分數的基本性質教學反思(精選4篇)
分數的基本性質教學反思 篇1
建構主義學習理論認為,學習是獲得知識的過程,知識是由學習者在一定的情境下借助其他人(包括教師和同學)、利用必要的學習資料、通過意義建構的方法獲得。在這個過程中,學生是信息加工、意義建構的主體,而教師則是意義建構的幫助者和促進者。因此我們在教學過程中要以人本主義為指導,切切實實做到“教為主導,學為主體。”小學數學探究性教學方法就是以目標為依據,以問題為中心,教師引導學生圍繞問題主動展開探索,并發揮師生、生生之間的合作關系進行討論,得出科學的結論,并加以應用的一種教學方法。下面以“分數的基本性質”教學為例,談談怎樣進行探究學習,促進主體發展。
一、創設情境,引出問題
學生探究學習的積極性、主動性,往往來自于一個對于學習者來講充滿疑問和好奇的情境。創設問題情境,就是在教材內容和學生求知心理之間制造一種“不協調”,把學生引入一種與問題有關的情境的過程。通過問題情境的創設,使學生明確探究目標,給思維以方向,同時產生強烈的探究欲望,給思維以動力。
二、自主探究,合作交流
自主探究和合作交流是小學生學習數學的重要方式。蘇霍姆林斯基說過,在人的內心深處都有一種根深 蒂固的需要,這就是希望自己是一個發現者、研究者、探索者。而在兒童的精神世界中,這種需要特別強烈。在學生獨立思考、自主探索的基礎上,組織學生進行合作交流,讓學生充分展示自己或正確或錯誤的思維過程,在合作交流中互相啟迪,互相激勵,共同發展。
三、應用拓展,鼓勵創新
數學知識來源于實際,應用于實際。在師生合作討論歸納出結論后,可讓學生運用理解的知識去解決一些實際問題,鞏固加深對新知識的理解,促進學生把新知識納入到已有的認知結構中去,以利于更好地遷移和運用。練習的設計要有坡度,抓基礎、求開放、促發展。使學生感受到學以致用的快樂,體會到學習數學的價值。
分數的基本性質教學反思 篇2
分數的基本性質教學反思
“找規律”是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行學習的,對這部分內容我是這樣設計教學的:這節課用“猜想——驗證——反思”的方式學習分數的基本性質,是學生在大問題背景下的一種研究性學習,不僅對學生提出了挑戰,而且對老師也提出了更大的挑戰。用故事情景引入,增強解決問題的現實性。采用學生自己親自觀察、操作,再分析怎樣做的方式,把學生推上學習的主體地位,放手讓學生自己去解決問題。最后運用知識,深化對分數的基本性質認識,使學生加深對分數的基本性質的理解,并培養學生運用所學的知識解決實際問題的能力。
找規律是義務教育課程標準實驗教科書第十冊第三單元內容,這節課是在學生學習了分數的意義基礎上進行教學的,通過觀察,合作探究總結出分數的基本性質,本節內容是為以后學習約分和通分打基礎,在教學中教師注重“過程與結果的結合”,“合作學習與自主學習”的結合,“創設情境與創新精神”的結合,教學中,教師用生動有趣的故事引入新知,激發學生學習的興趣,使學生感到學習新知很有興趣,不枯燥無味。巧妙地創設問題情境,讓學生產生迫不及待地要求獲取新知識的情感,再通過拓展外延,從具體事例中抽象出事物的內在規律,這一環節重點在掌握了學生的認識規律基礎上,強調知識的來源,讓學生自己挖掘規律,掌握數學知識產生的內在規律,激發起學生積極思維的動機。通過小組的合作以及教師的引導,發現規律,總結規律,促進了學生相互幫助,相互啟迪,相互促進,發揮了討論交流的作用,提高了學生學習的能力。通過有目的的基本練習、鞏固練習、綜合練習,使學生進一步加深了對新知的理解,強化了學生運用新知解決實際問題的能力,使學生形成了一定的技能技巧。
分數的基本性質教學反思 篇3
下面是關于《分數的基本性質》教學反思,僅供參考!
在一年一度的實驗老師研討活動中。我選擇了《分數的基本性質》為授課內容。《分數的基本性質》是人教版小學數學五年級下冊的內容,它是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的。《分數的基本性質》在分數教學中占有重要的地位,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點之一。我在設計這節課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到不僅是數學知識,更主要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。對這部分內容我是這樣設計教學的:
一、遷移引入,溝通新舊知識的聯系。
學習分數的基本性質可以利用商不變的性質進行正遷移,所以我在開課伊始板書:“2÷3”,然后故作神秘地說“我能變出一個和它的商一樣的除法算式,你能嗎?”學生紛紛舉起了手,變出了一個又一個除法算式。“它還能變。”根據除法和分數的關系,將這個除法算式寫成分數形式,“根據商不變的性質我們可以把一個除法算式變成很多除法算式,那一個分數能不能也變出很多分數呢?”幫助學生意識到商不變規律與新知識的學習具有定的聯系,為新知識的學習奠定基礎。
二、經歷由“猜測——動手操作驗證——得出規律”的探究過程。
在本課的學習中,為充分體現學生的主體地位,使之經歷學習探究的全過程。我創設了探索場景,讓學生首先猜測分數是否也有與除法同樣的性質。接著充分利用直觀手段,設計了折紙涂色的操作活動,通過讓學生動手操作來發現三個分數之間的相等關系,接著引導學生一起探索這三個分數之間存在的規律,從而把具體的知識條理化,使學生獲得具體真切的感受,幫助學生在活動中感悟分數大小相等的算理。歸納得出分數的基本性質,讓學生參與學習的全過程,在掌握所學知識的同時獲得成功的體驗。當總結出規律后找出規律中的關鍵詞“同時”、“相同的數”,再提出為什么這里的相同的數不能為零,并通過商不變性質的性質、分數與除法的關系,使學生全面理解掌握分數的基本性質。在教學中我還注意關注學生的多種思維方式,鼓勵學生用自己的語言敘述解決問題的過程,體現了對學生觀察能力、動手操作能力、邏輯思維能力和抽象概括能力的培養。
三、運用知識,解決實際問題。
先進行基本練習,深化對分數的基本性質認識,通過應用拓展,使學生加深對分數的基本性質的理解,如游戲:老師寫一個分數,你能寫出和老師相等的分數?你能寫幾個?寫的完嗎?在寫的時候,你是怎么想的?并培養學生運用所學的知識解決實際問題的能力。拓展題2/7的分母加上14,要使分數的大小不變,分子應該加上多少。此題不僅能夠幫助學生辨析“分數的分子和分母同時加上或減去相同的數,分數的大小不變”此話的真偽,而且能促使學生更加靈活地運用分數的基本性質。在教學中,學生不僅想到2/7=[2+]/(7+14)=6/21,所以6—2=4的方法,還有部分學生提出更簡潔的方法。思路如下:分母加上14,就表示分母增加了7的2倍,擴大到原來的3倍。同理,分子也必須同時增加2倍才能使分子擴大到原來的3倍,從而保持分數值不變,所以分子應該增加2*2=4。創新思維的火花在學生中閃現,體現出他們對知識的掌握更加靈活、對知識的理解更加深刻。
本節課出現的問題也很多,如在進行分數的基本性質與商不變的規律的溝通聯系時,只是對照兩句性質進行,沒有舉出具體的例子。如果能讓學生多舉一些例子,歸納方法從“特殊”到“一般”推進從而得出結論,就使得結論的得來更科學。
分數的基本性質教學反思 篇4
教學是教師的教和學生的學所組成的一種人類特有的人才培養活動。以下是關于《分數的基本性質》教學反思范文,希望大家喜歡!
《分數的基本性質》教學反思一
在一年一度的實驗老師研討活動中。我選擇了《分數的基本性質》為授課內容。《分數的基本性質》是人教版小學數學五年級下冊的內容,它是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的。《分數的基本性質》在分數教學中占有重要的地位,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點之一。我在設計這節課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到不僅是數學知識,更主要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。對這部分內容我是這樣設計教學的:
一、遷移引入,溝通新舊知識的聯系。
學習分數的基本性質可以利用商不變的性質進行正遷移,所以我在開課伊始板書:“2÷3”,然后故作神秘地說“我能變出一個和它的商一樣的除法算式,你能嗎?”學生紛紛舉起了手,變出了一個又一個除法算式。“它還能變。”根據除法和分數的關系,將這個除法算式寫成分數形式,“根據商不變的性質我們可以把一個除法算式變成很多除法算式,那一個分數能不能也變出很多分數呢?”幫助學生意識到商不變規律與新知識的學習具有定的聯系,為新知識的學習奠定基礎。
二、經歷由“猜測——動手操作驗證——得出規律”的探究過程。
在本課的學習中,為充分體現學生的主體地位,使之經歷學習探究的全過程。我創設了探索場景,讓學生首先猜測分數是否也有與除法同樣的性質。接著充分利用直觀手段,設計了折紙涂色的操作活動,通過讓學生動手操作來發現三個分數之間的相等關系,接著引導學生一起探索這三個分數之間存在的規律,從而把具體的知識條理化,使學生獲得具體真切的感受,幫助學生在活動中感悟分數大小相等的算理。歸納得出分數的基本性質,讓學生參與學習的全過程,在掌握所學知識的同時獲得成功的體驗。當總結出規律后找出規律中的關鍵詞“同時”、“相同的數”,再提出為什么這里的相同的數不能為零,并通過商不變性質的性質、分數與除法的關系,使學生全面理解掌握分數的基本性質。在教學中我還注意關注學生的多種思維方式,鼓勵學生用自己的語言敘述解決問題的過程,體現了對學生觀察能力、動手操作能力、邏輯思維能力和抽象概括能力的培養。
三、運用知識,解決實際問題。
先進行基本練習,深化對分數的基本性質認識,通過應用拓展,使學生加深對分數的基本性質的理解,如游戲:老師寫一個分數,你能寫出和老師相等的分數?你能寫幾個?寫的完嗎?在寫的時候,你是怎么想的?并培養學生運用所學的知識解決實際問題的能力。拓展題2/7的分母加上14,要使分數的大小不變,分子應該加上多少。此題不僅能夠幫助學生辨析“分數的分子和分母同時加上或減去相同的數,分數的大小不變”此話的真偽,而且能促使學生更加靈活地運用分數的基本性質。在教學中,學生不僅想到2/7=[2+]/(7+14)=6/21,所以6—2=4的方法,還有部分學生提出更簡潔的方法。思路如下:分母加上14,就表示分母增加了7的2倍,擴大到原來的3倍。同理,分子也必須同時增加2倍才能使分子擴大到原來的3倍,從而保持分數值不變,所以分子應該增加2*2=4。創新思維的火花在學生中閃現,體現出他們對知識的掌握更加靈活、對知識的理解更加深刻。
本節課出現的問題也很多,如在進行分數的基本性質與商不變的規律的溝通聯系時,只是對照兩句性質進行,沒有舉出具體的例子。如果能讓學生多舉一些例子,歸納方法從“特殊”到“一般”推進從而得出結論,就使得結論的得來更科學。
《分數的基本性質》教學反思二
“分數的基本性質”在分數教學中占有重要的地位,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點課。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到不僅是數學知識,更主要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。這節課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不 變的變規 律與新知識的聯系,為新知識的學習做好必要的準備。讓學生根據商不變的性質大膽猜想,分數的基本性質是什么?說出自己的想法。
2、充分發揮學生主體作用,引導學生自主探究。放手讓學生操作、觀察、比較,驗證自己的猜想。通過動手操作三張長方形得紙條,把它們平均折成2份、4份、8份,取其中得1份、2份、4份,圖上顏色,并用分數表示,來驗證自己的猜想是否正確,從而培養學生的動手能力,以及觀察問題解決問題的能力。
3、運用知識,解決實際問題。為了把知識轉化為能力,練習題的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數的基本性質后,先進行基本練習,深化對分數的基本性質認識。學完例2以后,馬上結合知識點進行反饋練習,加深對這個過程的理解。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數的基本性質的理解,并培養學生運用所學的知識解決實際問題的能力。
4、0除外的環節設計是本節課的亮點,在學生根據三個分數歸納出分數的基不性質后,缺少0除外這個難點,我設計了判斷一個分數的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數,在分數中分母不能為0,引出:分子和分母同時乘或除以相同的數,必須0除外。突破難點。
本節課出現的不足是:
(1)猜想的驗證過程過于單一,只采用了折長方形紙條的方法來驗證,完全可以放手讓學生通過各種方法來驗證,如畫線段圖、折圓,折正方形、分蘋果圖等方法來進行,這樣尊重了學生的意愿,也擴大了探究的范圍,拓展了學生學習的空間。
(2)老師還是有牽著學生走的現象。
(3)教師語言速度比較快,與平時說話有很大的關系,今后要及時改正,放慢語速。
(4)在以后的教學中應不斷改進教法,向有經驗教師學習,加強評價語言的運用,提高駕馭課堂的能力。照兩句性質進行,沒有舉出具體的例子。如果能讓學生多舉一些例子,歸納方法從“特殊”到“一般”推進從而得出結論,就使得結論的得來更科學。