二次函數y=ax2+bx+c 的圖象
教學目標:
1、使學生進一步理解二次函數的基本性質;
2、滲透解析幾何,數形結合,函數等數學思想.培養學生發現問題解決問題,及邏輯思維的能力.
3、使學生參與教學過程,通過主體的積極思維,體驗感悟數學.逐步建立數學的觀念,培養學生獨立地獲取知識的能力.
教學重點:初步理解數形結合的數學思想
教學難點:初步理解數形結合的數學思想
教學用具:微機
教學方法:探究式、小組合作學習
教學過程:
例1、已知:拋物線y=x2-(m2-1)x-2m2-2
⑴求證:無論m取什么實數,拋物線與x軸一定有兩個交點
⑵m取什么實數時,兩交點間距離最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴拋物線與x軸有兩個交點
問題:為什么說當△>0時,拋物線y =ax2+bx+c與x軸有兩個交點.(能否從數和形兩方面說明)
設計意圖:在課堂上創設讓學生說數學的機會,學會合作學習,以達到①經驗共享,在思維的碰撞中共同提高.②學會合作,消除個人中心.③發現自我,提高參與度.④弘揚個體的主體性,形成健康,豐富的個性.
數:點在曲線上,點的坐標滿足曲線的方程.反之,曲線方程的每一個實數解對應的點都在曲線上.拋物線與x軸的交點,既在拋物線上,又在x軸上.所以交點的坐標既滿足拋物線的解析式,也滿足x軸的解析式.設交點坐標為(x,y)
∴
這樣交點問題就轉化成求這個二元二次方程組的解.代入y =0,消去y,轉化成ax2+bx+c=0這個一元二次方程求根問題.根據以前學過的知識,當△>0時, ax2+bx+c=0有兩個不相等的實根.∴y =ax2+bx+c
y =0
有兩個不等的實數解
∴拋物線與x軸交于兩個不同的點.
形:頂點在x軸上方,且開口向下.或者頂點在x軸下方,且開口向上.
設計意圖:滲透解析幾何的基本思想
使學生掌握轉化思想使學生在解題過程中,感知數學的直觀性和形式化這二重性.掌握數形結合,分類討論的思想方法.逐步學會數學的思維.
轉化成代數語言為:
小結:第一種方法,根據解析幾何的基本思想.將求曲線的交點問題,轉化成求方程組的解的問題.
第二種方法,借助于圖象思考問題,比較直觀.發現規律后,再用數學的符號語言將其形式化.這既體現了數學中的數形結合的思想方法,也是探索解數學問題的一般方法.
思考:試從數、形兩方面說明拋物線與x軸的交點個數與判別 式的符號的關系.
設計意圖:數學學習是一個再創造的過程,不能等同于數學知識的匯集,而要讓學生經歷數學知識的創造過程.使主體積極地參與到學習中去.以數學知識為載體,揭示出蘊涵于其中的數學思想方法,逐步形成數學觀念.
⑵m取什么實數時,兩交點間距離最短?是多少?
解:設二次函數與x軸的兩交點為(x1,0),(x2,0)
解法㈠ 由⑴可知m為任何實數時, 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴當m =0時,兩交點最小距離為3
這里兩交點間距離是m的函數
設計意圖:培養學生的問題意識.在解題過程中,發現問題,并能運用已有的數學知識,將其一般化,形式化,解決問題,體會數學問題解決的一般方法.培養學生獨立地獲取數學知識的能力.滲透函數思想
第 1 2 頁