中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁(yè) > 教案下載 > 數(shù)學(xué)教案 > 初中數(shù)學(xué)教案 > 七年級(jí)數(shù)學(xué)教案 > 1.7 平方差公式(通用17篇)

1.7 平方差公式

發(fā)布時(shí)間:2023-07-26

1.7 平方差公式(通用17篇)

1.7 平方差公式 篇1

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ).

  1.是由多項(xiàng)式乘法直接計(jì)算得出的:

  與一般式多項(xiàng)式的乘法一樣,積的項(xiàng)數(shù)是多項(xiàng)式項(xiàng)數(shù)的積,即四項(xiàng).合并同類項(xiàng)后僅得兩項(xiàng).

  2.這一公式的結(jié)構(gòu)特征:左邊是兩個(gè)二項(xiàng)式相乘,這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);右邊是乘式中兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方差.公式中的字母可以表示具體的數(shù)(正數(shù)和負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.

  只要符合公式的結(jié)構(gòu)特征,就可運(yùn)用這一公式.例如

  在運(yùn)用公式的過程中,有時(shí)需要變形,例如,變形為,兩個(gè)數(shù)就可以看清楚了.

  3.關(guān)于的特征,在學(xué)習(xí)時(shí)應(yīng)注意:

  (1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩上二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù).

  (2)右邊是乘式中兩項(xiàng)的平方差(相同項(xiàng)的平方減去相反項(xiàng)的平方).

  (3)公式中的和可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式.

  (4)對(duì)于形如兩數(shù)和與這兩數(shù)差相乘,就可以運(yùn)用上述公式來計(jì)算.

  三、教法建議

  1.可以將“兩個(gè)二項(xiàng)式相乘,積可能有幾項(xiàng)”的問題作為課題引入,目的是激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生能在兩個(gè)二項(xiàng)式相乘其積可能為四項(xiàng)、三項(xiàng)、兩項(xiàng)中找出積為兩項(xiàng)的特征,上升到一定的理論認(rèn)識(shí),加以實(shí)踐檢驗(yàn),從而培養(yǎng)學(xué)生觀察、概括的能力.

  2.通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個(gè)二項(xiàng)式相乘,其積為兩項(xiàng),因?yàn)槠渲袃身?xiàng)是兩個(gè)數(shù)的平方差,而另兩項(xiàng)恰是互為相反數(shù),合并同類項(xiàng)時(shí)為零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

  這樣得出,并且把這類乘法的實(shí)質(zhì)講清楚了.

  3.通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練,如計(jì)算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2.

  這樣,學(xué)生就能正確應(yīng)用公式進(jìn)行計(jì)算,不容易出差錯(cuò).

  另外,在計(jì)算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過的運(yùn)算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)學(xué)生解題的靈活性.

  教學(xué)目標(biāo)

  1.使學(xué)生理解和掌握,并會(huì)用公式進(jìn)行計(jì)算;

  2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):的應(yīng)用.

  難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

  教學(xué)過程設(shè)計(jì)

  一、師生共同研究

  我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.

  讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

  兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?

  (當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

  繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的.

  在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.

  二、運(yùn)用舉例  變式練習(xí)

  例1  計(jì)算(1+2x)(1-2x).

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2.

  教師引導(dǎo)學(xué)生分析題目條件是否符合特征,并讓學(xué)生說出本題中a,b分別表示什么.

  例2  計(jì)算(b2+2a3)(2a3-b2).

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4.

  教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用進(jìn)行計(jì)算.

  課堂練習(xí)

  運(yùn)用計(jì)算:

  (l)(x+a)(x-a); (2)(m+n)(m-n);

  (3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

  例3  計(jì)算(-4a-1)(-4a+1).

  讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1.

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1.

  根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用,就能比較簡(jiǎn)捷地得到答案.

  課堂練習(xí)

  1.口答下列各題:

  (l)(-a+b)(a+b); (2)(a-b)(b+a);

  (3)(-a-b)(-a+b); (4)(a-b)(-a-b).

  2.計(jì)算下列各題:

  (1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

  教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.

  三、小結(jié)

  1.什么是?

  2.運(yùn)用公式要注意什么?

  (1)要符合公式特征才能運(yùn)用;

  (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.

  四、作業(yè) 

  1.運(yùn)用計(jì)算:

  (l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

  (5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

  2.計(jì)算:

  (1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

1.7 平方差公式 篇2

  教學(xué)目的

  進(jìn)一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.

  教學(xué)重點(diǎn)和難點(diǎn):公式的應(yīng)用及推廣.

  教學(xué)過程:

  一、復(fù)習(xí)提問

  1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.

  (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積.

  講評(píng)要點(diǎn):

  沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道

  hd=bc=gd=fe=a-b,

  這樣裁開后才能重新拼成一個(gè)矩形.希望推出公式:

  a2-b2=(a+b)(a-b)

  2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;

  (2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

  說明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問題存在一個(gè)判定a、b的問題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.

  依照公式的文字表達(dá)式可寫出下面兩個(gè)正確的式子:

  經(jīng)對(duì)比,可以讓人們體會(huì)到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰(shuí)與誰(shuí)的平方差).故在使用平方差公式時(shí),要全面理解公式的實(shí)質(zhì),靈活運(yùn)用公式的兩種表達(dá)式,比如用文字公式判斷一個(gè)題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計(jì)算即準(zhǔn)確又靈活.

  3.判斷正誤:

  (1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

  (3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

  二、新課

  例1 運(yùn)用平方差公式計(jì)算:

  (1)102×98;                                    (2)(y+2)(y-2)(y2+4).

  解:(1)102×98                                   (2)(y+2)(y-2)(y2+4)

  =(100+2)(100-2)                       =(y2-4)(y2+4)

  =1002-22=10000-4                    =(y2)2-42=y(tǒng)4-16.

  =9996;

  2.運(yùn)用平方差公式計(jì)算:

  (1)103×97;                             (2)(x+3)(x-3)(x2+9);

  (3)59.8×60.2;                         (4)(x- )(x2+ )(x+ ).

  3.請(qǐng)每位同學(xué)自編兩道能運(yùn)用平方差公式計(jì)算的題目.

  例2 填空:

  (1)a2-4=(a+2)(  );(2)25-x2=(5-x)(  );(3)m2-n2=(  )(  );

  思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

  (某兩數(shù)平方差的二項(xiàng)式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)

  練習(xí)

  填空:

  1.x2-25=(  )(  );

  2.4m2-49=(2m-7)(  );

  3.a4-m4=(a2+m2)(  )=(a2+m2)(  )(  );

  例3 計(jì)算:

  (1)(a+b-3)(a+b+3);                (2)(m2+n-7)(m2-n-7).

  解:(1)(a+b-3)(a+b+3)            (2)(m2+n-7)(m2-n-7)

  =[(a+b)-3][(a+b)+3]              =[(m2-7)+n][(m2-7)-n]

  =(a+b)2-9=a2+2ab+b2-9.   =(m2-7)2-n2

  =m4-14m2+49-n2.

  三、小結(jié)

  1.什么是平方差公式?一般兩個(gè)二項(xiàng)式相乘的積應(yīng)是幾項(xiàng)式?

  2.平方差公式中字母a、b可以是那些形式?

  3.怎樣判斷一個(gè)多項(xiàng)式的乘法問題是否可以用平方差公式?

  四、布置作業(yè)

  1.運(yùn)用平方差公式計(jì)算:

  (1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);

  (3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

  2.運(yùn)用平方差公式計(jì)算:

  (1)69×71;     (2)53×47;     (3)503×497;  (4)40 ×39 .

  教后記:

1.7 平方差公式 篇3

  4.4.1        課時(shí)教案

  湖北口中學(xué)    張衍生

  教學(xué)內(nèi)容:  P108—110      例1    例2    例3

  教學(xué)目的: 1、使學(xué)生會(huì)推導(dǎo),并掌握公式特征。

  2、使學(xué)生能正確而熟練地運(yùn)用進(jìn)行計(jì)算。

  教學(xué)重點(diǎn):使學(xué)生會(huì)推導(dǎo),掌握公式特征,并能正確而熟

  練地運(yùn)用進(jìn)行計(jì)算。

  教學(xué)難點(diǎn) :掌握的特征,并能正確而熟練地運(yùn)用它進(jìn)行計(jì)

  算。

  教學(xué)過程 :

  一、復(fù)習(xí)引入

  1、復(fù)述多項(xiàng)式與多項(xiàng)式的乘法法則

  2、計(jì)算   (演板)

  (1)(a+b)(a-b)         (2)(m+n)(m-n)

  (3)(x+y)(x-y)         (4)(2a+3b)(2a-3b)

  3、引入新課,由2題的計(jì)算引導(dǎo)學(xué)生觀察題目特征,結(jié)果特征(引入新課,板書課題)

  二、新課

  1、

  由上面的運(yùn)算,再讓學(xué)生探究

  現(xiàn)在你能很快算出多項(xiàng)式(2m+3n)與多項(xiàng)式(2m-3n)的乘積嗎?  引導(dǎo)學(xué)生把2m看成a,3n看成b寫出結(jié)果.

  (2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

  (a + b)(a - b)=a2  -  b2

  向?qū)W生說明:我們把

  (a+b)(a-b)=a2- b2             (重點(diǎn)強(qiáng)調(diào)公式特征)

  叫做,也就是:

  兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差等于這兩個(gè)數(shù)的平方差.

  3、練習(xí):判斷下列式子哪些能用平方差公計(jì)算。(小黑板)

  (1)(-x-2y)(-x+2y)          (2)(-2a+3b)(2a-3b)

  (3)(a+3b)(3a-b)             (4)(-m-3n)(m-3n)

  2、教學(xué)例1

  (1)(2x+1)(2x-1);  (2)  (x+2y)(x-2y)

  (2)分析:讓學(xué)生先說一說這兩個(gè)式子是否符合特征,再說一說哪個(gè)相當(dāng)于公式中的a,哪個(gè)相當(dāng)于公式中的b,然后套公式。

  (3)具體解題過程:板書,同教材,略

  3、教學(xué)例2    例3

  先引導(dǎo)學(xué)生分析后指名學(xué)生演板,略

  4、練習(xí):課本P110   1(指名演板)  2、(口答)3、演板

  三、鞏固練習(xí):(小黑板)

  1、填空:(1)(x+3)(x-3)=__________  (2)(-1-2x)(2x-1)=______

  (3)(-1-2x)(-2x+1)=_____________    (4)(m+n)(          )=n2-m2

  (5)(          )(-x-1)=1-x2          (6)(          )(a-1)=1-a2

  2、選擇題

  (1)  下列可以用計(jì)算的是(     )

  A、(2a-3b)(-2a+3b)                B、(- 4b-3a)(-3a+4b)

  C、(a-b)(b-a)                     D、(2x-y) (2y+x)

  (2)下列式子中,計(jì)算結(jié)果是4x2-9y2的是(    )

  A、(2x-3y)2                    B、(2x+3y)(2x-3y)

  C、(-2x+3y)2                   D、(3y+2x)(3y-2x)

  (3)計(jì)算(b+2a)(2a-b)的結(jié)果是(    )

  A、4a2- b2       B、b2- 4a2         C、2a2- b2        D、b2- 2a2

  四、小結(jié):引導(dǎo)學(xué)生說一說

  五、作業(yè) :P114   1

  思考題:運(yùn)用計(jì)算:

  (1)(a+b)2—(a-b)2       (2)(x+y+1)(x+y-1)

  (3)(a-b+1)(a+b-1)

  課后簡(jiǎn)記:

  附:板書設(shè)計(jì) 

  例1            例2           例3

  (a+b)(a-b)=a2-b2

1.7 平方差公式 篇4

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ).

  1.是由多項(xiàng)式乘法直接計(jì)算得出的:

  與一般式多項(xiàng)式的乘法一樣,積的項(xiàng)數(shù)是多項(xiàng)式項(xiàng)數(shù)的積,即四項(xiàng).合并同類項(xiàng)后僅得兩項(xiàng).

  2.這一公式的結(jié)構(gòu)特征:左邊是兩個(gè)二項(xiàng)式相乘,這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);右邊是乘式中兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方差.公式中的字母可以表示具體的數(shù)(正數(shù)和負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.

  只要符合公式的結(jié)構(gòu)特征,就可運(yùn)用這一公式.例如

  在運(yùn)用公式的過程中,有時(shí)需要變形,例如,變形為,兩個(gè)數(shù)就可以看清楚了.

  3.關(guān)于的特征,在學(xué)習(xí)時(shí)應(yīng)注意:

  (1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩上二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù).

  (2)右邊是乘式中兩項(xiàng)的平方差(相同項(xiàng)的平方減去相反項(xiàng)的平方).

  (3)公式中的和可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式.

  (4)對(duì)于形如兩數(shù)和與這兩數(shù)差相乘,就可以運(yùn)用上述公式來計(jì)算.

  三、教法建議

  1.可以將“兩個(gè)二項(xiàng)式相乘,積可能有幾項(xiàng)”的問題作為課題引入,目的是激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生能在兩個(gè)二項(xiàng)式相乘其積可能為四項(xiàng)、三項(xiàng)、兩項(xiàng)中找出積為兩項(xiàng)的特征,上升到一定的理論認(rèn)識(shí),加以實(shí)踐檢驗(yàn),從而培養(yǎng)學(xué)生觀察、概括的能力.

  2.通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個(gè)二項(xiàng)式相乘,其積為兩項(xiàng),因?yàn)槠渲袃身?xiàng)是兩個(gè)數(shù)的平方差,而另兩項(xiàng)恰是互為相反數(shù),合并同類項(xiàng)時(shí)為零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

  這樣得出,并且把這類乘法的實(shí)質(zhì)講清楚了.

  3.通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練,如計(jì)算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2.

  這樣,學(xué)生就能正確應(yīng)用公式進(jìn)行計(jì)算,不容易出差錯(cuò).

  另外,在計(jì)算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過的運(yùn)算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)學(xué)生解題的靈活性.

  教學(xué)目標(biāo)

  1.使學(xué)生理解和掌握,并會(huì)用公式進(jìn)行計(jì)算;

  2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):的應(yīng)用.

  難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

  教學(xué)過程設(shè)計(jì)

  一、師生共同研究

  我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.

  讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

  兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?

  (當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

  繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的.

  在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.

  二、運(yùn)用舉例  變式練習(xí)

  例1  計(jì)算(1+2x)(1-2x).

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2.

  教師引導(dǎo)學(xué)生分析題目條件是否符合特征,并讓學(xué)生說出本題中a,b分別表示什么.

  例2  計(jì)算(b2+2a3)(2a3-b2).

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4.

  教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用進(jìn)行計(jì)算.

  課堂練習(xí)

  運(yùn)用計(jì)算:

  (l)(x+a)(x-a); (2)(m+n)(m-n);

  (3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

  例3  計(jì)算(-4a-1)(-4a+1).

  讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1.

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1.

  根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用,就能比較簡(jiǎn)捷地得到答案.

  課堂練習(xí)

  1.口答下列各題:

  (l)(-a+b)(a+b); (2)(a-b)(b+a);

  (3)(-a-b)(-a+b); (4)(a-b)(-a-b).

  2.計(jì)算下列各題:

  (1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

  教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.

  三、小結(jié)

  1.什么是?

  2.運(yùn)用公式要注意什么?

  (1)要符合公式特征才能運(yùn)用;

  (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.

  四、作業(yè) 

  1.運(yùn)用計(jì)算:

  (l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

  (5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

  2.計(jì)算:

  (1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

1.7 平方差公式 篇5

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ).

  1.是由多項(xiàng)式乘法直接計(jì)算得出的:

  與一般式多項(xiàng)式的乘法一樣,積的項(xiàng)數(shù)是多項(xiàng)式項(xiàng)數(shù)的積,即四項(xiàng).合并同類項(xiàng)后僅得兩項(xiàng).

  2.這一公式的結(jié)構(gòu)特征:左邊是兩個(gè)二項(xiàng)式相乘,這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);右邊是乘式中兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方差.公式中的字母可以表示具體的數(shù)(正數(shù)和負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.

  只要符合公式的結(jié)構(gòu)特征,就可運(yùn)用這一公式.例如

  在運(yùn)用公式的過程中,有時(shí)需要變形,例如,變形為,兩個(gè)數(shù)就可以看清楚了.

  3.關(guān)于的特征,在學(xué)習(xí)時(shí)應(yīng)注意:

  (1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩上二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù).

  (2)右邊是乘式中兩項(xiàng)的平方差(相同項(xiàng)的平方減去相反項(xiàng)的平方).

  (3)公式中的和可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式.

  (4)對(duì)于形如兩數(shù)和與這兩數(shù)差相乘,就可以運(yùn)用上述公式來計(jì)算.

  三、教法建議

  1.可以將“兩個(gè)二項(xiàng)式相乘,積可能有幾項(xiàng)”的問題作為課題引入,目的是激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生能在兩個(gè)二項(xiàng)式相乘其積可能為四項(xiàng)、三項(xiàng)、兩項(xiàng)中找出積為兩項(xiàng)的特征,上升到一定的理論認(rèn)識(shí),加以實(shí)踐檢驗(yàn),從而培養(yǎng)學(xué)生觀察、概括的能力.

  2.通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個(gè)二項(xiàng)式相乘,其積為兩項(xiàng),因?yàn)槠渲袃身?xiàng)是兩個(gè)數(shù)的平方差,而另兩項(xiàng)恰是互為相反數(shù),合并同類項(xiàng)時(shí)為零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

  這樣得出,并且把這類乘法的實(shí)質(zhì)講清楚了.

  3.通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練,如計(jì)算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2.

  這樣,學(xué)生就能正確應(yīng)用公式進(jìn)行計(jì)算,不容易出差錯(cuò).

  另外,在計(jì)算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過的運(yùn)算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)學(xué)生解題的靈活性.

  教學(xué)目標(biāo) 

  1.使學(xué)生理解和掌握,并會(huì)用公式進(jìn)行計(jì)算;

  2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):的應(yīng)用.

  難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

  教學(xué)過程 設(shè)計(jì)

  一、師生共同研究

  我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.

  讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

  兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?

  (當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

  繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的.

  在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.

  二、運(yùn)用舉例  變式練習(xí)

  例1  計(jì)算(1+2x)(1-2x).

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2.

  教師引導(dǎo)學(xué)生分析題目條件是否符合特征,并讓學(xué)生說出本題中a,b分別表示什么.

  例2  計(jì)算(b2+2a3)(2a3-b2).

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4.

  教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用進(jìn)行計(jì)算.

  課堂練習(xí)

  運(yùn)用計(jì)算:

  (l)(x+a)(x-a); (2)(m+n)(m-n);

  (3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

  例3  計(jì)算(-4a-1)(-4a+1).

  讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1.

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1.

  根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用,就能比較簡(jiǎn)捷地得到答案.

  課堂練習(xí)

  1.口答下列各題:

  (l)(-a+b)(a+b); (2)(a-b)(b+a);

  (3)(-a-b)(-a+b); (4)(a-b)(-a-b).

  2.計(jì)算下列各題:

  (1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

  教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.

  三、小結(jié)

  1.什么是?

  2.運(yùn)用公式要注意什么?

  (1)要符合公式特征才能運(yùn)用;

  (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.

  四、作業(yè) 

  1.運(yùn)用計(jì)算:

  (l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

  (5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

  2.計(jì)算:

  (1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

  熱門文章青少年思想道德建設(shè)

  當(dāng)前我國(guó)作文教學(xué)改革的新趨勢(shì)

  古詩(shī)三首(墨梅 竹石 石灰吟)

  第一場(chǎng)雪

  Unit 2 Look at me第五課時(shí)

  植物媽媽有辦法

  威尼斯的小艇

  等比數(shù)列的前n項(xiàng)和

  相關(guān)文章·多項(xiàng)式的乘法

  ·單項(xiàng)式與多項(xiàng)式相乘

  ·單項(xiàng)式的乘法

  ·冪的乘方與積的乘方(二)

  ·冪的乘方與積的乘方

  ·同底數(shù)冪的乘法(二)

  ·同底數(shù)冪的乘法

  ·一元一次不等式組和它的解法

  中“ 課件

  中“ 課件

1.7 平方差公式 篇6

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ).

  1.是由多項(xiàng)式乘法直接計(jì)算得出的:

  與一般式多項(xiàng)式的乘法一樣,積的項(xiàng)數(shù)是多項(xiàng)式項(xiàng)數(shù)的積,即四項(xiàng).合并同類項(xiàng)后僅得兩項(xiàng).

  2.這一公式的結(jié)構(gòu)特征:左邊是兩個(gè)二項(xiàng)式相乘,這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);右邊是乘式中兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方差.公式中的字母可以表示具體的數(shù)(正數(shù)和負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.

  只要符合公式的結(jié)構(gòu)特征,就可運(yùn)用這一公式.例如

  在運(yùn)用公式的過程中,有時(shí)需要變形,例如,變形為,兩個(gè)數(shù)就可以看清楚了.

  3.關(guān)于的特征,在學(xué)習(xí)時(shí)應(yīng)注意:

  (1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩上二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù).

  (2)右邊是乘式中兩項(xiàng)的平方差(相同項(xiàng)的平方減去相反項(xiàng)的平方).

  (3)公式中的和可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式.

  (4)對(duì)于形如兩數(shù)和與這兩數(shù)差相乘,就可以運(yùn)用上述公式來計(jì)算.

  三、教法建議

  1.可以將“兩個(gè)二項(xiàng)式相乘,積可能有幾項(xiàng)”的問題作為課題引入,目的是激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生能在兩個(gè)二項(xiàng)式相乘其積可能為四項(xiàng)、三項(xiàng)、兩項(xiàng)中找出積為兩項(xiàng)的特征,上升到一定的理論認(rèn)識(shí),加以實(shí)踐檢驗(yàn),從而培養(yǎng)學(xué)生觀察、概括的能力.

  2.通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個(gè)二項(xiàng)式相乘,其積為兩項(xiàng),因?yàn)槠渲袃身?xiàng)是兩個(gè)數(shù)的平方差,而另兩項(xiàng)恰是互為相反數(shù),合并同類項(xiàng)時(shí)為零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

  這樣得出,并且把這類乘法的實(shí)質(zhì)講清楚了.

  3.通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練,如計(jì)算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2.

  這樣,學(xué)生就能正確應(yīng)用公式進(jìn)行計(jì)算,不容易出差錯(cuò).

  另外,在計(jì)算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過的運(yùn)算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)學(xué)生解題的靈活性.

  教學(xué)目標(biāo) 

  1.使學(xué)生理解和掌握,并會(huì)用公式進(jìn)行計(jì)算;

  2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):的應(yīng)用.

  難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

  教學(xué)過程 設(shè)計(jì)

  一、師生共同研究

  我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.

  讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

  兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?

  (當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

  繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的.

  在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.

  二、運(yùn)用舉例  變式練習(xí)

  例1  計(jì)算(1+2x)(1-2x).

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2.

  教師引導(dǎo)學(xué)生分析題目條件是否符合特征,并讓學(xué)生說出本題中a,b分別表示什么.

  例2  計(jì)算(b2+2a3)(2a3-b2).

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4.

  教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用進(jìn)行計(jì)算.

  課堂練習(xí)

  運(yùn)用計(jì)算:

  (l)(x+a)(x-a); (2)(m+n)(m-n);

  (3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

  例3  計(jì)算(-4a-1)(-4a+1).

  讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1.

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1.

  根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用,就能比較簡(jiǎn)捷地得到答案.

  課堂練習(xí)

  1.口答下列各題:

  (l)(-a+b)(a+b); (2)(a-b)(b+a);

  (3)(-a-b)(-a+b); (4)(a-b)(-a-b).

  2.計(jì)算下列各題:

  (1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

  教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.

  三、小結(jié)

  1.什么是?

  2.運(yùn)用公式要注意什么?

  (1)要符合公式特征才能運(yùn)用;

  (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.

  四、作業(yè) 

  1.運(yùn)用計(jì)算:

  (l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

  (5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

  2.計(jì)算:

  (1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

  熱門文章青少年思想道德建設(shè)

  當(dāng)前我國(guó)作文教學(xué)改革的新趨勢(shì)

  古詩(shī)三首(墨梅 竹石 石灰吟)

  第一場(chǎng)雪

  Unit 2 Look at me第五課時(shí)

  植物媽媽有辦法

  威尼斯的小艇

  等比數(shù)列的前n項(xiàng)和

  相關(guān)文章·多項(xiàng)式的乘法

  ·單項(xiàng)式與多項(xiàng)式相乘

  ·單項(xiàng)式的乘法

  ·冪的乘方與積的乘方(二)

  ·冪的乘方與積的乘方

  ·同底數(shù)冪的乘法(二)

  ·同底數(shù)冪的乘法

  ·一元一次不等式組和它的解法

  中“ 課件

  中“ 課件

1.7 平方差公式 篇7

  教學(xué)目的

  進(jìn)一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.

  教學(xué)重點(diǎn)和難點(diǎn):公式的應(yīng)用及推廣.

  教學(xué)過程:

  一、復(fù)習(xí)提問

  1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.

  (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積.

  講評(píng)要點(diǎn):

  沿HD、GD裁開均可,但一定要讓學(xué)生在裁開之前知道

  HD=BC=GD=FE=a-b,

  這樣裁開后才能重新拼成一個(gè)矩形.希望推出公式:

  a2-b2=(a+b)(a-b)

  2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;

  (2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

  說明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問題存在一個(gè)判定a、b的問題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.

  依照公式的文字表達(dá)式可寫出下面兩個(gè)正確的式子:

  經(jīng)對(duì)比,可以讓人們體會(huì)到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰(shuí)與誰(shuí)的平方差).故在使用平方差公式時(shí),要全面理解公式的實(shí)質(zhì),靈活運(yùn)用公式的兩種表達(dá)式,比如用文字公式判斷一個(gè)題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計(jì)算即準(zhǔn)確又靈活.

  3.判斷正誤:

  (1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

  (3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

  二、新課

  例1 運(yùn)用平方差公式計(jì)算:

  (1)102×98;(2)(y+2)(y-2)(y2+4).

  解:(1)102×98(2)(y+2)(y-2)(y2+4)

  =(100+2)(100-2)=(y2-4)(y2+4)

  =1002-22=10000-4=(y2)2-42=y4-16.

  =9996;

  2.運(yùn)用平方差公式計(jì)算:

  (1)103×97;(2)(x+3)(x-3)(x2+9);

  (3)59.8×60.2;(4)(x-)(x2+)(x+).

  3.請(qǐng)每位同學(xué)自編兩道能運(yùn)用平方差公式計(jì)算的題目.

  例2 填空:

  (1)a2-4=(a+2)( );(2)25-x2=(5-x)( );(3)m2-n2=( )( );

  思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

  (某兩數(shù)平方差的二項(xiàng)式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)

  練習(xí)

  填空:

  1.x2-25=( )( );

  2.4m2-49=(2m-7)( );

  3.a4-m4=(a2+m2)( )=(a2+m2)( )( );

  例3 計(jì)算:

  (1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

  解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)

  =[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]

  =(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2

  =m4-14m2+49-n2.

  三、小結(jié)

  1.什么是平方差公式?一般兩個(gè)二項(xiàng)式相乘的積應(yīng)是幾項(xiàng)式?

  2.平方差公式中字母a、b可以是那些形式?

  3.怎樣判斷一個(gè)多項(xiàng)式的乘法問題是否可以用平方差公式?

  四、布置作業(yè)

  1.運(yùn)用平方差公式計(jì)算:

  (1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);

  (3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

  2.運(yùn)用平方差公式計(jì)算:

  (1)69×71;(2)53×47;(3)503×497;(4)40×39.

1.7 平方差公式 篇8

  教學(xué)內(nèi)容: P108—110 平方差公式 例1 例2 例3

  教學(xué)目的: 1、使學(xué)生會(huì)推導(dǎo)平方差公式,并掌握公式特征。2、使學(xué)生能正確而熟練地運(yùn)用平方差公式進(jìn)行計(jì)算。

  教學(xué)重點(diǎn):使學(xué)生會(huì)推導(dǎo)平方差公式,掌握公式特征,并能正確而熟練地運(yùn)用平方差公式進(jìn)行計(jì)算。

  教學(xué)難點(diǎn):掌握平方差公式的特征,并能正確而熟練地運(yùn)用它進(jìn)行計(jì)算。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1、復(fù)述多項(xiàng)式與多項(xiàng)式的乘法法則

  2、計(jì)算 (演板)

  (1)(a+b)(a-b) (2)(m+n)(m-n)

  (3)(x+y)(x-y) (4)(2a+3b)(2a-3b)

  3、引入新課,由2題的計(jì)算引導(dǎo)學(xué)生觀察題目特征,結(jié)果特征(引入新課,板書課題)

  二、新課

  1、平方差公式

  由上面的運(yùn)算,再讓學(xué)生探究現(xiàn)在你能很快算出多項(xiàng)式(2m+3n)與多項(xiàng)式(2m-3n)的乘積嗎? 引導(dǎo)學(xué)生把2m看成a,3n看成b寫出結(jié)果.

  (2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

  (a + b)(a - b)= a2 - b2

  向?qū)W生說明:我們把(a+b)(a-b)=a2- b2 (重點(diǎn)強(qiáng)調(diào)公式特征)叫做平方差公式,也就是:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差等于這兩個(gè)數(shù)的平方差.

  3、練習(xí):判斷下列式子哪些能用平方差公計(jì)算。(小黑板)

  (1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)

  (3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)

  2、教學(xué)例1

  (1)(2x+1)(2x-1); (2) (x+2y)(x-2y)

  (2)分析:讓學(xué)生先說一說這兩個(gè)式子是否符合平方差公式特征,再說一說哪個(gè)相當(dāng)于公式中的a,哪個(gè)相當(dāng)于公式中的b,然后套公式。

  (3)具體解題過程:板書,同教材,略

  3、教學(xué)例2 例3

  先引導(dǎo)學(xué)生分析后指名學(xué)生演板,略

  4、練習(xí):課本P110 1(指名演板) 2、(口答)3、演板

  三、鞏固練習(xí):(小黑板)

  1、填空:(1)(x+3)(x-3)=__________ (2)(-1-2x)(2x-1)=______

  (3)(-1-2x)(-2x+1)=_____________ (4)(m+n)( )=n2-m2

  (5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a2

  2、選擇題

  (1) 下列可以用平方差公式計(jì)算的是( )

  A、(2a-3b)(-2a+3b) B、(- 4b-3a)(-3a+4b)

  C、(a-b)(b-a) D、(2x-y) (2y+x)

  (2)下列式子中,計(jì)算結(jié)果是4x2-9y2的是( )

  A、(2x-3y)2 B、(2x+3y)(2x-3y)

  C、(-2x+3y)2 D、(3y+2x)(3y-2x)

  (3)計(jì)算(b+2a)(2a-b)的結(jié)果是( )

  A、4a2- b2 B、b2- 4a2&

1.7 平方差公式 篇9

  平方差公式

  一、學(xué)習(xí)目標(biāo):1.經(jīng)歷探索平方差公式的過程.

  2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.

  二、重點(diǎn)難點(diǎn)

  重 點(diǎn): 平方差公式的推導(dǎo)和應(yīng)用

  難 點(diǎn): 理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

  三、合作學(xué)習(xí)

  你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

  (1)20xx×1999 (2)998×1002

  導(dǎo)入新課: 計(jì)算下列多項(xiàng)式的積.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精講精練

  例1:運(yùn)用平方差公式計(jì)算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:計(jì)算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  隨堂練習(xí)

  計(jì)算:

  (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

  (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

  五、小結(jié):(a+b)(a-b)=a2-b2

1.7 平方差公式 篇10

  學(xué)習(xí)目標(biāo):

  1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。

  2、會(huì)推導(dǎo)完全平方公式,了解公式的幾何背景,會(huì)用公式計(jì)算。

  3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

  學(xué)習(xí)重點(diǎn):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  學(xué)習(xí)難點(diǎn):掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。

  學(xué)習(xí)過程:

  一、學(xué)習(xí)準(zhǔn)備

  1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2 (a-b)2

  2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。

  嘗試用自己的語(yǔ)言敘述完全平方公式:

  3、完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。

  4、完全平方公式的結(jié)構(gòu)特征:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是

  注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□±△)=□2±2□△+△2

  5、兩個(gè)完全平方公式的轉(zhuǎn)化:

  (a-b)2= 2=( )2+2( )+( )2=

  二、合作探究

  1、利用乘法公式計(jì)算:

  (1) (3a+2b)2 (2) (-4x2-1)2

  分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a ,哪個(gè)式子相當(dāng)于公式中的b

  2、利用乘法公式計(jì)算:

  (1) 992 (2) ( )2

  分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2

  3、利用完全平方公式計(jì)算:

  (1) (a+b+c)2 (2) (a-b)3

  三、學(xué)習(xí)

  對(duì)照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測(cè)試

  1、下列計(jì)算是否正確,若不正確,請(qǐng)訂正;

  (1) (-1+3a)2=9a2-6a+1

  (2) (3x2- )2=9x4-

  (3) (xy+4)2=x2y2+16

  (4) (a2b-2)2=a2b2-2a2b+4

  2、利用乘法公式計(jì)算:

  (1) (3x+1)2 (2) (a-3b)2

  (3) (-2x+ )2 (4) (-3m-4n)2

  3、利用乘法公式計(jì)算:

  (1) 9992 (2) (100.5)2

  4、先化簡(jiǎn),再求值;

  ( m-3n)2-( m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2-kx+81是一個(gè)完全平方公式,則k的值是

  2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是

  3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

  4、x+y=4 ,x-y=10 ,那么xy=

  5、已知x- =4,則x2+ =

1.7 平方差公式 篇11

  編者按:由中國(guó)教育部國(guó)際交流司與師范司,以及東芝公司共同舉辦的首屆“東芝杯·中國(guó)師范大學(xué)師范專業(yè)理科大學(xué)生教學(xué)技能創(chuàng)新實(shí)踐大賽”20xx年11月30日在北京落下帷幕。在參加數(shù)學(xué)模擬授課、教案評(píng)比、即席演講三項(xiàng)決賽的12所師范大學(xué)中,華南師范大學(xué)的林佳佳奪得冠軍(三項(xiàng)均列第一),北京師范大學(xué)的郗鵬獲亞軍,南京師范大學(xué)的朱嘉雋獲季軍。三名獲獎(jiǎng)選手每人除了獲獎(jiǎng)勵(lì)高級(jí)筆記本電腦一臺(tái)之外,并獲得免費(fèi)赴日進(jìn)行短期訪學(xué)。本刊刊登獲得第一名的教案,以饗讀者.

  【課題】 15.2.1 平方差公式

  【教材】 人教版八年級(jí)數(shù)學(xué)上冊(cè)第151頁(yè)至153頁(yè). 【課時(shí)安排】 1個(gè)課時(shí). 【教學(xué)對(duì)象】 八年級(jí)(上)學(xué)生.【授課教師】 華南師范大學(xué) 林佳佳. 【教學(xué)目標(biāo)】 ? 知識(shí)與技能

  (1)理解平方差公式的本質(zhì),即結(jié)構(gòu)的不變性,字母的可變性; (2)達(dá)到正用公式的水平,形成正向產(chǎn)生式:

  “﹙□+△﹚﹙□– △﹚”→“□2 – △2”.

  過程與方法

  (1)使學(xué)生經(jīng)歷公式的獨(dú)立建構(gòu)過程,構(gòu)建以數(shù)的眼光看式子的數(shù)學(xué)素養(yǎng);

  (2)培養(yǎng)學(xué)生抽象概括的能力;

  (3)培養(yǎng)學(xué)生的問題解決能力,為學(xué)生提供運(yùn)用平方差公式來研究等周問題的探究空間。 ? 情感態(tài)度價(jià)值觀

  糾正片面觀點(diǎn): ?數(shù)學(xué)只是一些枯燥的公式、規(guī)定,沒有什么實(shí)際意義!學(xué)了數(shù)學(xué)沒有用!?體會(huì)數(shù)學(xué)源于實(shí)際,高于實(shí)際,運(yùn)用于實(shí)際的科學(xué)價(jià)值與文化價(jià)值。

  【教學(xué)重點(diǎn)】 1.平方差公式的本質(zhì)的理解與運(yùn)用;2.數(shù)學(xué)是什么。 【教學(xué)難點(diǎn)】 平方差公式的本質(zhì),即結(jié)構(gòu)的不變性,字母的可變性。 【教學(xué)方法】 講練結(jié)合、討論交流。【教學(xué)手段】計(jì)算機(jī)、PPT、flash。 【教學(xué)過程設(shè)計(jì)】

  二、教學(xué)過程設(shè)計(jì)

  第 2 頁(yè)

  第 3 頁(yè)

  第 4 頁(yè)

1.7 平方差公式 篇12

  15.2 乘法公式

  15.2.1平方差公式

  教學(xué)目標(biāo)

  ①經(jīng)歷探索平方差公式的過程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力、歸納能力.

  ②會(huì)推導(dǎo)平方差公式并掌握公式的結(jié)構(gòu)特征,能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.

  ③了解平方差公式的幾何背景,體會(huì)數(shù)形結(jié)合的思想方法.

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)及應(yīng)用.

  難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

  教學(xué)準(zhǔn)備

  卡片及多媒體課件

  教學(xué)設(shè)計(jì)

  引入

  同學(xué)們,前面我們剛剛學(xué)習(xí)了整式的乘法,知道了一般情形下兩個(gè)多項(xiàng)式相乘的法則.今天我們要繼續(xù)學(xué)習(xí)某些特殊情形下的多項(xiàng)式相乘.下面請(qǐng)同學(xué)們應(yīng)用你所學(xué)的知識(shí),自己來探究下面的問題:

  探究:計(jì)算下列多項(xiàng)式的積,你能發(fā)現(xiàn)它們的運(yùn)算形式與結(jié)果有什么規(guī)律嗎?

  (1)(x+1)(x-1)=

  (2)(m+2)(m-2)=

  (3)(2x+1)(2x-1)=

  引導(dǎo)學(xué)生用自己的語(yǔ)言敘述所發(fā)現(xiàn)的規(guī)律,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.

  注:平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,它的得出可以直接利用多項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則,利用多項(xiàng)式乘法推導(dǎo)乘法公式是從一般到特殊的過程,對(duì)今后學(xué)習(xí)其他乘法公式的推導(dǎo)有一定的指導(dǎo)意義,同時(shí)也可培養(yǎng)學(xué)生觀察、歸納、概括等能力,因此在教學(xué)中,首先應(yīng)讓學(xué)生思考:你能發(fā)現(xiàn)什么?讓學(xué)生經(jīng)歷觀察(每個(gè)算式和結(jié)果的特點(diǎn))、比較(不同算式之間的異同)、歸納(可能具有的規(guī)律)、提出猜想的過程,學(xué)生在發(fā)現(xiàn)規(guī)律后,還應(yīng)通過符號(hào)運(yùn)算對(duì)規(guī)律進(jìn)行證明.

  舉例

  再舉幾個(gè)這樣的運(yùn)算例子.

  注:讓學(xué)生獨(dú)立思考,每人在組內(nèi)舉一個(gè)例子(可口述或書寫),然后由其中一個(gè)小組的代表來匯報(bào).

  驗(yàn)證

  我們?cè)賮碛?jì)算(a+b)(a-b)=

  公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué)的思想方法:特例→歸納→猜想→驗(yàn)證→用數(shù)學(xué)符號(hào)表示.

  注:這里是對(duì)前邊進(jìn)行的運(yùn)算的討論,目的是讓學(xué)生通過觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的結(jié)構(gòu)特征,為下一步運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算打下基礎(chǔ).

  概括

  平方差公式及其形式特征.

  教師可以在前面的基礎(chǔ)上繼續(xù)鼓勵(lì)學(xué)生發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn):如公式左、右邊的結(jié)構(gòu),并嘗試說明這些特點(diǎn)的原因.

  應(yīng)用

  教科書第152頁(yè)例1運(yùn)用平方差公式計(jì)算:

  (1)(3x+2)(3x-2)

  (2)(b+2a)(2a-b)

  (3)(-x+2y)(-x-2y)

  填表:

  (a+b)(a-b) a b a2—b2 最后結(jié)果

  (3x+2)(3x-2) 2 (3x)2-22

  (b+2a)(2a-b)

  (-x+2y)(-x-2y)

  對(duì)本例的前面兩個(gè)小題可以采用學(xué)生獨(dú)立完成,然后搶答的形式完成;第三小題可采用小組討論的形式,要求學(xué)生在給出表格所提示的解法之后,思考別的解法:提取后一個(gè)因式里的負(fù)號(hào),將2y看作“a”,將x看作“b”,然后運(yùn)用平方差公式計(jì)算.

  注:(1)正確理解公式中字母的廣泛含義,是正確運(yùn)用這一公式的關(guān)鍵.設(shè)計(jì)本環(huán)節(jié),旨在通過將算式中的各項(xiàng)與公式里的a、b進(jìn)行對(duì)照,進(jìn)一步體會(huì)字母a、b的含義,加深對(duì)字母含義廣泛性的理解:即它們既可以是數(shù),也可以是含字母的整式.

  (2)在具體計(jì)算時(shí),當(dāng)有一個(gè)二項(xiàng)式兩項(xiàng)都負(fù)時(shí),往往不易判明a、b,如第三小題,此時(shí)可以通過小組合作交流,放手讓學(xué)生去思考、討論,有助于學(xué)生思維互補(bǔ)、有條理地思考和表達(dá),更有助于學(xué)生合作精神的培養(yǎng).

  (3)例1第(3)小題引導(dǎo)學(xué)生多角度思考問題,可以加深對(duì)公式的理解.

  教科書第152頁(yè)例2計(jì)算:

  (1)102×98

  (2)(y+2)(y-2)-(y-1)(y+5)

  此處仍先讓學(xué)生獨(dú)立思考,然后自主發(fā)言,口述解題思路,允許他們算法的多樣化,然后通過比較,優(yōu)化算法,達(dá)到簡(jiǎn)便計(jì)算的目的.

  注:(1)運(yùn)用平方差公式進(jìn)行數(shù)的簡(jiǎn)便運(yùn)算的關(guān)鍵是根據(jù)數(shù)的形式特征,把相乘的兩數(shù)化成兩數(shù)和與兩數(shù)差的乘積形式,教學(xué)時(shí)可讓學(xué)生自己尋找相乘兩數(shù)的形式特征.

  (2)第二小題要引導(dǎo)學(xué)生注意到一般形式的整式乘法與特殊形式的整式乘法的區(qū)別與聯(lián)系,強(qiáng)調(diào):只有符合公式要求的乘法,才能運(yùn)用公式簡(jiǎn)化運(yùn)算,其余的運(yùn)算仍按整式乘法法則進(jìn)行.

  鞏固

  教科書第153頁(yè)練習(xí)1、2

  練習(xí)1口答完成;練習(xí)2采用大組競(jìng)賽的形式進(jìn)行,其中(1)(4)由兩個(gè)大組完成,(2)(3)由另兩個(gè)大組完成.

  注:讓學(xué)生通過鞏固練習(xí),達(dá)成本節(jié)課的基本學(xué)習(xí)目標(biāo),并通過豐富的活動(dòng)形式,激發(fā)學(xué)習(xí)興趣,培養(yǎng)競(jìng)爭(zhēng)意識(shí)和集體榮譽(yù)感.

  解釋

  你能根據(jù)下面的兩個(gè)圖形解釋平方差公式嗎?

  多媒體動(dòng)畫演示圖形的變換過程,體會(huì)過程中不變的量,并能用代數(shù)恒等式表示.

  注:(1)重視公式的幾何背景,可以幫助學(xué)生運(yùn)用幾何直觀理解、解決有關(guān)代數(shù)問題.

  (2)此處將教科書的圖15.3-1分解為兩個(gè)圖形,是考慮到學(xué)生數(shù)與形結(jié)合的思想方法掌握的不夠熟練;利用兩個(gè)圖形可以清楚變化的過程,便于聯(lián)想代數(shù)的形式.

  小結(jié)

  談一談:你這一節(jié)課有什么收獲?

  注:這兒采取的是先由每個(gè)學(xué)生自己小結(jié),然后由小組代表作答,把教師做小結(jié)變成了課堂上人人做小結(jié),有助于學(xué)生概括能力、抽象能力、表達(dá)能力的提高.同時(shí),由于人人都要做小結(jié),促使學(xué)生注意力集中,學(xué)習(xí)主動(dòng)性加強(qiáng).

  作業(yè)

  1.必做題:教科書第156頁(yè)習(xí)題15.2第1題

  2.選做題:計(jì)算:

  (1)x2+(y-x)(y+x)

  (2)20082-20xx×20xx

  (3)(-0.25x-2y)(-0.25x+2y)

  (4)(a+ b)(a- b)-(3a-2b)(3a+2b)

  教學(xué)后記

1.7 平方差公式 篇13

  學(xué)習(xí)目標(biāo)

  或?qū)W習(xí)任務(wù)1、了解運(yùn)用公式來分解因式的意義.

  2、理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn),知道把乘法公式反過來就可以得到相應(yīng)的因式分解.

  3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過兩次).

  本課時(shí)

  重點(diǎn)難點(diǎn)

  或?qū)W習(xí)建議教學(xué)重點(diǎn):運(yùn)用平方差公式分解因式.

  教學(xué)難點(diǎn):靈活運(yùn)用平方差公式分解因式.

  本課時(shí)

  教學(xué)資源

  的使用電腦、投影儀.

  學(xué)習(xí)過程學(xué)習(xí)要求

  或?qū)W法指導(dǎo)教師

  二次備課欄

  自學(xué)準(zhǔn)備與知識(shí)導(dǎo)學(xué):

  1、情景設(shè)置:

  問題1:你能很快知道是100的倍數(shù)嗎?你是怎么想出來的?

  問題2:從上面=容易看出,這種方法利用了我們剛學(xué)過的哪一個(gè)乘法公式?

  2、計(jì)算下列各式:

  ⑴=___________________

  ⑵=___________________

  ⑶=___________________

  下面請(qǐng)你根據(jù)上面的等式填空:

  ⑴=___________________

  ⑵=___________________

  ⑶=___________________

  問題:對(duì)比以上兩題,你有什么發(fā)現(xiàn)?

  3、把乘法公式=反過來就得到__________________,這個(gè)等式就是因式分解中的平方差公式.它有什么特征?

  4、完成課本P72做一做.

  等式的左邊是兩數(shù)的平方差,右邊是這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,利用它可以把形式是平方差的多項(xiàng)式分解因式.

  學(xué)習(xí)交流與問題研討:

  1、例題一(準(zhǔn)備好,跟著老師一起做!)

  把下列各式分解因式:⑴⑵⑶

  5、例題二(有困難,大家一起討論吧!)

  如圖,求圓環(huán)形綠化區(qū)的面積.

  分析:與公式比較,哪個(gè)相當(dāng)于公式中的,哪個(gè)相當(dāng)于公式中的.

  分析:本題主要用環(huán)形面積來計(jì)算,運(yùn)用平方差公式計(jì)算.

  圓的面積=π×(半徑)2.

  練習(xí)檢測(cè)與拓展延伸:

  1、鞏固練習(xí)

  ⑴課本P73練一練1、2.

  ⑵填空:____=,=____________,

  利用因式分解計(jì)算:=____________________________.

  ⑶下列多項(xiàng)式中能用平方差公式分解因式的是

  A.B.C.D.

  ⑷把下列各式分解因式:

  ①②③

  2、提升訓(xùn)練

  ①分解因式:

  ②探究與訓(xùn)練P506、7.

  3、當(dāng)堂測(cè)試

  補(bǔ)充習(xí)題P411、2、3、5、6.

  分析:與公式比較,哪個(gè)相當(dāng)于公式中的,哪個(gè)相當(dāng)于公式中的.

  課后反思或經(jīng)驗(yàn)總結(jié):

  1、通過比較簡(jiǎn)單的乘法運(yùn)算推導(dǎo)出平方差公式,引導(dǎo)學(xué)生弄清平方差公式的形式和特點(diǎn),讓學(xué)生在做題中感受,理解平方差公式的意義,使學(xué)生通過運(yùn)算,掌握運(yùn)用平方差公式分解因式的方法,并能正確運(yùn)用平方差公式把多項(xiàng)式分解因式.

1.7 平方差公式 篇14

  平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對(duì)教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會(huì)到它所蘊(yùn)含的新的教學(xué)理念,新的教學(xué)方式和方法。

  1、在教學(xué)設(shè)計(jì)時(shí)應(yīng)提供充分探索與交流的空間,使學(xué)生進(jìn)一步經(jīng)歷觀察,實(shí)驗(yàn)、猜測(cè)、推理、交流、反思等活動(dòng),我在設(shè)計(jì)中讓學(xué)生從計(jì)算花圃面積入手,要求學(xué)生找出不同的計(jì)算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時(shí)也激活了學(xué)生的思維,所以這個(gè)探究過程是很有效的。

  2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實(shí)感受到兩者之間的聯(lián)系,學(xué)會(huì)一些探究的基本方法與思路,并體會(huì)到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。

  3、加強(qiáng)師生之間的活動(dòng)也是必要的。在活動(dòng)中,通過我的組織、引導(dǎo)和鼓勵(lì)下,學(xué)生不斷地思考和探究,并積極地進(jìn)行交流,使活動(dòng)有序進(jìn)行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動(dòng)中,營(yíng)造出了一個(gè)和諧,寬松的教學(xué)環(huán)境。  

1.7 平方差公式 篇15

  教學(xué)目標(biāo):

  知識(shí)目標(biāo):進(jìn)一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異。

  能力目標(biāo)進(jìn)一步培養(yǎng)學(xué)生分析、歸納和探索能力。

  情感目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  教學(xué)重難點(diǎn):公式的應(yīng)用及推廣。

  教學(xué)過程:

  一、復(fù)習(xí)提問:

  1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.

  (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積。

  講評(píng)要點(diǎn):

  沿HD、GD裁開均可,但一定要讓學(xué)生在裁開之前知道HD=BC=GD=FE=ab,

  這樣裁開后才能重新拼成一個(gè)矩形。

  (3)比較(1)(2)的結(jié)果,你能驗(yàn)證平方差公式嗎?

  學(xué)生討論,自己得出結(jié)果

  2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;

  (2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

  說明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問題存在一個(gè)判定a、b的問題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.

  3.判斷正誤:

  (1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

  二、新課:

  運(yùn)用平方差公式計(jì)算:

  (1)102×98;(2)(y+2)(y2)(y2+4).

  填空:

  (1)a24=(a+2);(2)25x2=(5x);(3)m2n2=;

  思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

1.7 平方差公式 篇16

  指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。

  指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn):

  1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。

  2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。

  提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。

  平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,運(yùn)用這一公式可以迅速而簡(jiǎn)捷地計(jì)算出符合公式的特征的多項(xiàng)式乘法的結(jié)果,運(yùn)用公式計(jì)算一定要看是否符合公式的特征,這兩個(gè)數(shù)分別是什么,公式中的字母a,b僅可以代表具體的數(shù)字,字母 ,單項(xiàng)式,也可以代表多項(xiàng)式

1.7 平方差公式 篇17

  用“完全平方公式”分解因式

  一、學(xué)習(xí)目標(biāo):

  1.使學(xué)生會(huì)用完全平方公式分解因式.

  2.使學(xué)生學(xué)習(xí)多步驟,多方法的分解因式

  二、重點(diǎn)難點(diǎn):

  重點(diǎn): 讓學(xué)生掌握多步驟、多方法分解因式方法

  難點(diǎn): 讓學(xué)生學(xué)會(huì)觀察多項(xiàng)式特點(diǎn),恰當(dāng)安排步驟,恰當(dāng)?shù)剡x用不同方法分解因式

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  完全平方公式(a±b)2=a2±2ab+b2

  講授新課

  1.推導(dǎo)用完全平方公式分解因式的公式以及公式的特點(diǎn).

  將完全平方公式倒寫:

  a2+2ab+b2=(a+b)2;

  a2-2ab+b2=(a-b)2.

  凡具備這些特點(diǎn)的三項(xiàng)式,就是一個(gè)二項(xiàng)式的完全平方,將它寫成平方形式,便實(shí)現(xiàn)了因式分解

  用語(yǔ)言敘述為:兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

  形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

  由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法.

  練一練.下列各式是不是完全平方式?

  (1)a2-4a+4; (2)x2+4x+4y2;

  (3)4a2+2ab+ b2; (4)a2-ab+b2;

  四、精講精練

  例1、把下列完全平方式分解因式:

  (1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

  例2、把下列各式分解因式:

  (1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

  課堂練習(xí): 教科書練習(xí)

  補(bǔ)充練習(xí):把下列各式分解因式:

  (1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

  五、小結(jié):兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

  形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

  六、作業(yè):1、

  2、分解因式:

  X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

  45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

1.7 平方差公式(通用17篇) 相關(guān)內(nèi)容:
  • 平方差公式

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ). 1.是由多項(xiàng)式乘法直接計(jì)算得出的...

  • 平方差公式

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ). 1.是由多項(xiàng)式乘法直接計(jì)算得出的...

  • 《平方差公式》教學(xué)反思(通用2篇)

    指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。 指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn): 1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)...

  • 《平方差公式》教案(精選14篇)

    教學(xué)內(nèi)容: P108—110 平方差公式 例1 例2 例3教學(xué)目的: 1、使學(xué)生會(huì)推導(dǎo)平方差公式,并掌握公式特征。2、使學(xué)生能正確而熟練地運(yùn)用平方差公式進(jìn)行計(jì)算。...

  • 《平方差公式》教學(xué)反思3

    平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對(duì)教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會(huì)到它所蘊(yùn)含的新的教學(xué)理念,新的教學(xué)方式和方法。...

  • 《平方差公式》教學(xué)反思2

    指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。 指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn): 1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)...

  • 因式分解“平方差公式”教學(xué)反思

    這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來就會(huì)覺得沒有味道,對(duì)...

  • 數(shù)學(xué)教案-平方差公式

    教學(xué)建議 一、知識(shí)結(jié)構(gòu) 二、重點(diǎn)、難點(diǎn)分析 本節(jié)教學(xué)的重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式.難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義.平方差公式是進(jìn)一步學(xué)習(xí)完全平方公式、進(jìn)行相關(guān)代數(shù)運(yùn)算與變形的重要知識(shí)基礎(chǔ). 1.平方差公式是由多項(xiàng)...

  • 2.6有理數(shù)的乘方(精選16篇)

    有理數(shù)的乘方(第1課時(shí)) 教學(xué)任務(wù)分析教學(xué)流程安排課 前 準(zhǔn) 備教學(xué)過程設(shè)計(jì)案例點(diǎn)評(píng):以在國(guó)際象棋上放米粒的故事引課,學(xué)習(xí)之后又解決這個(gè)問題,使課程既豐富多彩,又妙趣橫生,也產(chǎn)生了前后呼應(yīng)的效果。...

  • 七年級(jí)數(shù)學(xué)教案
主站蜘蛛池模板: 99爱国产精品免费高清在线 | 在线免费观看成人网 | 国产乱人视频在线播放 | 他扒开我奶罩揉吮我奶头视频 | 国产精品久久久久久久久免费桃花 | 国产美女被遭强高潮免费网站 | 国产精品亚洲专区无码唯爱网 | 亚洲精品视频在线免费播放 | 中国女人内谢69xxxx免费视频 | 又色又爽又黄又粗暴的小说 | 亚洲一区二区三区在线观看成人av | 一本久久a久久精品vr综合 | 91久久久精品视频 | 国产毛片一区二区 | 好硬好湿好爽再深一点动态图视频 | 国产一级a爱片在线观看视频 | 天天干夜夜爽 | 爱爱免费看 | 黄色一级免费 | 久久情侣视频 | 日本中文字幕一区二区 | 久久夜色精品国产欧美一区麻豆 | 91区人人爽人人都喜欢人人都有 | 午夜精品久久久久久久久久 | 亚欧美日韩香蕉在线播放视频 | 日日夜夜草| 免费无码百合真人片18禁 | 国产亚洲第一午夜福利合集 | 熟女俱乐部五十路二区AV | 在线免费观看一区二区 | 四虎小视频 | 美女高潮网 | 国产黄色麻豆视频 | 蜜臀av中文字幕 | 精品中文字幕一区二区 | 久久99精品热在线观看 | 刘亦菲人久久精品二区三区 | 波多野结AV衣东京热无码专区 | 无套内射AV五十区 | 永久免费观看美女裸体的网站 | 亚洲精品乱码久久久久久中文字幕 |