,兩直線平行”
教學難點:
判斷兩直線平行的說理過程
教學過程:
(一)課前復習:
(1)在同一平面內,兩條直線的位置關系是_____________;
(2)在同一平面內,___________兩條直線的是平行線.
(二)創設情景:
如書中彩圖,裝修工人正在向墻上釘木條,如果木條b與墻壁邊緣垂直,那么木條a與墻壁邊緣所夾的角為多少度時才能使木條a與木條b平行?
(三)新課:
1.學生動手操作移動活動木條,完成書中的做一做內容.
2.改變圖中∠1的大小,按照上面的方式再做一做,∠1與∠2的大小滿足什么關系時,木條a與木條b平行?小組內交流.
3.由∠1與∠2的位置引出同位角的概念,如圖
∠1與∠2、∠5與∠6、∠7與∠8、∠3與∠4等都是同位角
練習:如圖,哪些是同位角?
4、例:找出下圖中互相平行的直線,并說明理由.
5、完成第55頁隨堂練習1、2題
(四)小結:本節課學習了兩直線平行的條件是同位角相等.
要特別注意數形結合.
(五)作業:第55頁習題1、2題
教后記:學生基本會找同位角,也能找出平行的直線,但說理方面欠條理性