第九單元《解決問題的策略》教材分析
生活里的事情從發生到結束總是有過程的,事情發生的過程或是在數量的多少上發生變化,或是在方向、路線、時間等方面發生變化,或是在其他方面發生變化。研究這些事情里的數學問題經常有兩條線索: 一條是從事情的起始狀態,根據將要發生的變化,推斷結束時的狀態;另一條是從事情的結束狀態,聯系已經發生的變化,追溯起始狀態。學生比較習慣用前一條線索分析數量關系和解決實際問題,但是,有些問題用后一種思路去解決是比較方便的。本單元教學逆推策略,通俗地講就是“倒過去想”,即從事情的結果倒過去想它在開始的時候是怎樣的。
1 在簡單的事情中初步體會逆推是一種策略。
例1用圖畫呈現了甲、乙兩杯果汁共400毫升,甲杯倒入乙杯40毫升,兩杯里的果汁同樣多。這是一件事情的開始、變化、結果三個時段的主要狀況。甲杯里的部分果汁倒入乙杯后,兩杯果汁才同樣多,如果把甲杯倒入乙杯的那些果汁仍然倒回甲杯,就恢復了兩杯果汁的原狀。這是人們的經驗,也是學生能夠想到的辦法,教材用圖畫展示了這樣的思考和問題的答案。
這道例題的教學重點在體驗“逆推”是解決問題的策略。為此,還安排了兩項活動。一是在表格里先填寫甲杯和乙杯現在各有果汁200毫升,再填寫它們原來有多少毫升果汁,通過填表反思“倒回去”的過程。利用加法或減法計算倒入和倒出的問題,能進一步理解“倒回去”的意思,體會它對解決問題的作用。二是組織學生說說解決這個問題的策略,先回顧例題是怎樣的實際問題,它是怎樣解決的;再交流解決問題的方法有什么特點,以及對這種方法的感受。這樣,就從解決問題的過程中提煉了思想方法。
2 舉一反三,運用逆推策略解決實際問題。
例2中小明的郵票經過兩次變化最后還剩52張,問題是他原來有多少張郵票。學生會感到,這題的事情雖然和例1不同,但都要從現在的數量追溯原來的數量。教材通過“你準備用什么策略解決這個問題”引導學生“倒過去想”,即如果跟小華要回30張郵票,那么小明就有52+30=82(張);如果不收集24張郵票,那么小明只有82-24=58(張)!暗惯^去想”需要整理事情從開始到結束的變化過程,排出各次變化的次序。還要聯系生活經驗,思考“倒過去”的方法。如送出的應要回,收集的應去掉。在倒過去想的時候,還要逆著事情變化的順序進行,先把后發生的變化倒回去,再把先發生的變化倒回去,直至事情的原來情況。這些都落實在說說自己的想法和列式解答之中。教材給出的第二種方法沒有完全按照事情發生變化的次序一步步地逆推,而是先分析事情發展過程中的兩次變化對小明郵票張數造成的總的影響。由于今年收集的郵票比送給小軍的郵票少6張,所以現在的郵票應該比原來少6張。然后逆推: 如果現在的郵票再多6張,就是原來郵票的張數。教學時要提倡第一種方法,因為這種方法比較清楚地體現了逆推的策略,思考和操作比較順暢,適宜多數學生應用。根據求出的答案,順推過去,看看剩下的是52張嗎?一方面能檢驗答案是否正確,另一方面是讓學生再次體驗事情的變化是有次序的。順著變化一步一步地推,是從開始推向結果;逆著變化一步一步地推,是從結果推向起始。無論順推還是逆推,有條理的思考是十分重要的。