《直線的傾斜角與斜率》導學案
[設計意圖]:使學生了解新內容特點和研究方法,發揮先行組織者的作用,揭示本課時的研究方法。
(二)形成傾斜角的定義
問題1:請你在平面直角坐標系中畫出兩條直線,說出他們的不同之處。
(1) (2)
預設的答案:
圖(1)中的兩條直線都經過點p , 但“傾斜程度”不同。
圖(2)中的兩條直線“傾斜程度”相同,但沒有公共點。
輔助問題1:直線的傾斜程度是以什么為參照的?
教師引導形成統一的認識:以x軸或y軸為基準都可以,習慣上以x軸為基準。
輔助問題2:在平面直角坐標系中,如何確定一條直線的位置?
預設的答案:
(1)兩點確定一條直線;
(2)一點及直線相對于x軸的“傾斜程度”。
輔助問題3:兩直線相交可以形成4個角,你愿意選擇哪個角來描述直線的傾斜程度呢?
教師引導形成統一的認識:用圖中的∠1。這個角就叫做直線的傾斜角。
[設計意圖]:從學生的已有知識經驗出發,引導學生逐步接受新的研究方法。
問題2:在平面直角坐標系中,過一點的任意直線相對x軸的位置有哪些情形?請畫出這些直線的傾斜角,并用你自己的語言說說傾斜角的三要素。
(1) (2) (3) (4)
[設計意圖]:在學生直觀感受的基礎上形成傾斜角的定義。通過給各種類型的直線標注傾斜角,使學生形成對傾斜角全面的認識,在此基礎上認識到分類定義的必要性和規定的合理性。
學生活動:標出各條直線的傾斜角,并用自己的語言描述傾斜角的特征。
預設的結果:
(1)標出各條直線的傾斜角(略);
(2)形成傾斜角的定義:
傾斜角的定義:在直角坐標系下,以x軸為基準,當直線與軸相交時,軸正向與直線向上方向之間所成的角,叫做直線的傾斜角。規定:當直線與軸平行或重合時,它的傾斜角為0。
問題3:根據定義,傾斜角α的取值范圍是什么呢?
答案:0180。
(三)形成斜率的定義
問題4:生活中,我們都有過爬山、爬坡的體驗,你還知道表示傾斜程度的量嗎?請舉例。
[設計意圖]:利用學生的已有知識經驗將幾何問題代數化。
預設的回答:可以用坡角與坡度來表示。坡度的定義是:
教師引導:我們也可以用直線的傾斜角的正切來表示直線的傾斜程度即直線的斜率。
斜率的定義:傾斜角不是90的直線,其傾斜角的正切值叫做這條直線的斜率。即。
問題5:(1)完成下面的表格1,并分析直線的傾斜角不同時,直線的斜率取值是否也不同,在此基礎上總結斜率的意義。
表1
30o
45o
60o
120o
135o
150o
k=tan
(2)根據三角函數的相關知識,思考當傾斜角在[0,180)內變化時,斜率k如何變化?并填寫表2。