中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 七年級數學教案 > 因式分解(精選12篇)

因式分解

發布時間:2023-07-15

因式分解(精選12篇)

因式分解 篇1

  課    題9.5乘法公式的再認識—因式分解

  課時分配本課(章節)需   3   課時本 節 課 為 第  3    課時為 本 學期總第      課時因式分解(三)-- 提公因式法

  教學目標1、            理解因式分解的意義及其與整式乘法的區別和聯系2、            了解公因式的概念,掌握提公因式的方法3、            培養學生的觀察、分析、判斷及自學能力

  重    點掌握公因式的概念,會使用提公因式法進行因式分解。

  難    點1、正確找出公因式2、正確用提公因式法把多項式進行因式分解

  教學方法

  講練結合、探索交流

  課型

  新授課

  教具投影儀

  教    師    活    動

  學 生 活 動情景設置:學生閱讀“讀一讀”后,完成練習下列由左邊到右邊的變形,哪些是整式乘法,哪些是因式分解,因式分解用的是哪個公式?⑴ (x+2)(x-2)=x2 - 4;⑵  x2 - 4=(x+2)(x-2);⑶  x2 – 4 + 3x =(x+2)(x-2)+ 3x;⑷  x2 + 4 - 4x =(x-2)2⑸  am +bm +cm = m(a +b +c)新課講解:我們來觀察分析am +bm +cm = m(a +b +c),這個式子由左邊到右邊的變形是多項式的因式分解,這里m是多項式am +bm +cm的各項am 、bm 、cm都含有的因式,稱為多項式各項的公因式。確定多項式的公因式的方法, 對數字系數取各項系數的最大公約數, 各項都含有的字母取最低次冪的積作為多項式的公因式, 公因式可以是單項式 , 也可以是多項式, 如:ax+bx 中的公因式是x. 多項式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多項式的第一項系數是負的, 一般要先提出 “一” 號, 使括號內的首項系數變為正, 在提出 “一” 號時, 注意括號里的各項都要變號.關鍵是確定多項式各項的公因式, 然后, 將多項式各項寫成公因式與其相應的因式的積, 最后再提公因式, 把公因式寫在括號外面, 然后再確定括號里的因式, 這個因式 ( 括號里的 ) 的項數與原多項式的項數相同, 如果項數不一致就漏項了.完成“議一議”如果多項式的各項含有公因式,那么就可以把這個公因式提出來,把多項式化成公因式與另一個多項式的積的形式,這種分解因式的方法叫做提公因式法。例題5:把下列各式分解因式:⑴ 6a3b – 9a2b2c﹢ ⑵ -2m3 + 8m2 - 12m思路點撥:通過例5,教會學生如何找公因式,講清要決定系數與字母,具體方法加以強調。在提出 “一” 號后, 括到括號里的各項都要變號.解:⑴ 6a3b – 9a2b2c﹢= 3a2b·2a - 3a2b·3bc=  3a2b(2a - 3bc )     完成“想一想”,要放手讓學生去做例題6:把下列各式分解因式: ⑴ - 3x2 + 18x - 27;  ⑵ 18a2 - 50;⑶ 2x2 y - 8xy + 8y。練習:第91頁第1、2、3、4、5題小結:提公因式法分解因式的關鍵是確定公因式,當公因式是隱含的時候,多項式要經過適當的變形;變形的過程要注意符號的相應改變.我們已經學習了提公因式法和運用公式法,要注意先看能否用提公因式法,分解因式要進行到每個多項式因式都不能再分解為止。教學素材:a組題:1、 下列多項式因式分解正確的是 (   )     (a)     (b)     (c)     (d)     2、(1) 的公因式是               (2)       (3)     3、 把下列各式分解因式.     (1)     (2)     (3)     (4) 4、把下列各式分解因式:(1) 6p(p+q)-4p(p+q);(2) (m+n)(p+q)-(m+n)(p-q);(3) (2a+b)(2a-3b)-3a(2a+b)(4)  x(x+y)(x-y)-x(x+y)2;5、把下列各式分解因式:(1)  (a+b)(a-b)-(b+a);(2)  a(x-a)+b(a-x)-c(x-a);(3)  10a(x-y)2 - 5b(y-x);(4)  3(x-1)3y-(1-x)3z b組題:1、把下列各式分解因式:(1) 6(p+q)2-2(p+q)  (2) 2(x-y)2-x(x-y)⑶ 2x(x+y)2-(x+y)32、先因式分解,再求值.  (1) x(a-x)(a-y)-y(x-a)(y-a),  其中a=3,x=2,y=4;  (2) -ab(a-b)2+a(b-a)2-ac(a-b)2,      其中a=3,b=2,c=1.讓學生自己閱讀“讀一讀”,體會因式分解的意義及其與整式乘法的區別和聯系完成“議一議”由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.學生回答:⑵ -2m3 + 8m2 - 12m= -(2m·m2 -2m· 4m +2m·6)= -2m(m2 - 4m +6)完成“想一想”由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.讓學生自己先做,同桌互相糾錯,

  作業第92頁第2⑶⑷⑸、3題

  板      書      設      計復習                          例5                       板演……                          ……                       …………                          ……                       …………                          例6                       …………                          ……                       …………                          ……                       ……

  教      學      后      記

因式分解 篇2

  【教學目標】

  1、了解因式分解的概念和意義;

  2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

  【教學重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。

  【教學過程】

  ㈠、情境導入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

  ㈡、探究新知

  1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式

  ㈢、前進一步

  1、讓學生繼續觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?

  2、因式分解與整式乘法的關系:

  因式分解

  結合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

  結論:因式分解與整式乘法的相互關系——相反變形。

  ㈣、鞏固新知

  1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。

  ㈤、應用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習 計算下列各題,并說明你的算法:(請學生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

  ㈦、課堂回顧

  今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

  ㈧、布置作業

  作業本(1) ,一課一練

因式分解 篇3

  教學目標

  1、知識與技能

  會應用平方差公式進行因式分解,發展學生推理能力。

  2、過程與方法

  經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性。

  3、情感、態度與價值觀

  培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值。

  重、難點與關鍵

  1、重點:利用平方差公式分解因式。

  2、難點:領會因式分解的解題步驟和分解因式的徹底性。

  3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來。

  教學方法

  采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。

  教學過程

  一、觀察探討,體驗新知

  【問題牽引】

  請同學們計算下列各式。

  (1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

  【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

  (1)(a+5)(a—5)=a2—52=a2—25;

  (2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

  【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律。

  1、分解因式:a2—25;2、分解因式16m2—9n。

  【學生活動】從逆向思維入手,很快得到下面答案:

  (1)a2—25=a2—52=(a+5)(a—5)。

  (2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

  【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。

  平方差公式:a2—b2=(a+b)(a—b)。

  評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式)。

  二、范例學習,應用所學

  【例1】把下列各式分解因式:(投影顯示或板書)

  (1)x2—9y2;(2)16x4—y4;

  (3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

  (5)m2(16x—y)+n2(y—16x)。

  【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

  【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。

  【學生活動】分四人小組,合作探究。

  解:(1)x2—9y2=(x+3y)(x—3y);

  (2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);

  (3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);

  (4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);

  (5)m2(16x—y)+n2(y—16x)

  =(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

因式分解 篇4

  第1課時

  1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

  2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.

  自主探索,合作交流.

  1.通過與因數分解的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想.

  2.通過對因式分解的教學,培養學生“換元”的意識.

  【重點】 因式分解的概念及提公因式法的應用.

  【難點】 正確找出多項式中各項的公因式.

  【教師準備】 多媒體.

  【學生準備】 復習有關乘法分配律的知識.

  導入一:

  【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

  解法1:這塊場地的面積=×+×+×=++==2.

  解法2:這塊場地的面積=×+×+×=×=×4=2.

  從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.

  [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

  導入二:

  【問題】 計算×15-×9+×2采用什么方法?依據是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.

  [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

  一、提公因式法分解因式的概念

  思路一

  [過渡語] 上一節我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的'問題.

  如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).

  大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯系?等式右邊的項有什么特點?

  分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.

  由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.

  由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.

  總結:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.

  思路二

  [過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.

  多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?

  結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.

  多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?

  結論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.

  二、例題講解

  [過渡語] 剛剛我們學習了因式分解的一種方法,現在我們嘗試下利用這種方法進行因式分解吧.

  (教材例1)把下列各式因式分解:

  (1)3x+x3;

  (2)7x3-21x2;

  (3)8a3b2-12ab3c+ab;

  (4)-24x3+12x2-28x.

  〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現象.

  解:(1)3x+x3=x3+xx2=x(3+x2).

  (2)7x3-21x2=7x2x-7x23=7x2(x-3).

  (3)8a3b2-12ab3c+ab

  =ab8a2b-ab12b2c+ab1

  =ab(8a2b-12b2c+1).

  (4)-24x3+12x2-28x

  =-(24x3-12x2+28x)

  =-(4x6x2-4x3x+4x7)

  =-4x(6x2-3x+7).

  【學生活動】 通過剛才的練習,大家互相交流,總結出提取公因式的一般步驟和容易出現的問題.

  總結:提取公因式的步驟:(1)找公因式;(2)提公因式.

  容易出現的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.

  教師提醒:

  (1)各項都含有的字母的最低次冪的積是公因式的字母部分;

  (2)因式分解后括號內的多項式的項數與原多項式的項數相同;

  (3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;

  (4)將分解因式后的式子再進行整式的乘法運算,其積應與原式相等.

  [設計意圖] 經歷用提公因式法進行因式分解的過程,在教師的啟發與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現的類似問題,為提取公因式積累經驗.

  1.提公因式法分解因式的一般形式,如:

  a+b+c=(a+b+c).

  這里的字母a,b,c,可以是一個系數不為1的、多字母的、冪指數大于1的單項式.

  2.提公因式法分解因式的關鍵在于發現多項式的公因式.

  3.找公因式的一般步驟:

  (1)若各項系數是整系數,則取系數的最大公約數;

  (2)取各項中相同的字母,字母的指數取最低的;

  (3)所有這些因式的乘積即為公因式.

  1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )

  A.-6ab2cB.-ab2

  C.-6ab2D.-6a3b2c

  解析:根據確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.

  2.下列用提公因式法分解因式正確的是( )

  A.12abc-9a2b2=3abc(4-3ab)

  B.3x2-3x+6=3(x2-x+2)

  C.-a2+ab-ac=-a(a-b+c)

  D.x2+5x-=(x2+5x)

  解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.

  3.下列多項式中應提取的公因式為5a2b的是( )

  A.15a2b-20a2b2

  B.30a2b3-15ab4-10a3b2

  C.10a2b-20a2b3+50a4b

  D.5a2b4-10a3b3+15a4b2

  解析:B.應提取公因式5ab2,錯誤;C.應提取公因式10a2b,錯誤;D.應提取公因式5a2b2,錯誤.故選A.

  4.填空.

  (1)5a3+4a2b-12abc=a( );

  (2)多項式32p2q3-8pq4的公因式是 ;

  (3)3a2-6ab+a= (3a-6b+1);

  (4)因式分解:+n= ;

  (5)-15a2+5a= (3a-1);

  (6)計算:21×3.14-31×3.14= .

  答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

  5.用提公因式法分解因式.

  (1)8ab2-16a3b3;

  (2)-15x-5x2;

  (3)a3b3+a2b2-ab;

  (4)-3a3-6a2+12a.

  解:(1)8ab2(1-2a2b).

  (2)-5x(3+x).

  (3)ab(a2b2+ab-1).

  (4)-3a(a2+2a-4).

  第1課時

  一、教材作業

  【必做題】

  教材第96頁隨堂練習.

  【選做題】

  教材第96頁習題4.2.

  二、課后作業

  【基礎鞏固】

  1.把多項式4a2b+10ab2分解因式時,應提取的公因式是 .

  2.(20xx淮安中考)因式分解:x2-3x= .

  3.分解因式:12x3-18x22+24x3=6x .

  【能力提升】

  4.把下列各式因式分解.

  (1)3x2-6x;

  (2)5x23-25x32;

  (3)-43+162-26;

  (4)15x32+5x2-20x23.

  【拓展探究】

  5.分解因式:an+an+2+a2n.

  6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規律?請你將猜想到的規律用含有字母n(n為自然數)的式子表示出來.

  【答案與解析】

  1.2ab

  2.x(x-3)

  3.(2x2-3x+42)

  4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

  5.解:原式=an1+ana2+anan=an(1+a2+an).

  6.解:由題中給出的幾個式子可得出規律:n2+n=n(n+1).

  本節運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.

  在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.

  由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應該注重因式分解的概念和方法的教學.

  隨堂練習(教材第96頁)

  解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

  習題4.2(教材第96頁)

  1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

  2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

  3.解:(1)不正確,因為提取的公因式不對,應為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結果不是乘積的形式,應為(a-2)(a+1).

  提公因式法是本章的第2小節,占兩個課時,這是第一課時,它主要讓學生經歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關系.

  已知方程組求7(x-3)2-2(3-x)3的值.

  〔解析〕 將代數式分解因式,產生x-3與2x+兩個因式,再根據方程組整體代入,使計算簡便.

  解:7(x-3)2-2(3-x)3

  =(x-3)2[7+2(x-3)]

  =(x-3)2(7+2x-6)

  =(x-3)2(2x+).

  由方程組可得原式=12×6=6.

因式分解 篇5

  一、教學目標

  1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系;

  2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式;

  3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣,提高他們研究問題的能力;

  4.通過二次三項式因式分解方法的推導,進一步向學生滲透認識問題和解決問題的一般規律,即由一般到特殊,再由特殊到一般;

  5.通過利用一元二次方程根的知識來分解因式,滲透知識間是普遍聯系的數學美。

  二、重點·難點·疑點及解決辦法

  1.教學重點:用公式法將二次三項式因式分解。

  2.教學難點:一元二次方程的根與二次三項式因式分解的關系。

  3.教學疑點:一個二次三項式在實數范圍內因式分解的條件。

  4.解決辦法:二次三項式能分解因式

  二次三項式不能分解

  二次三項式分解成完全平方式

  三、教學步驟

  (一)教學過程

  1.復習提問

  (1)寫出關于x的二次三項式?

  (2)將下列二次三項式在實數范圍因式分解。

  ①;②;③。

  由③感覺比較困難,引出本節課所要解決的問題。

  2.新知講解

  (1)引入:觀察上式①,②,③方程的兩個根與方程左邊的二次三項式的因式分解之關系。

  ①;

  解:原式變形為。

  ∴  ,

  ②;

  解原方程可變為

  觀察以上各例,可以看出1,2是方程的兩個根,而,……所以我們可以利用一元二次方程的兩個根來分解相應左邊的二次三項式。

  (2)推導出公式

  設方程的兩個根為,那么,

  ∴ 

  這就是說,在分解二次三項式的因式時,可先用公式求出方程的兩個根,然后寫成

  教師引導學生從具體的數字系數的例子,觀察、探索結論,再從一般的字母系數的例子得出一般性的推導,由此可知認識事物的一般規律是由特殊到一般,再由一般到特殊。

  第 1 2 頁  

因式分解 篇6

  一、教學目標

  【知識與技能】

  了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過程與方法】

  通過對平方差特點的辨析,培養觀察、分析能力,訓練對平方差公式的應用能力。

  【情感態度價值觀】

  在逆用乘法公式的過程中,培養逆向思維能力,在分解因式時了解換元的思想方法。

  二、教學重難點

  【教學重點】

  運用平方差公式分解因式。

  【教學難點】

  靈活運用公式法或已經學過的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學過程

  (一)引入新課

  我們學習了因式分解的定義,還學習了提公因式法分解因式。如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關系,能否利用這種關系找到新的因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點?你可以得出什么結論?

  (二)探索新知

  學生獨立思考或者與同桌討論。

  引導學生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數或式的平方的形式。

  提問1:能否用語言以及數學公式將其特征表述出來?

因式分解 篇7

  學習目標

  1、學會用平方差公式進行因式法分解

  2、學會因式分解的而基本步驟.

  學習重難點重點

  用平方差公式進行因式法分解.

  難點

  因式分解化簡的過程

  自學過程設計教學過程設計

  看一看

  平方差公式:

  平方差公式的逆運用:

  做一做:

  1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結果為-(x-2y)(x+2y)的多項式是

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項式-1+0.04a2分解因式的結果是

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡便方法計算:3492-2512.

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________

  預習展示一:

  1、下列多項式能否用平方差公式分解因式?

  說說你的理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應用探究:

  1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

  ①x4-81y4

  ②2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

  3、在日常生活中如上網等都需要密碼.有一種因式分解法產生的密碼方便記憶又不易破譯.

  例如用多項式x4-y4因式分解的結果來設置密碼,當取x=9,y=9時,可得一個六位數的密碼“018162”.你想知道這是怎么來的嗎?

  小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產生的密碼是什么?(寫出一個即可)

  拓展提高:

  若n為整數,則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.

  教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。

因式分解 篇8

  教學目標

  教學知識點

  使學生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關系。

  潛力訓練要求。

  透過觀察,發現分解因式與整式乘法的關系,培養學生觀察潛力和語言概括潛力。

  情感與價值觀要求。

  透過觀察,推導分解因式與整式乘法的關系,讓學生了解事物間的因果聯系。

  教學重點

  1、理解因式分解的好處。

  2、識別分解因式與整式乘法的關系。

  教學難點透過觀察,歸納分解因式與整式乘法的關系。

  教學方法觀察討論法

  教學過程

  Ⅰ、創設問題情境,引入新課

  導入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、講授新課

  1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

  993-99=99×98×100

  2、議一議

  你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。

  3、做一做

  (1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

  ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根據上面的算式填空:

  ①3x2-3x=;②m2-16=;③ma+mb+mc=;

  ④y2-6y+9=2。⑤a3-a=。

  定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?

  下面我們一齊來總結一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法與分解因式的聯系和區別

  ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

  6。例題下列各式從左到右的變形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

  (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

  Ⅲ、課堂練習

  P40隨堂練習

  Ⅳ、課時小結

  本節課學習了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學習了整式乘法與分解因式的關系是相反方向的變形。

因式分解 篇9

  這節課學習的主要內容是運用平方差公式進行因式分解,學習時如果直接就給同學們講把前面在整式的乘法中學習到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復的運用、反復的操練的話,學生學起來就會覺得沒有味道,對數學有一種厭煩感,所以我就想到了運用逆向思維的方法來學習這節課的內容。

  在新課引入的過程中,我首先讓學生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學生利用平方差公式做三個整式乘法的運算。然后,我巧妙的將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學生嘗試一下。只見我的題目一出來,學生就爭先恐后地回答出來了。待學生回答完之后,我馬上追問“為什么”時,學生輕而易舉地講出是將原來的平方差公式反過來運用,馬上使學生形成了一種逆向的思維方式。之后,我就順利地和同學們一起分析了因式分解中的平方差公式——兩數的平方差等于這兩個數的和與這兩個數的差的積,討論了“怎樣的多項式能用平方差公式因式分解?”可以說,對新問題的引入,我是采取了由淺入深的方法,使學生對新知識不產生任何的畏懼感。接下來,通過例題的講解、練習的鞏固讓學生逐步掌握了運用平方差公式進行因式分解。

因式分解 篇10

  教學目標:

  1.知識與技能:掌握運用提公因式法、公式法分解因式,培養學生應用因式分解解決問題的能力.

  2.過程與方法:經歷探索因式分解方法的過程,培養學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.

  3.情感態度與價值觀:通過因式分解的學習,使學生體會數學美,體會成功的自信和團結合作精神,并體會整體數學思想和轉化的數學思想.

  教學重、難點:用提公因式法和公式法分解因式.

  教具準備:多媒體課件(小黑板)

  教學方法:活動探究法

  教學過程:

  引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

  知識詳解

  知識點1 因式分解的定義

  把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

  【說明】 (1)因式分解與整式乘法是相反方向的變形.

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗.

  怎樣把一個多項式分解因式?

  知識點2 提公因式法

  多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 師生互動

  例1 用提公因式法將下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b-a化成-(a-b),然后再提取公因式.

  小結 運用提公因式法分解因式時,要注意下列問題:

  (1)因式分解的結果每個括號內如有同類項要合并,而且每個括號內不能再分解.

  (2)如果出現像(2)小題需統一時,首先統一,盡可能使統一的個數少。這時注意到(a-b)n=(b-a)n(n為偶數).

  (3)因式分解最后如果有同底數冪,要寫成冪的形式.

  學生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識點3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即兩個數的平方差,等于這兩個數的和與這個數的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本題旨在考查用完全平方公式分解因式.

  學生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  綜合運用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運用提公因式法和公式法分解因式.

  小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.

  探索與創新題

  例4 若9x2+kxy+36y2是完全平方式,則k= .

  分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差).

  學生做一做 若x2+(k+3)x+9是完全平方式,則k= .

  課堂小結

  用提公因式法和公式法分解因式,會運用因式分解解決計算問題.

  各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

  自我評價 知識鞏固

  1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多項式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解 篇11

  課    題9.5乘法公式的再認識—因式分解

  課時分配本課(章節)需 3    課時本 節 課 為 第 1    課時為 本 學期總第      課時一、運用平方差公式分解因式

  教學目標1、使學生了解運用公式來分解因式的意義。2、使學生理解平方差公式的意義,弄清平方差公式的形式和特點;使學生知道把乘法公式反過來就可以得到相應的因式分解。3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)

  重    點運用平方差公式分解因式

  難    點靈活運用平方差公式分解因式

  教學方法

  對比發現法

  課型

  新授課

  教具投影儀

  教    師    活    動

  學 生 活 動情景設置:同學們,你能很快知道992-1是100的倍數嗎?你是怎么想出來的?(學生或許還有其他不同的解決方法,教師要給予充分的肯定)新課講解:從上面992-1=(99+1)(99-1),我們容易看出,這種方法利用了我們剛學過的哪一個乘法公式?首先我們來做下面兩題:(投影)1.計算下列各式:(1) (a+2)(a-2)=                      ;(2) (a+b)( a-b)=                     ;(3) (3 a+2b)(3 a-2b)=                 .2.下面請你根據上面的算式填空:(1) a2-4=                      ;(2) a2-b2=                      ;(3) 9a2-4b2=                      ;請同學們對比以上兩題,你發現什么呢?事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的形式叫做多項式的因式分解。(投影)比如:a2–16=a2–42=(a+4)(a–4)例題1:把下列各式分解因式;(投影)(1) 36–25x2  ;          (2) 16a2–9b2      ;(3) 9(a+b)2–4(a–b)2  .(讓學生弄清平方差公式的形式和特點并會運用)例題2:如圖,求圓環形綠化區的面積練習:第87頁練一練第1、2、3題小結:這節課你學到了什么知識,掌握什么方法?教學素材:a組題:1.填空:81x2-    =(9x+y)(9x-y); =              利用因式分解計算: =                  。2、下列多項式中能用平方差公式分解因式的是(      )     (a)         (b)   (c)        (d) 3. 把下列各式分解因式(1) 1-16 a2               (2) 9a2 x2-b2y2(3).49(a-b)2-16(a+b)2b組題:1分解因式81 a 4-b4=     2若a+b=1,  a2+b2=1  , 則ab=           ;3若26+28+2n是一個完全平方數,則n=              . 由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.學生回答1:992-1=99×99-1=9801-1=9800學生回答2:992-1就是(99+1)(99-1)即100×98學生回答:平方差公式學生回答:(1):  a2-4(2):  a2-b2(3):  9 a2-4b2學生輕松口答(a+2)(a-2)(a+b)( a-b)(3 a+2b)(3 a-2b)學生回答:把乘法公式(a+b)( a-b)=a2-b2反過來就得到a2-b2=(a+b)(a-b)學生上臺板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50×20π=1000π  (m2)這個綠化區的面積是1000πm2學生歸納總結

  作業第91頁第1(1)(2)②③(3)①③④題

  板      書      設      計復習                          例1                       板演……                          ……                       …………                          ……                       …………                          例2                        …………                          ……                       …………                          ……                       ……

  教      學      后      記

因式分解 篇12

  學習目標

  1、了解因式分解的意義以及它與正式乘法的關系。

  2、能確定多項式各項的公因式,會用提公因式法分解因式。

  學習重點

  能用提公因式法分解因式。

  學習難點

  確定因式的公因式。

  學習關鍵

  在確定多項式各項公因式時,應抓住各項的公因式來提公因式。

  學習過程

  一.知識回顧

  1、計算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學習

  1、閱讀課文P72-73的內容,并回答問題:

  (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

  (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

  ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

  2、練一練。P73練習第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準確地確定公因式時提公因式法分解因式的關鍵,確定公因式可分兩步進行:

  (1)確定公因式的數字因數,當各項系數都是整數時,他們的最大公約數就是公因式的數字因數。

  例如:8a2b-72abc公因式的數字因數為8。

  (2)確定公因式的字母及其指數,公因式的字母應是多項式各項都含有的'字母,其指數取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式為__________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73練習第2題和第3題

  五、達標測試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習題8.5第1題

  學習反思

  一、知識點

  二、易錯題

  三、你的困惑

因式分解(精選12篇) 相關內容:
  • 22.2.5 因式分解法(精選2篇)

    教學內容用因式分解法解一元二次方程.教學目標掌握用因式分解法解一元二次方程.通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法──因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.重難點關鍵1.重點:用...

  • 《因式分解》優秀教案(通用12篇)

    教學目標:1、進一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法3、選擇恰當的'方法進行因式分解4、應用因式分解來解決一些實際問題5、體驗應用知識解決問題的樂趣教學重點:靈活運用因式分解解決問題教學難點:靈活運用恰當的因式...

  • 關于因式分解教案(精選12篇)

    第6.4因式分解的簡單應用背景材料:因式分解是初中數學中的一個重點內容,也是一項重要的基本技能和基礎知識,更是一種數學的變形方法,在今后的學習中有著重要的作用。...

  • 有關因式分解教案(通用15篇)

    整式乘除與因式分解一.回顧知識點1、主要知識回顧:冪的運算性質:aman=am+n(m、n為正整數)同底數冪相乘,底數不變,指數相加.=amn(m、n為正整數)冪的乘方,底數不變,指數相乘.(n為正整數)積的乘方等于各因式乘方的積.=am-n(a≠0,m、n都...

  • 二次三項式的因式分解(通用6篇)

    一、教學目標1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系;2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式;3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣,...

  • 因式分解導學案

    課題:8.5 因式分解學習目標1、了解因式分解的意義以及它與正式乘法的關系。2、能確定多項式各項的公因式,會用提公因式法分解因式。學習重點:能用提公因式法分解因式。學習難點:確定因式的公因式。...

  • 《因式分解---待定系數法、換元法、添項拆項法》知識點歸納

    知識體系梳理◆ 添項拆項法有的多項式由于“缺項”,或“并項”因此不能直接分解。通過進行適當的添項或拆項后利用分組而分解的方法稱為添項、拆項法。一般來說,添項拆項后要能運用提公因式法、公式法、十字相乘法、分組分解法分解。...

  • 《因式分解-分組分解與十字相乘法》知識點歸納

    ★★ 知識體系梳理◆ 分組分解法:用分組分解法來分解的多項式一般至少有四項,分組不是盲目的,要有預見性.也就是說,分組后每組之間必須要有公因式可提取,或者分組后可直接運用公式。...

  • 22.2.5 因式分解法

    教學內容 用因式分解法解一元二次方程. 教學目標 掌握用因式分解法解一元二次方程. 通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法──因式分解法解一元二次方程,并應用因式分解法解決一些具體問題. 重難點關鍵 1.重...

  • 浙教版數學說課-因式分解說課稿

    一、說教材1、關于地位與作用。本說課的內容是數學第二冊7.1《因式分解》。因式分解不言而喻,就整個數學而言,它是打開整個代數寶庫的一把鑰匙。就本節課而言,著重闡述了兩個方面,一是因式分解的概念,二是與整式乘法的相互關系。...

  • 數學教案-二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 七年級數學教案
主站蜘蛛池模板: 国产乱子伦农村xxxx | 日日麻批视频 | 国产网站免费看 | 免费国产乱码一二三区 | aaa级久久久精品无码片 | 国产亚洲毛片 | 黄色影院就爱大片网 | 日韩一日 | 日本精品久久 | 色婷婷日韩 | 欧美日韩中文字幕一区二区高清 | 午夜a一级毛片亚洲欧洲 | 日韩精品一区二区三区免费观看视频 | 国产人成视频在线观看 | www.一区二区| 女人爽到高潮嗷嗷叫视频 | 国产强伦姧在线观看无码 | 亚洲欧美国产欧美色欲 | 一级久久19久久久区区区区区区 | 中文字幕28页| 中文字幕一区二区三区精华液 | 亚洲视频一区在线播放 | 最新中文字幕在线 | 成人A级视频在线播放 | 黄视频网站在线看 | 日本高清色倩视频在线观看 | 啪视频网站 | 日韩不卡视频在线观看 | 国产成人精品视频一区二区不卡 | 日日夜夜精彩视频 | 久久免费久久 | 日韩二区在线观看 | 美日韩成人 | 国产尤物小视频在线观看 | 国产精品久久久久一区二区三区 | 免费毛片免费看 | 亚州日韩精品AV片无码中文 | 日批视频在线 | 欧美另类在线制服丝袜国产 | 最新日本一道免费一区二区 | 国产www在线 |