精選因式分解教案(通用12篇)
精選因式分解教案 篇1
引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解。什么叫因式分解?
知識詳解
知識點1 因式分解的定義
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式。
【說明】 (1)因式分解與整式乘法是相反方向的變形。
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗。
怎樣把一個多項式分解因式?
知識點2 提公因式法
多項式ma+mb+mc中的各項都有一個公共的。因式m,我們把因式m叫做這個多項式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn。
典例剖析 師生互動
例1 用提公因式法將下列各式因式分解。
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃危?再把b-a化成-(a-b),然后再提取公因式。
小結(jié) 運用提公因式法分解因式時,要注意下列問題:
(1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解。
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù))。
(3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式。
學(xué)生做一做 把下列各式分解因式。
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識點3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b)。即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積。例如:4x2-9=(2x)2-32=(2x+3)(2x-3)。
(2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方。例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2。
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2。
例2 把下列各式分解因式。
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9。
分析:本題旨在考查用完全平方公式分解因式。
學(xué)生做一做 把下列各式分解因式。
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1)。
綜合運用
例3 分解因式。
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運用提公因式法和公式法分解因式。
小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式。 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止。
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= 。
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差)。
學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= 。
課堂小結(jié)
用提公因式法和公式法分解因式,會運用因式分解解決計算問題。
各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。
自我評價 知識鞏固
1。若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A。3 B。-5 C。7。 D。7或-1
2。若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A。2 B。4 C。6 D。8
3。分解因式:4x2-9y2= 。
4。已知x-y=1,xy=2,求x3y-2x2y2+xy3的值。
5。把多項式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10。
附:板書設(shè)計
因式分解
因式分解的定義 探究交流 探索創(chuàng)新
提公因式法 典例剖析 課堂小結(jié)
公式法 綜合運用 自我評價
精選因式分解教案 篇2
第6.4因式分解的簡單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機會體驗主動學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗。
教學(xué)目標:
1、在整除的情況下,會應(yīng)用因式分解,進行多項式相除。
2、會應(yīng)用因式分解解簡單的一元二次方程。
3、體驗數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。
教學(xué)重點:
學(xué)會應(yīng)用因式分解進行多項式除法和解簡單一元二次方程。
教學(xué)難點:
應(yīng)用因式分解解簡單的一元二次方程。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
教學(xué)過程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
(先讓學(xué)生思考上面所提出的問題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項式除以單項式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(讓學(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計算
(4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
(全體學(xué)生動手動腦,然后叫學(xué)生回答,及時表揚,講練結(jié)合, [運用多項式的'因式分解和換元的思想,可以把兩個多項式相除,轉(zhuǎn)化為單項式的除法]
練習(xí)計算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問題
若A?B=0,下面兩個結(jié)論對嗎?
(1)A和B同時都為零,即A=0且B=0
(2)A和B至少有一個為零即A=0或B=0
[合作學(xué)習(xí),四個小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學(xué)生先獨立完成,再組織交流,最后教師針對性地講解,讓學(xué)生總結(jié)步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
(1)應(yīng)用因式分解和換元思想可以把某些多項式除法轉(zhuǎn)化為單項式除法。
(2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
精選因式分解教案 篇3
教學(xué)目標:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實際問題。
2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。
4、通過探究平方差公式特點,學(xué)生根據(jù)公式自己取值設(shè)計問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗,培養(yǎng)合作交流意識。
教學(xué)重點:
應(yīng)用平方差公式分解因式.
教學(xué)難點:
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過程:
一、復(fù)習(xí)準備導(dǎo)入新課
1、什么是因式分解?判斷下列變形過程,哪個是因式分解?
①(x+2)(x-2)= ②
③
2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進行計算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究學(xué)習(xí)新知
(一)猜一猜:你能將下面的多項式分解因式嗎?
(1)= (2)= (3)=
(二)想一想,議一議:觀察下面的公式:
=(a+b)(a—b)(
這個公式左邊的多項式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個公式你能用語言來描述嗎?_______________________________________
(三)練一練:
1、下列多項式能否用平方差公式來分解因式?為什么?
① ② ③ ④
2、你能把下列的數(shù)或式寫成冪的形式嗎?
(1)( )(2)( )(3)( )(4)=( )(5)36a4=2 (6)0.49b2=2 (7)81n6=2 (8)100p4q2=( )2
(四)做一做:
例3分解因式:
(1)4x2-9 (2)(x+p)2-(x+q)2
(五)試一試:
例4下面的式子你能用什么方法來分解因式呢?請你試一試。
(1)x4-y4 (2)a3b-ab
(六)想一想:
某學(xué)校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動使用?
精選因式分解教案 篇4
教學(xué)目標:
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)?方法進行因式分解4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學(xué)重點:靈活運用因式分解解決問題
教學(xué)難點:靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點:
(1)。分解的對象必須是多項式。
(2)。分解的結(jié)果一定是幾個整式的乘積的形式。
(3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學(xué)生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對因式分解又有哪些新的認識?
精選因式分解教案 篇5
(一)學(xué)習(xí)目標
1、會用因式分解進行簡單的多項式除法
2、會用因式分解解簡單的方程
(二)學(xué)習(xí)重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。
難點:應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點。
(三)教學(xué)過程設(shè)計
看一看
1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:
①________________②__________
2.應(yīng)用因式分解解簡單的一元二次方程.
依據(jù)__________,一般步驟:__________
做一做
1.計算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習(xí)題
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________
(四)預(yù)習(xí)檢測
1.計算:
2.先請同學(xué)們思考、討論以下問題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列結(jié)論中哪個正確
①A、B同時都為零,即A=0,
且B=0;
②A、B中至少有一個為零,即A=0,或B=0;
(五)應(yīng)用探究
1.解下列方程
2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清練習(xí)
1.計算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
精選因式分解教案 篇6
【教學(xué)目標】
1、了解因式分解的概念和意義;
2、認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)過程】
㈠、情境導(dǎo)入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
㈡、探究新知
1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)
板書課題:§6.1因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。
㈣、鞏固新知
1、下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。
㈤、應(yīng)用解釋
例檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習(xí)計算下列各題,并說明你的算法:(請學(xué)生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=
2.機動題:(填空)x2-8x+m=(x-4),且m=
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業(yè)
作業(yè)本(1),一課一練
(九)教學(xué)反思:
精選因式分解教案 篇7
本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運用公式進行多項式的因式分解。第一課時的內(nèi)容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨立去做例題、練習(xí)中的題目,并對結(jié)果通過展示、解釋、相互點評,達到能較好的運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學(xué)設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。
教學(xué)目標
知識與技能:
會用平方差公式對多項式進行因式分解;
會用完全平方公式對多項式進行因式分解;
能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;
提高全面地觀察問題、分析問題和逆向思維的能力。
過程與方法:
經(jīng)歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。
情感態(tài)度價值觀:
通過學(xué)習(xí)進一步理解數(shù)學(xué)知識間有著密切的聯(lián)系。
教學(xué)重點和難點
重點:
①運用平方差公式分解因式;
②運用完全平方式分解因式。
難點:
①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;
②靈活運用完全平方公式分解因式
關(guān)鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。
精選因式分解教案 篇8
學(xué)習(xí)目標:經(jīng)歷探索同底數(shù)冪的乘法運算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進行計算。通過由特殊到一般的猜想與說理、驗證,發(fā)展推理能力和有條理的表達能力.
學(xué)習(xí)重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.
學(xué)習(xí)過程:
一、創(chuàng)設(shè)情境引入新課
復(fù)習(xí)乘方an的意義:an表示個相乘,即an=.
乘方的結(jié)果叫a叫做,n是
問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?
列式為,你能利用乘方的意義進行計算嗎?
二、探究新知:
探一探:
1根據(jù)乘方的意義填空
(1)23×24=(2×2×2)×(2×2×2×2)=2;
(2)55×54=_________=5;
(3)(-3)3×(-3)2=_________________=(-3);
(4)a6a7=________________=a.
(5)5m5n
猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?
說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?
同理可得:amanap=(m、n、p都是正整數(shù))
三、范例學(xué)習(xí):
【例1】計算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.計算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、學(xué)以致用:
1.計算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判斷題:判斷下列計算是否正確?并說明理由
⑴a2a3=a6;⑵a2a3=a5;⑶a2+a3=a5;
⑷aa7=a0+7=a7;⑸a5a5=2a10;⑹25×32=67。
3.計算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答題:
(1)已知xm+nxm-n=x9,求m的值.
(2)據(jù)不完全統(tǒng)計,每個人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個水分子,那么,每個人每年要用去多少個水分子?
精選因式分解教案 篇9
學(xué)習(xí)目標
1、學(xué)會用平方差公式進行因式法分解
2、學(xué)會因式分解的而基本步驟.
學(xué)習(xí)重難點重點:
用平方差公式進行因式法分解.
難點:
因式分解化簡的過程
自學(xué)過程設(shè)計教學(xué)過程設(shè)計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結(jié)果是
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
預(yù)習(xí)展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
①x4-81y4
②2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。
精選因式分解教案 篇10
教學(xué)目標
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價值觀
在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值.
重、難點與關(guān)鍵
1.重點:了解因式分解的意義,感受其作用.
2.難點:整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請同學(xué)們探究下面的2個問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕?
問題2:當(dāng)a=102,b=98時,求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
(1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括號里,填上適當(dāng)?shù)捻棧沟仁匠闪?
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時空】計算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運算有何區(qū)別?
六、布置作業(yè),專題突破
選用補充作業(yè).
板書設(shè)計
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標
1.知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
2.過程與方法
使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:掌握用提公因式法把多項式分解因式.
2.難點:正確地確定多項式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的`公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書設(shè)計
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標
1.知識與技能
會應(yīng)用平方差公式進行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:利用平方差公式分解因式.
2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進自己的思維.
教學(xué)過程
一、觀察探討,體驗新知
【問題牽引】
請同學(xué)們計算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學(xué)生從平方差公式的角度進行因式分解,請5位學(xué)生上講臺板演.
【學(xué)生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時空】
1.求證:當(dāng)n是正整數(shù)時,n3-n的值一定是6的倍數(shù).
2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通常考慮應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書設(shè)計
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.
2.難點:靈活地應(yīng)用公式法進行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
精選因式分解教案 篇11
知識點:
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的.分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
因式分解知識點
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項式
其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用
寫出結(jié)果。
(3)十字相乘法
對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
(4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根X1,X2,那么
2、教學(xué)實例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
精選因式分解教案 篇12
第十五章 整式的乘除與因式分解
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).
15.1.2 整式的加減
(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的.多項式?
2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
《課堂感悟與探究》