中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教案大全 > 數(shù)學《二次函數(shù)》優(yōu)秀教案(精選9篇)

數(shù)學《二次函數(shù)》優(yōu)秀教案

發(fā)布時間:2023-09-04

數(shù)學《二次函數(shù)》優(yōu)秀教案(精選9篇)

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇1

  教學目標

  (一)教學知識點

  1、能夠利用二次函數(shù)的圖象求一元二次方程的近似根、

  2、進一步發(fā)展估算能力、

  (二)能力訓練要求

  1、經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗、

  2、利用圖象法求一元二次方程的.近似根,重要的是讓學生懂得這種求解方程的思路,體驗數(shù)形結(jié)合思想、

  (三)情感與價值觀要求

  通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力、

  教學重點

  1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系、

  2、能夠利用二次函數(shù)的圖象求一元二次方程的近似根、

  教學難點

  利用二次函數(shù)的圖象求一元二次方程的近似根、

  教學方法

  學生合作交流學習法、

  教具準備

  投影片三張

  第一張:(記作§2、8、2A)

  第二張:(記作§2、8、2B)

  第三張:(記作§2、8、2C)

  教學過程

  Ⅰ、創(chuàng)設(shè)問題情境,引入新課

  [師]上節(jié)課我們學習了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點坐標和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點的橫坐標,就是y=0時的一元二次方程的根,于是,我們在不解方程的情況下,只要知道二次函數(shù)與x軸交點的橫坐標即可、但是在圖象上我們很難準確地求出方程的解,所以要進行估算、本節(jié)課我們將學習利用二次函數(shù)的圖象估計一元二次方程的根、

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇2

  教學目標

  (一)教學知識點

  1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系、

  2、理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根、

  3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標、

  (二)能力訓練要求

  1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、

  2、通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想、

  3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、

  (三)情感與價值觀要求

  1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性、

  2、具有初步的創(chuàng)新精神和實踐能力、

  教學重點

  1、體會方程與函數(shù)之間的聯(lián)系、

  2、理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根、

  3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標、

  教學難點

  1、探索方程與函數(shù)之間的聯(lián)系的過程、

  2、理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系、

  教學方法

  討論探索法、

  教具準備

  投影片二張

  第一張:(記作§2、8、1A)

  第二張:(記作§2、8、1B)

  教學過程

  Ⅰ、創(chuàng)設(shè)問題情境,引入新課

  [師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系、當一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解、

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇3

  一. 教材分析

  1、教材的地位及作用

  函數(shù)是一種重要的數(shù)學思想,是實際生活中數(shù)學建模的重要工具,二次函數(shù)的教學在初中數(shù)學教學中有著重要的地位。本節(jié)內(nèi)容的教學,在函數(shù)的教學中有著承上啟下的作用。它既是對已學一次函數(shù)及反比例函數(shù)的復習,又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學乃至高中階段函數(shù)的教學打下基礎(chǔ),做好鋪墊。

  2.教學目標

  (1) 掌握二此函數(shù)的概念并能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣。[知識與技能目標]

  (2)讓學生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗證的學習過程,使學生掌握類比、轉(zhuǎn)化等學習數(shù)學的方法,養(yǎng)成既能自主探索,又能合作探究的良好學習習慣。[過程與方法目標]

  (3) 讓學生在數(shù)學活動中學會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅,[情感、態(tài)度、價值觀目標]

  3、教學的重、難點

  重點:二次函數(shù)的概念和解析式

  難點:本節(jié)“合作學習”涉及的實際問題有的較為復雜,要求學生有較強的概括能力

  4、 學情分析

  ①學生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學生個性活潑,積極性高,初步具有對數(shù)學問題進行合作探究的意識與 能力。

  ③初三學生程度參差不齊,兩極分化已形成。

  二、教法學法分析

  1` 教法(關(guān)鍵詞:情境、探究、分層)

  基于本節(jié)課內(nèi)容的特點和初三學生的年齡特征,我以“探究式”體驗教學法和“啟發(fā)式”教學法 為主進行教學。讓學生在開放的情境中,在教師的 引導啟發(fā)下,同學的合作幫助下,通過探究發(fā)現(xiàn),讓學生經(jīng)歷數(shù)學知識的形成和應(yīng)用過程,加深對數(shù)學知識的理解。教師著眼于引導,學生著眼于探索,側(cè)重于學生能力的提高、思維的訓練。同時考慮到學生的個體差異,在教學的各個環(huán)節(jié)中進行分層施教。

  2、學法(關(guān)鍵詞:類比、自主、合作)

  根據(jù)學生的思維特點、認知水平,遵循“教必須以學為立足點”的教育理念,讓每一個學生自主參與整堂課的知識構(gòu)建。在各個環(huán)節(jié)中引導學生類比遷移,對照學習。以自主探索為主,學會合作交流,在師生互動、生生互動中讓每個學生動口,動手,動腦,培養(yǎng)學生學習的主動性和積極性,使學生由“學會”變“會學”和“樂學”。

  3、教學手段

  采用多媒體教學,直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學生的學習 興趣,參與熱情,增大教學容量,提高教學效率。

  三、教學過程

  完整的數(shù)學學習過程是一個不斷探索、發(fā)現(xiàn)、驗證的過程,根據(jù)新課標要求,根據(jù)“以人為本,以學定教”的教學理念,結(jié)合學生實際,制訂以下教學流程:

  (一).創(chuàng)設(shè)情境 溫故引新

  以提問的形式復習一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:

  (1)你們喜歡打籃球嗎?

  (2)你們知道:投籃時,籃球運動的路線是什么曲線?怎樣計算籃球達到最高點時的高度?

  從而引出課題〈〈二次函數(shù)〉〉,導入新課

  (二).合作學習,探索新知

  為了更貼近生活,我先設(shè)計了兩個和實際生活有關(guān)的練習題。鼓勵學生積極發(fā)言,充分調(diào)動學生的主動性。然后出示課本上的兩個問題,在這個環(huán)節(jié)中,我讓學生在教師的引導下,先獨立思考,再以小組為單位交流成果,以培養(yǎng)學生自主探索、合作探究的能力。四個解析式都列出來后。讓學生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學生的語言表達能力。

  學生在學習二次函數(shù)的概念時要求學生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個函數(shù)是不是二次函數(shù)

  (三)當堂訓練 鞏固提高

  由于學生層次不一,練習的設(shè)計充分考慮到學生的個體差異,滿足不同層次學生的學習需求,實現(xiàn)有“差異的”發(fā)展。讓每一個學生都感受成功的喜悅。我設(shè)計了3道練習題,其難易程度逐步提高,第一道題面對所有的學生,學生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強,可以提高他們的綜合素質(zhì)。

  (四).小結(jié)歸納 拓展轉(zhuǎn)化

  讓學生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進一步掌握二次函數(shù)的概念。

  (五)布置作業(yè) 學以致用

  作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗學生掌握知識的情況,發(fā)現(xiàn)和彌補教與學中遺漏與不足。同時,選做題具有總結(jié)性,可引導學生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.

  四.評價分析

  本節(jié)課的教學從學生已有的認知基礎(chǔ)出發(fā),以學生自主探索、合作交流為主線,讓學生經(jīng)歷數(shù)學知識的形成與應(yīng)用過程,加深對所學知識的理解,從而突破重難點。整節(jié)課注重學生能力的培養(yǎng)和習慣的養(yǎng)成。由于學生的層次不一,我全程關(guān)注每一個學生的學習狀態(tài),進行分層施教,因勢利導,隨機應(yīng)變,適時調(diào)整教學環(huán)節(jié),,實現(xiàn)評價主體和形式的多樣化,把握評價的時機與尺度,激發(fā)學生的學習興趣,激活課堂氣氛,使課堂教學達到最佳狀態(tài)。

  五.教學反思

  1.本節(jié)課通過學生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。

  2.本節(jié)課設(shè)計的以問題為主線,培養(yǎng)學生有條理思考問題的習慣和歸納概括能力,并重視培養(yǎng)學生的語言表達能力。同時不斷激發(fā)學生的探索精神,提高了學生分析和解決問題的能力。使學生有成功體驗。

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇4

  一、說課內(nèi)容:

  蘇教版九年級數(shù)學下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎(chǔ),是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學目標和要求:

  (1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

  (2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.

  (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.

  3、教學重點:對二次函數(shù)概念的理解。

  4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學法設(shè)計:

  1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學過程

  2、從學生活動出發(fā),通過以舊引新,順勢教學過程

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學過程

  四、教學過程:

  (一)復習提問

  1.什么叫函數(shù)?我們之前學過了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?

  【設(shè)計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較.

  (二)引入新課

  函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時,面積s (cm)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

  【設(shè)計意圖】通過具體事例,讓學生列出關(guān)系式,啟發(fā)學生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)+1 (2)

  (3)s=3-2t (4)y=(x+3)- x

  (5) s=10πr (6) y=2+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。

  (四)鞏固練習

  1.已知一個直角三角形的兩條直角邊長的和是10cm。

  (1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

  (2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

  2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個函數(shù)中,那個是x的二次函數(shù)?

  【設(shè)計意圖】簡單的實際問題,學生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯(lián)系起來。

  4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當 x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計意圖】此題著重復習二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

  2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。

  五、教學設(shè)計思考

  以實現(xiàn)教學目標為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個原則——以學生為主體的原則

  突出一個特色——充分鼓勵表揚的特色

  滲透一個意識——應(yīng)用數(shù)學的意識

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇5

  目標:

  1.使學生掌握用待定系數(shù)法由已知圖象上一個點的坐標求二次函數(shù)y=ax2的關(guān)系式。

  2. 使學生掌握用待定系數(shù)法由已知圖象上三個點的坐標求二次函數(shù)的關(guān)系式。

  3.讓學生體驗二次函數(shù)的函數(shù)關(guān)系式的應(yīng)用,提高學生用數(shù)學意識。

  重點難點:

  重點:已知二次函數(shù)圖象上一個點的坐標或三個點的坐標,分別求二次函數(shù)y=ax2、y=ax2+bx+c的關(guān)系式是的重點。

  難點:已知圖象上三個點坐標求二次函數(shù)的關(guān)系式是教學的難點。

  教學過程:

  一、創(chuàng)設(shè)問題情境

  如圖,某建筑的屋頂設(shè)計成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?

  分析:為了畫出符合要求的模板,通常要先建立適當?shù)闹苯亲鴺讼担賹懗龊瘮?shù)關(guān)系式,然后根據(jù)這個關(guān)系式進行計算,放樣畫圖。

  如圖所示,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立直角坐標系。這時,屋頂?shù)臋M截面所成拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式為: y=ax2 (a<0) (1)

  因為y軸垂直平分AB,并交AB于點C,所以CB=AB2 =2(cm),又CO=0.8m,所以點B的坐標為(2,-0.8)。

  因為點B在拋物線上,將它的坐標代人(1),得 -0.8=a×22 所以a=-0.2

  因此,所求函數(shù)關(guān)系式是y=-0.2x2。

  請同學們根據(jù)這個函數(shù)關(guān)系式,畫出模板的輪廓線。

  二、引申拓展

  問題1:能不能以A點為原點,AB所在直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系?

  讓學生了解建立直角坐標系的方法不是唯一的,以A點為原點,AB所在的直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系也是可行的。

  問題2,若以A點為原點,AB所在直線為x軸,過點A的x軸的垂直為y軸,建立直角坐標系,你能求出其函數(shù)關(guān)系式嗎?

  分析:按此方法建立直角坐標系,則A點坐標為(0,0),B點坐標為(4,0),OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,O點坐標為(2;0.8)。即把問題轉(zhuǎn)化為:已知拋物線過(0,0)、(4,0);(2,0.8)三點,求這個二次函數(shù)的關(guān)系式。

  二次函數(shù)的一般形式是y=ax2+bx+c,求這個二次函數(shù)的關(guān)系式,跟以前學過求一次函數(shù)的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點在拋物線上,所以它的坐標必須適合所求的函數(shù)關(guān)系式;可列出三個方程,解此方程組,求出三個待定系數(shù)。

  解:設(shè)所求的二次函數(shù)關(guān)系式為y=ax2+bx+c。

  因為OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,

  所以O(shè)點坐標為(2,0.8),A點坐標為(0,0),B點坐標為(4,0)。

  由已知,函數(shù)的圖象過(0,0),可得c=0,又由于其圖象過(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個方程組,得a=-15b=45 所以,所求的二次函數(shù)的關(guān)系式為y=-15x2+45x。

  問題3:根據(jù)這個函數(shù)關(guān)系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?

  問題4:比較兩種建立直角坐標系的方式,你認為哪種建立直角坐標系方式能使解決問題來得更簡便?為什么?

  (第一種建立直角坐標系能使解決問題來得更簡便,這是因為所設(shè)函數(shù)關(guān)系式待定系數(shù)少,所求出的函數(shù)關(guān)系式簡單,相應(yīng)地作圖象也容易)

  請同學們閱瀆P18例7。

  三、課堂練習: P18練習1.(1)、(3)2。

  四、綜合運用

  例1.如圖所示,求二次函數(shù)的關(guān)系式。

  分析:觀察圖象可知,A點坐標是(8,0),C點坐標為(0,4)。從圖中可知對稱軸是直線x=3,由于拋物線是關(guān)于對稱軸的軸對稱圖形,所以此拋物線在x軸上的另一交點B的坐標是(-2,0),問題轉(zhuǎn)化為已知三點求函數(shù)關(guān)系式。

  解:觀察圖象可知,A、C兩點的坐標分別是(8,0)、(0,4),對稱軸是直線x=3。因為對稱軸是直線x=3,所以B點坐標為(-2,0)。

  設(shè)所求二次函數(shù)為y=ax2+bx+c,由已知,這個圖象經(jīng)過點(0,4),可以得到c=4,又由于其圖象過(8,0)、(-2,0)兩點,可以得到64a+8b=-44a-2b=-4 解這個方程組,得a=-14b=32

  所以,所求二次函數(shù)的關(guān)系式是y=-14x2+32x+4

  練習: 一條拋物線y=ax2+bx+c經(jīng)過點(0,0)與(12,0),最高點的縱坐標是3,求這條拋物線的解析式。

  五、小結(jié):

  二次函數(shù)的關(guān)系式有幾種形式,函數(shù)的關(guān)系式y(tǒng)=ax2+bx+c就是其中一種常見的形式。二次函數(shù)關(guān)系式的確定,關(guān)鍵在于求出三個待定系數(shù)a、b、c,由于已知三點坐標必須適合所求的函數(shù)關(guān)系式,故可列出三個方程,求出三個待定系數(shù)。

  六、作業(yè)

  1.P19習題 26.2 4.(1)、(3)、5。

  2.選用課時作業(yè)優(yōu)化設(shè)計,

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇6

  課后查看了數(shù)學課程標準中對二次函數(shù)的要求:

  1、通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。

  2、會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。

  3、會根據(jù)公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導),并能解決簡單的實際問題。

  4、會利用二次函數(shù)的圖象求一元二次方程的近似解。

  發(fā)現(xiàn)并沒有提到用頂點式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的教學中也沒有要求用頂點式來求二次函數(shù)的解析式。但是我認為新課標所提出的要求應(yīng)該是對學生的最低要求,它并不反對教師結(jié)合學生的實際對教材的重新處理。并且從教學的反饋來看,加上了這3個練習學生能較好的理解本課的教學目標,同時也能對前面所學的二次函數(shù)頂點的知識加深印象。適應(yīng)學生的最近發(fā)展區(qū)。何樂而不為。

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇7

  〖大綱要求〗

  1. 理解二次函數(shù)的概念;

  2. 會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;

  3. 會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;

  4. 會用待定系數(shù)法求二次函數(shù)的解析式;

  5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會求二次函數(shù)的圖象與x軸的交點坐標和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學教案-二次函數(shù)。

  內(nèi)容

  (1)二次函數(shù)及其圖象

  如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。

  二次函數(shù)的圖象是拋物線,可用描點法畫出二次函數(shù)的圖象。

  (2)拋物線的頂點、對稱軸和開口方向

  拋物線y=ax2+bx+c(a≠0)的頂點是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點M離墻1米,離地面米,則水流下落點B離墻距離OB是( )

  (A)2米 (B)3米 (C)4米 (D)5米

  三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

  21.已知:直線y=x+k過點A(4,-3)。(1)求k的值;(2)判斷點B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。

  22.已知拋物線經(jīng)過A(0,3),B(4,6)兩點,對稱軸為x=,

  (1) 求這條拋物線的解析式;

  (2) 試證明這條拋物線與X軸的兩個交點中,必有一點C,使得對于x軸上任意一點D都有AC+BC≤AD+BD。

  23.已知:金屬棒的長1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。

  (1) 求這根金屬棒長度l與溫度t的函數(shù)關(guān)系式;

  (2) 當溫度為100℃時,求這根金屬棒的長度;

  (3) 當這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。

  24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個不同的實數(shù)根,設(shè)s=x12+x22

  (1) 求S關(guān)于m的解析式;并求m的取值范圍;

  (2) 當函數(shù)值s=7時,求x13+8x2的值;

  25.已知拋物線y=x2-(a+2)x+9頂點在坐標軸上,求a的值。

  26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

  (1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達式和X的取值范圍;

  (2) 當x為何值時,S的數(shù)值是x的4倍。

  27、國家對某種產(chǎn)品的稅收標準原定每銷售100元需繳稅8元(即稅率為8%),臺洲經(jīng)濟開發(fā)區(qū)某工廠計劃銷售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負擔,將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴大了生產(chǎn),實際銷售比原計劃增加2x%。

  (1) 寫出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;

  (2) 要使調(diào)整后稅款等于原計劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

  28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點為A,與x軸的交點為B,C(B點在C點左邊)

  (1) 寫出A,B,C三點的坐標;

  (2) 設(shè)m=a2-2a+4試問是否存在實數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;

  (3) 設(shè)m=a2-2a+4,當∠BAC最大時,求實數(shù)a的值。

  習題2:

  一.填空(20分)

  1.二次函數(shù)=2(x - )2 +1圖象的對稱軸是 。

  2.函數(shù)y= 的自變量的取值范圍是 。

  3.若一次函數(shù)y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。

  4.已知關(guān)于的二次函數(shù)圖象頂點(1,-1),且圖象過點(0,-3),則這個二次函數(shù)解析式為 。

  5.若y與x2成反比例,位于第四象限的一點P(a,b)在這個函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數(shù)的關(guān)系式 。

  6.已知點P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實數(shù)),則這個函數(shù)圖象在第 象限。

  7. x,y滿足等式x= ,把y寫成x的函數(shù) ,其中自變量x的取值范圍是 。

  8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點P(2a-3,b+2)

  在坐標系中位于第 象限

  9.二次函數(shù)y=(x-1)2+(x-3)2,當x= 時,達到最小值 。

  10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點,已知x1x2=x1+x2+49,要使拋物線經(jīng)過原點,應(yīng)將它向右平移 個單位。

  二.選擇題(30分)

  11.拋物線y=x2+6x+8與y軸交點坐標( )

  (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

  12.拋物線y=- (x+1)2+3的頂點坐標( )

  (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

  13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )

  14.函數(shù)y= 的自變量x的取值范圍是( )

  (A)x 2 (B)x- 2且x 1 (D)x 2且x –1

  15.把拋物線y=3x2先向上平移2個單位,再向右平移3個單位,所得拋物線的解析式是( )

  (A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2

  16.已知拋物線=x2+2mx+m -7與x軸的兩個交點在點(1,0)兩旁,則關(guān)于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )

  (A)有兩個正根 (B)有兩個負數(shù)根 (C)有一正根和一個負根 (D)無實根

  17.函數(shù)y=- x的圖象與圖象y=x+1的交點在( )

  (A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  18.如果以y軸為對稱軸的拋物線y=ax2+bx+c的圖象,如圖,

  則代數(shù)式b+c-a與0的關(guān)系( )

  (A)b+c-a=0 (B)b+c-a>0 (C)b+c-a100時,分別寫出y關(guān)于x的函數(shù)

  關(guān)系式;

  (1)求證;不論m取何值,拋物線與x軸必有兩個交點,并且有一個交點是A(2,0);

  (2)設(shè)拋物線與x軸的另一個交點為B,AB的長為d,求d與m之間的函數(shù)關(guān)系式;

  (3)設(shè)d=10,P(a,b)為拋物線上一點:

  ①當⊿ABP是直角三角形時,求b的值;

  ②當⊿ABP是銳角三角形,鈍角三角形時,分別寫出b的取值范圍(第2題不要求寫出過程)

  28、已知二次函數(shù)的圖象 與x軸的交點為A,B(點B在點A的右邊),與y軸的交點為C;

  (1)若⊿ABC為Rt⊿,求m的值;

  (1)在⊿ABC中,若AC=BC,求sin∠ACB的值;

  (3)設(shè)⊿ABC的面積為S,求當m為何值時,s有最小值.并求這個最小值。

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇8

  教學設(shè)計

  一 教學設(shè)計思路

  通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。

  二 教學目標

  1 知識與技能

  (1).經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。總結(jié)出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

  (2).會利用圖象法求一元二次方程的近似解。

  2 過程與方法

  經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

  三 情感態(tài)度價值觀

  通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結(jié)合思想.

  四 教學重點和難點

  重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。

  難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

  五 教學方法

  討論探索法

  六 教學過程設(shè)計

  (一)問題的提出與解決

  問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時,球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關(guān)系

  h=20t5t2。

  考慮以下問題

  (1)球的飛行高度能否達到15m?如能,需要多少飛行時間?

  (2)球的飛行高度能否達到20m?如能,需要多少飛行時間?

  (3)球的飛行高度能否達到20.5m?為什么?

  (4)球從飛出到落地要用多少時間?

  分析:由于球的飛行高度h與飛行時間t的關(guān)系是二次函數(shù)

  h=20t-5t2。

  所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。

  解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

  當球飛行1s和3s時,它的高度為15m。

  (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

  當球飛行2s時,它的高度為20m。

  (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

  因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。

  (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

  當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。

  由學生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?

  例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。

  分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。

  一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。

  (二)問題的討論

  二次函數(shù)(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0。

  的圖象如圖26.2-2所示。

  (1)以上二次函數(shù)的圖象與x軸有公共點嗎?如果有,有多少個交點,公共點的橫坐標是多少?

  (2)當x取公共點的橫坐標時,函數(shù)的值是多少?由此,你能得出相應(yīng)的一元二次方程的根嗎?

  先畫出以上二次函數(shù)的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。

  可以看出:

  (1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。

  (2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。

  (3)拋物線y=x2-x+1與x軸沒有公共點, 由此可知,方程x2-x+1=0沒有實數(shù)根。

  總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點的橫坐標就是一元二次方程 =0的根。

  (三)歸納

  一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,

  (1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。

  (2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

  由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。

  (四)例題

  例 利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。

  解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。

  所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。

  七 小結(jié)

  二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

  。

  八 板書設(shè)計

  用函數(shù)觀點看一元二次方程

  拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系

  例題

數(shù)學《二次函數(shù)》優(yōu)秀教案 篇9

  學習目標:

  1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

  2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進行研究。

  3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學生的運用能力

  學習重點:

  能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

  能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究。

  學習難點:

  能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

  學習過程:

  一、學前準備

  函數(shù)的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:

  x(千克) 0 0。5 1 1。5 2 2。5 3

  y(元) 0 1 2 3 4 5 6

  這是售貨員為了便于計價,常常制作這種表示售價與數(shù)量關(guān)系的表,即用表格表示函數(shù)。用表達式和圖象法來表示函數(shù)的情形我們更熟悉。這節(jié)課我們不僅要掌握三種表示方式,而且要體會三種方式之間的聯(lián)系與各自不同的特點,在什么情況下用哪一種方式更好?

  二、探究活動

  (一)合作探究:

  矩形的周長是20cm,設(shè)它一邊長為 ,面積為 cm2。 變化的規(guī)律是什么?你能分別用函數(shù)表達式、表格和圖象表示出來嗎?

  交流完成:

  (1)一邊長為x cm,則另一邊長為 cm,所以面積為: 用函數(shù)表達式表示: =________________________________。

  (2) 表格表示:

  1 2 3 4 5 6 7 8 9

  10—

  (3)畫出圖象

  討論:函數(shù)的圖象在第一象限,可是我們知道開口向下的拋物線可以到達第四象限和第三象限,思考原因

  (二)議一議

  (1)在上述問題中,自變量x的取值范圍是什么?

  (2)當x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。

  點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。

  (1)因為x是邊長,所以x應(yīng)取 數(shù),即x 0,又另一邊長(10—x)也應(yīng)大于 ,即10—x 0,所以x 10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是 。

  (2)當x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當x=— 時,函數(shù)y有最大值y最大= 。當x= 時,長方形的面積最大,最大面積是25cm2。

  可以通過觀察圖象得知。也可以代入頂點坐標公式中求得。。

  (三)做一做:學生獨立思考完成P62,P63的函數(shù)表達式,表格,圖象問題

  (1)用函數(shù)表達式表示:y=________。

  (2)用表格表示:

  (3)用圖象表示:

  三、學習體會

  本節(jié)課你有哪些收獲?你還有哪些疑問?

  四、自我測試

  1、把長1。6米的鐵絲圍成長方形ABCD,設(shè)寬為x(m),面積為y(m2)。則當最大時,所取的值是( )

  A 0。5 B 0。4 C 0。3 D 0。6

  2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。

  3、把一根長120cm的鐵絲分為兩部分,每一部分均彎曲成一個正方形,它們的面積和是多少?它們的面積和的最小值是多少?

  (選作題)邊長為12的正方形鐵片,中間剪去一個邊長為x(cm)的小正方形鐵片,剩下的四方框鐵片的面積y(cm2)與x(cm)之間的函數(shù)表達式為

數(shù)學《二次函數(shù)》優(yōu)秀教案(精選9篇) 相關(guān)內(nèi)容:
  • 九年級上冊《二次函數(shù)應(yīng)用》導學案

    《二次函數(shù)應(yīng)用》導學案學習目標1. 掌握實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題2. 將實際問題轉(zhuǎn)化為數(shù)學問題,并運用二次函數(shù)的知識解決實際問題。...

  • 《二次函數(shù)基礎(chǔ)訓練》導學案

    1. 拋物線y=-x2+4x-3的開口向______,對稱軸為__________,頂點p坐標為______________;與x 軸的交點是a 、b (a在b的左邊),與y軸的交點是c ;當 時,隨的增大而增大;△pab的面積= ;當滿足 時,y0.2.已知二次函數(shù)y=x2-5x+1,當...

  • 《二次函數(shù)圖象與系數(shù)關(guān)系復習課》教案分析

    聽了茹老師上的復習課《二次函數(shù)圖象與系數(shù)關(guān)系復習》。現(xiàn)在對茹老師進行一個點評,整節(jié)課聽下來總體感覺是茹老師這節(jié)課能根據(jù)教材的內(nèi)容、中考考點的要求和學生的實際,對課堂教學進行了精心設(shè)計,體現(xiàn)了教育教學改革的新理念,取得了良...

  • 第二十六章“二次函數(shù)”簡介

    課程教材研究所薛彬 學生已經(jīng)學習了一次函數(shù)與反比例函數(shù),對于函數(shù)已經(jīng)有所認識。從一次函數(shù)與反比例函數(shù)的學習來看,學習一種函數(shù)大致包括以下內(nèi)容:(1) 通過具體實例認識這種函數(shù);(2) 探索這種函數(shù)的圖象和性質(zhì);(3) 利用這種函...

  • 二次函數(shù)及其圖象和性質(zhì)(學案)

    學習內(nèi)容:1、二次函數(shù)的概念;2、二次函數(shù)的圖象;3、二次函數(shù)的性質(zhì)。學習要求:1、理解二次函數(shù)的概念,會用描點法畫出二次函數(shù)的圖象,理解二次函數(shù)與拋物線的有關(guān)概念2、通過二次函數(shù)的圖象,理解并掌握二次函數(shù)的性質(zhì),會判斷二次函...

  • 《二次函數(shù)應(yīng)用》的復習反思

    在期末復習期間,我們在區(qū)教研室和學校領(lǐng)導的指導下,通過“初備——交流——復備——再交流”,完成了《二次函數(shù)應(yīng)用》的復習。通過本次活動,使我受益匪淺。 一、集體智慧勝于個人智慧。備課期間大家各顯神通,獻計獻策。...

  • 《二次函數(shù)》學反思

    課后查看了數(shù)學課程標準中對二次函數(shù)的要求: 1、通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。 2、會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。...

  • 數(shù)學教案-二次函數(shù)y=ax2+bx+c 的圖象

    教學目標: 1、使學生進一步理解二次函數(shù)的基本性質(zhì); 2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學思想.培養(yǎng)學生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力. 3、使學生參與教學過程,通過主體的積極思維,體驗感悟數(shù)學.逐步建立數(shù)學的觀念,培養(yǎng)學生...

  • 數(shù)學教案-二次函數(shù)y=ax2的圖象

    教學設(shè)計示例1 課題:二次函數(shù) 的圖象 教學目標: 1、會用描點法畫出二次函數(shù) 的圖象; 2、根據(jù)圖象觀察、分析出二次函數(shù) 的性質(zhì); 3、進一步理解二次函數(shù)和拋物線的有關(guān)知識 4、滲透由特殊到一般的辯證唯物主義觀點; 5、滲透數(shù)形結(jié)合的...

  • 數(shù)學教案-二次函數(shù)教學設(shè)計

    二次函數(shù)的教學設(shè)計 教學內(nèi)容:人教版九年義務(wù)教育初中第三冊第108頁教學目標:1. 1. 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;2. 2. 通過變式教學,培養(yǎng)學生思維的敏捷性、廣闊性、深刻性;3. 3. 通過...

  • 數(shù)學教案-二次函數(shù)

    知識點〗二次函數(shù)、拋物線的頂點、對稱軸和開口方向〖大綱要求〗1. 理解二次函數(shù)的概念;2. 會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;3. 會平移二次函數(shù)y=ax2(a≠0)的圖象得...

  • 數(shù)學教案-二次函數(shù)y=ax2的圖象(一)

    課題 二次函數(shù)y=ax2的圖象(一)一、教學目的1.使學生初步理解二次函數(shù)的概念。2.使學生會用描點法畫二次函數(shù)y=ax2的圖象。3.使學生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。二、教學重點、難點重點:對二次函數(shù)概念的初步理解。...

  • 二次函數(shù)y=ax2+bx+c 的圖象

    教學目標: 1、使學生進一步理解二次函數(shù)的基本性質(zhì); 2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學思想.培養(yǎng)學生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力. 3、使學生參與教學過程,通過主體的積極思維,體驗感悟數(shù)學.逐步建立數(shù)學的觀念,培養(yǎng)學生...

  • 二次函數(shù)y=ax2+bx+c 的圖象

    第一課時 教學目標 1.使學生會用描點法畫出二次函數(shù) 與 的圖象; 2.使學生能結(jié)合圖象確定拋物線 與 的對稱軸與頂點坐標; 3.通過比較拋物線 與 同 的相互關(guān)系,培養(yǎng)學生觀察、分析、總結(jié)的能力; 4. 在本節(jié)的教學中,繼續(xù)向?qū)W生進行數(shù)形結(jié)...

  • 二次函數(shù)y=ax2的圖象

    教學設(shè)計示例1 課題:二次函數(shù) 的圖象 教學目標: 1、會用描點法畫出二次函數(shù) 的圖象; 2、根據(jù)圖象觀察、分析出二次函數(shù) 的性質(zhì); 3、進一步理解二次函數(shù)和拋物線的有關(guān)知識 4、滲透由特殊到一般的辯證唯物主義觀點; 5、滲透數(shù)形結(jié)合的...

  • 教案大全
主站蜘蛛池模板: 精品麻豆剧传媒av国产九九九 | 国产在线乱 | 亚洲一区二区免费看 | 久久久久se色偷偷亚洲精品av | 在线免费观看麻豆视频 | 在线免费观看av片 | 亚洲区一区二区 | 91小视频在线 | baoyu121永久免费网站 | 中国产xxxxa片在线观看 | 免费a在线观看播放 | av制服丝袜白丝国产网站 | 欧美国产综合在线 | 中文字幕亚洲精品 | 国产免费无遮挡吸乳视频 | 一本一道色欲综合网中文字幕 | 无码精品人妻一区二区三区九里奈 | 久久精品99久久无色码中文字幕 | 亚洲自拍一区在线观看在线观看 | 国产欧美一 | 九九热超碰| 91av在线看 | 中文字幕精品一区 | 国产精品视频★ | 日韩欧美一区二区三区在线观看 | 二区三区av| 日本暖暖视频 | 在线看片黄色 | 日韩精品综合一本久道在线视频 | 国产91嫩草| 精品久久久一 | 国产成年人在线观看 | 韩国三级丰满40少妇高潮 | 97视频成人 | 一区二区三区日韩视频在线观看 | 日本免费网站看大片视频 | 火辣福利在线观看 | 玩弄人妻少妇500系列网址 | 欧美日韩亚洲三区 | 中国精品视频久久久久久 | 久久精品国产亚洲欧美成人 |